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Preface

This book is an introduction to the practical tools of exploratory data analysis. The
organization of the book follows the process I use when I start working with a dataset:

• Importing and cleaning: Whatever format the data is in, it usually takes some time
and effort to read the data, clean and transform it, and check that everything made
it through the translation process intact.

• Single variable explorations: I usually start by examining one variable at a time,
finding out what the variables mean, looking at distributions of the values, and
choosing appropriate summary statistics.

• Pair-wise explorations: To identify possible relationships between variables, I look
at tables and scatter plots, and compute correlations and linear fits.

• Multivariate analysis: If there are apparent relationships between variables, I use
multiple regression to add control variables and investigate more complex rela‐
tionships.

• Estimation and hypothesis testing: When reporting statistical results, it is important
to answer three questions: How big is the effect? How much variability should we
expect if we run the same measurement again? Is it possible that the apparent effect
is due to chance?

• Visualization: During exploration, visualization is an important tool for finding
possible relationships and effects. Then if an apparent effect holds up to scrutiny,
visualization is an effective way to communicate results.

This book takes a computational approach, which has several advantages over mathe‐
matical approaches:

• I present most ideas using Python code, rather than mathematical notation. In
general, Python code is more readable; also, because it is executable, readers can
download it, run it, and modify it.

ix



• Each chapter includes exercises readers can do to develop and solidify their learn‐
ing. When you write programs, you express your understanding in code; while you
are debugging the program, you are also correcting your understanding.

• Some exercises involve experiments to test statistical behavior. For example, you
can explore the Central Limit Theorem (CLT) by generating random samples and
computing their sums. The resulting visualizations demonstrate why the CLT works
and when it doesn’t.

• Some ideas that are hard to grasp mathematically are easy to understand by simu‐
lation. For example, we approximate p-values by running random simulations,
which reinforces the meaning of the p-value.

• Because the book is based on a general-purpose programming language (Python),
readers can import data from almost any source. They are not limited to datasets
that have been cleaned and formatted for a particular statistics tool.

The book lends itself to a project-based approach. In my class, students work on a
semester-long project that requires them to pose a statistical question, find a dataset
that can address it, and apply each of the techniques they learn to their own data.

To demonstrate my approach to statistical analysis, the book presents a case study that
runs through all of the chapters. It uses data from two sources:

• The National Survey of Family Growth (NSFG), conducted by the U.S. Centers for
Disease Control and Prevention (CDC) to gather “information on family life, mar‐
riage and divorce, pregnancy, infertility, use of contraception, and men’s and wom‐
en’s health.” (See http://cdc.gov/nchs/nsfg.htm.)

• The Behavioral Risk Factor Surveillance System (BRFSS), conducted by the Na‐
tional Center for Chronic Disease Prevention and Health Promotion to “track
health conditions and risk behaviors in the United States.” (See http://cdc.gov/
BRFSS/.)

Other examples use data from the IRS, the U.S. Census, and the Boston Marathon.

This second edition of Think Stats includes the chapters from the first edition, many of
them substantially revised, and new chapters on regression, time series analysis, survival
analysis, and analytic methods. The previous edition did not use pandas, SciPy, or
StatsModels, so all of that material is new.

How I Wrote This Book
When people write a new textbook, they usually start by reading a stack of old textbooks.
As a result, most books contain the same material in pretty much the same order.
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I did not do that. In fact, I used almost no printed material while I was writing this book,
for several reasons:

• My goal was to explore a new approach to this material, so I didn’t want much
exposure to existing approaches.

• Since I am making this book available under a free license, I wanted to make sure
that no part of it was encumbered by copyright restrictions.

• Many readers of my books don’t have access to libraries of printed material, so I
tried to make references to resources that are freely available on the Internet.

• Some proponents of old media think that the exclusive use of electronic resources
is lazy and unreliable. They might be right about the first part, but I think they are
wrong about the second, so I wanted to test my theory.

The resource I used more than any other is Wikipedia. In general, the articles I read on
statistical topics were very good (although I made a few small changes along the way).
I include references to Wikipedia pages throughout the book and I encourage you to
follow those links; in many cases, the Wikipedia page picks up where my description
leaves off. The vocabulary and notation in this book are generally consistent with Wi‐
kipedia, unless I had a good reason to deviate. Other resources I found useful were
Wolfram MathWorld and the Reddit statistics forum.

Using the Code
The code and data used in this book are available from GitHub. Git is a version control
system that allows you to keep track of the files that make up a project. A collection of
files under Git’s control is called a repository. GitHub is a hosting service that provides
storage for Git repositories and a convenient web interface.

The GitHub homepage for my repository provides several ways to work with the code:

• You can create a copy of my repository on GitHub by pressing the Fork button. If
you don’t already have a GitHub account, you’ll need to create one. After forking,
you’ll have your own repository on GitHub that you can use to keep track of code
you write while working on this book. Then you can clone the repo, which means
that you make a copy of the files on your computer.

• Or you could clone my repository. You don’t need a GitHub account to do this, but
you won’t be able to write your changes back to GitHub.

• If you don’t want to use Git at all, you can download the files in a Zip file using the
button in the lower-right corner of the GitHub page.

All of the code is written to work in both Python 2 and Python 3 with no translation.
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I developed this book using Anaconda from Continuum Analytics, which is a free
Python distribution that includes all the packages you’ll need to run the code (and lots
more). I found Anaconda easy to install. By default it does a user-level installation, not
system-level, so you don’t need administrative privileges. And it supports both Python
2 and Python 3. You can download Anaconda from Continuum.

If you don’t want to use Anaconda, you will need the following packages:

• pandas for representing and analyzing data
• NumPy for basic numerical computation
• SciPy for scientific computation including statistics
• StatsModels for regression and other statistical analysis
• matplotlib for visualization

Although these are commonly used packages, they are not included with all Python
installations, and they can be hard to install in some environments. If you have trouble
installing them, I strongly recommend using Anaconda or one of the other Python
distributions that include these packages.

After you clone the repository or unzip the zip file, you should have a file called
ThinkStats2/code/nsfg.py. If you run it, it should read a data file, run some tests, and
print a message like, “All tests passed.” If you get import errors, it probably means there
are packages you need to install.

Most exercises use Python scripts, but some also use the IPython notebook. If you have
not used IPython notebook before, I suggest you start with the documentation.

I wrote this book assuming that the reader is familiar with core Python, including object-
oriented features, but not pandas, NumPy, and SciPy. If you are already familiar with
these modules, you can skip a few sections.

I assume that the reader knows basic mathematics, including logarithms, for example,
and summations. I refer to calculus concepts in a few places, but you don’t have to do
any calculus.

If you have never studied statistics, I think this book is a good place to start. And if you
have taken a traditional statistics class, I hope this book will help repair the damage.

—

Allen B. Downey is a Professor of Computer Science at the Franklin W. Olin College of
Engineering in Needham, MA.

xii | Preface

http://continuum.io/downloads
http://pandas.pydata.org/
http://www.numpy.org/
http://www.scipy.org/
http://statsmodels.sourceforge.net/
http://matplotlib.org/
http://bit.ly/1BIR440


Contributor List
If you have a suggestion or correction, please send email to downey@allendow‐
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CHAPTER 1

Exploratory Data Analysis

The thesis of this book is that data combined with practical methods can answer ques‐
tions and guide decisions under uncertainty.

As an example, I present a case study motivated by a question I heard when my wife
and I were expecting our first child: do first babies tend to arrive late?

If you Google this question, you will find plenty of discussion. Some people claim it’s
true, others say it’s a myth, and some people say it’s the other way around: first babies
come early.

In many of these discussions, people provide data to support their claims. I found many
examples like these:

“My two friends that have given birth recently to their first babies, BOTH went almost 2
weeks overdue before going into labour or being induced.”
“My first one came 2 weeks late and now I think the second one is going to come out two
weeks early!!”
“I don’t think that can be true because my sister was my mother’s first and she was early,
as with many of my cousins.”

Reports like these are called anecdotal evidence because they are based on data that is
unpublished and usually personal. In casual conversation, there is nothing wrong with
anecdotes, so I don’t mean to pick on the people I quoted.

But we might want evidence that is more persuasive and an answer that is more reliable.
By those standards, anecdotal evidence usually fails, because:
Small number of observations

If pregnancy length is longer for first babies, the difference is probably small com‐
pared to natural variation. In that case, we might have to compare a large number
of pregnancies to be sure that a difference exists.
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Selection bias
People who join a discussion of this question might be interested because their first
babies were late. In that case the process of selecting data would bias the results.

Confirmation bias
People who believe the claim might be more likely to contribute examples that
confirm it. People who doubt the claim are more likely to cite counterexamples.

Inaccuracy
Anecdotes are often personal stories, and often misremembered, misrepresented,
repeated inaccurately, etc.

So how can we do better?

A Statistical Approach
To address the limitations of anecdotes, we will use the tools of statistics, which include:
Data collection

We will use data from a large national survey that was designed explicitly with the
goal of generating statistically valid inferences about the U.S. population.

Descriptive statistics
We will generate statistics that summarize the data concisely, and evaluate different
ways to visualize data.

Exploratory data analysis
We will look for patterns, differences, and other features that address the questions
we are interested in. At the same time we will check for inconsistencies and identify
limitations.

Estimation
We will use data from a sample to estimate characteristics of the general population.

Hypothesis testing
Where we see apparent effects, like a difference between two groups, we will evaluate
whether the effect might have happened by chance.

By performing these steps with care to avoid pitfalls, we can reach conclusions that are
more justifiable and more likely to be correct.

The National Survey of Family Growth
Since 1973, the US Centers for Disease Control and Prevention (CDC) have conducted
the National Survey of Family Growth (NSFG), which is intended to gather “information
on family life, marriage and divorce, pregnancy, infertility, use of contraception, and
men’s and women’s health. The survey results are used…to plan health services and

2 | Chapter 1: Exploratory Data Analysis

http://cdc.gov/nchs/nsfg.htm


health education programs, and to do statistical studies of families, fertility, and health.”

We will use data collected by this survey to investigate whether first babies tend to come
late, as well as answer other questions. In order to use this data effectively, we have to
understand the design of the study.

The NSFG is a cross-sectional study, which means that it captures a snapshot of a group
at a point in time. The most common alternative is a longitudinal study, which observes
a group repeatedly over a period of time.

The NSFG has been conducted seven times; each deployment is called a cycle. We will
use data from Cycle 6, which was conducted from January 2002 to March 2003.

The goal of the survey is to draw conclusions about a population; the target population
of the NSFG is people in the United States aged 15-44. Ideally surveys would collect data
from every member of the population, but that’s seldom possible. Instead we collect
data from a subset of the population called a sample. The people who participate in a
survey are called respondents.

In general, cross-sectional studies are meant to be representative, which means that
every member of the target population has an equal chance of participating. That ideal
is hard to achieve in practice, but people who conduct surveys come as close as they
can.

The NSFG is not representative; instead it is deliberately oversampled. The designers
of the study recruited three groups—Hispanics, African Americans and teenagers—at
rates higher than their representation in the U.S. population, in order to make sure that
the number of respondents in each of these groups is large enough to draw valid stat‐
istical inferences.

Of course, the drawback of oversampling is that it is not as easy to draw conclusions
about the general population based on statistics from the survey. We will come back to
this point later.

When working with this kind of data, it is important to be familiar with the code‐
book, which documents the design of the study, the survey questions, and the encoding
of the responses. The codebook and user’s guide for the NSFG data are available from 
the CDC’s website.

Importing the Data
The code and data used in this book are available from GitHub. For information about
downloading and working with this code, see “Using the Code” on page xi.
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Once you download the code, you should have a folder called ThinkStats2/code with
a file called nsfg.py. If you run it, it should read a data file, run some tests, and print a
message like, “All tests passed.”

Let’s see what it does. Pregnancy data from Cycle 6 of the NSFG is in a file called
2002FemPreg.dat.gz; it is a gzip-compressed data file in plain text (ASCII), with fixed
width columns. Each line in the file is a record that contains data about one pregnancy.

The format of the file is documented in 2002FemPreg.dct, which is a Stata dictionary
file. Stata is a statistical software system; a “dictionary” in this context is a list of variable
names, types, and indices that identify where in each line to find each variable.

For example, here are a few lines from 2002FemPreg.dct:
infile dictionary {
  _column(1)  str12  caseid    %12s  "RESPONDENT ID NUMBER"
  _column(13) byte   pregordr   %2f  "PREGNANCY ORDER (NUMBER)"
}

This dictionary describes two variables: caseid is a 12-character string that represents
the respondent ID; pregorder is a one-byte integer that indicates which pregnancy this
record describes for this respondent.

The code you downloaded includes thinkstats2.py which is a Python module that
contains many classes and functions used in this book, including functions that read
the Stata dictionary and the NSFG data file. Here’s how they are used in nsfg.py:

def ReadFemPreg(dct_file='2002FemPreg.dct',
                dat_file='2002FemPreg.dat.gz'):
    dct = thinkstats2.ReadStataDct(dct_file)
    df = dct.ReadFixedWidth(dat_file, compression='gzip')
    CleanFemPreg(df)
    return df

ReadStataDct takes the name of the dictionary file and returns dct, a
FixedWidthVariables object that contains the information from the dictionary file.
dct provides ReadFixedWidth, which reads the data file.

DataFrames
The result of ReadFixedWidth is a DataFrame, which is the fundamental data structure
provided by pandas, which is a Python data and statistics package we’ll use throughout
this book. A DataFrame contains a row for each record, in this case one row per preg‐
nancy, and a column for each variable.

In addition to the data, a DataFrame also contains the variable names and their types,
and it provides methods for accessing and modifying the data.
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If you print df you get a truncated view of the rows and columns, and the shape of the
DataFrame, which is 13593 rows/records and 244 columns/variables.

>>> import nsfg
>>> df = nsfg.ReadFemPreg()
>>> df
...
[13593 rows x 244 columns]

The attribute columns returns a sequence of column names as Unicode strings:
>>> df.columns
Index([u'caseid', u'pregordr', u'howpreg_n', u'howpreg_p', ... ])

The result is an Index, which is another pandas data structure. We’ll learn more about
Index later, but for now we’ll treat it like a list:

>>> df.columns[1]
'pregordr'

To access a column from a DataFrame, you can use the column name as a key:
>>> pregordr = df['pregordr']
>>> type(pregordr)
<class 'pandas.core.series.Series'>

The result is a Series, yet another pandas data structure. A Series is like a Python list
with some additional features. When you print a Series, you get the indices and the
corresponding values:

>>> pregordr
0     1
1     2
2     1
3     2
...
13590    3
13591    4
13592    5
Name: pregordr, Length: 13593, dtype: int64

In this example the indices are integers from 0 to 13592, but in general they can be any
sortable type. The elements are also integers, but they can be any type.

The last line includes the variable name, Series length, and data type; int64 is one of
the types provided by NumPy. If you run this example on a 32-bit machine you might
see int32.
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You can access the elements of a Series using integer indices and slices:
>>> pregordr[0]
1
>>> pregordr[2:5]
2    1
3    2
4    3
Name: pregordr, dtype: int64

The result of the index operator is an int64; the result of the slice is another Series.

You can also access the columns of a DataFrame using dot notation:
>>> pregordr = df.pregordr

This notation only works if the column name is a valid Python identifier, so it has to
begin with a letter, can’t contain spaces, etc.

Variables
We have already seen two variables in the NSFG dataset, caseid and pregordr, and we
have seen that there are 244 variables in total. For the explorations in this book, I use
the following variables:

• caseid is the integer ID of the respondent.
• prglength is the integer duration of the pregnancy in weeks.
• outcome is an integer code for the outcome of the pregnancy. The code 1 indicates

a live birth.
• pregordr is a pregnancy serial number; for example, the code for a respondent’s

first pregnancy is 1, for the second pregnancy is 2, and so on.
• birthord is a serial number for live births; the code for a respondent’s first child is

1, and so on. For outcomes other than live births, this field is blank.
• birthwgt_lb and birthwgt_oz contain the pounds and ounces parts of the birth

weight of the baby.
• agepreg is the mother’s age at the end of the pregnancy.
• finalwgt is the statistical weight associated with the respondent. It is a floating-

point value that indicates the number of people in the U.S. population this re‐
spondent represents.

If you read the codebook carefully, you will see that many of the variables are recodes,
which means that they are not part of the raw data collected by the survey; they are
calculated using the raw data.
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For example, prglngth for live births is equal to the raw variable wksgest (weeks of
gestation) if it is available; otherwise it is estimated using mosgest * 4.33 (months of
gestation times the average number of weeks in a month).

Recodes are often based on logic that checks the consistency and accuracy of the data.
In general it is a good idea to use recodes when they are available, unless there is a
compelling reason to process the raw data yourself.

Transformation
When you import data like this, you often have to check for errors, deal with special
values, convert data into different formats, and perform calculations. These operations
are called data cleaning.

nsfg.py includes CleanFemPreg, a function that cleans the variables I am planning to
use.

def CleanFemPreg(df):
    df.agepreg /= 100.0

    na_vals = [97, 98, 99]
    df.birthwgt_lb.replace(na_vals, np.nan, inplace=True)
    df.birthwgt_oz.replace(na_vals, np.nan, inplace=True)

    df['totalwgt_lb'] = df.birthwgt_lb + df.birthwgt_oz / 16.0

agepreg contains the mother’s age at the end of the pregnancy. In the data file, agepreg
is encoded as an integer number of centiyears. So the first line divides each element of
agepreg by 100, yielding a floating-point value in years.

birthwgt_lb and birthwgt_oz contain the weight of the baby, in pounds and ounces,
for pregnancies that end in live births. In addition they use several special codes:

97 NOT ASCERTAINED
98 REFUSED  
99 DON'T KNOW

Special values encoded as numbers are dangerous because if they are not handled prop‐
erly, they can generate bogus results, like a 99-pound baby. The replace method replaces
these values with np.nan, a special floating-point value that represents “not a number.”
The inplace flag tells replace to modify the existing Series rather than create a new
one.

As part of the IEEE floating-point standard, all mathematical operations return nan if
either argument is nan:

>>> import numpy as np
>>> np.nan / 100.0
nan
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So computations with nan tend to do the right thing, and most pandas functions handle
nan appropriately. But dealing with missing data will be a recurring issue.

The last line of CleanFemPreg creates a new column totalwgt_lb that combines pounds
and ounces into a single quantity, in pounds.

One important note: when you add a new column to a DataFrame, you must use dic‐
tionary syntax, like this:

    # CORRECT
    df['totalwgt_lb'] = df.birthwgt_lb + df.birthwgt_oz / 16.0

Not dot notation, like this:
    # WRONG!
    df.totalwgt_lb = df.birthwgt_lb + df.birthwgt_oz / 16.0

The version with dot notation adds an attribute to the DataFrame object, but that at‐
tribute is not treated as a new column.

Validation
When data is exported from one software environment and imported into another,
errors might be introduced. And when you are getting familiar with a new dataset, you
might interpret data incorrectly or introduce other misunderstandings. If you take time
to validate the data, you can save time later and avoid errors.

One way to validate data is to compute basic statistics and compare them with published
results. For example, the NSFG codebook includes tables that summarize each variable.
Here is the table for outcome, which encodes the outcome of each pregnancy:

value label           Total
1 LIVE BIRTH              9148
2 INDUCED ABORTION        1862
3 STILLBIRTH               120
4 MISCARRIAGE             1921
5 ECTOPIC PREGNANCY        190
6 CURRENT PREGNANCY        352

The Series class provides a method, value_counts, that counts the number of times
each value appears. If we select the outcome Series from the DataFrame, we can use
value_counts to compare with the published data:

>>> df.outcome.value_counts().sort_index()
1    9148
2    1862
3     120
4    1921
5     190
6     352
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The result of value_counts is a Series; sort_index sorts the Series by index, so the
values appear in order.

Comparing the results with the published table, it looks like the values in outcome are
correct. Similarly, here is the published table for birthwgt_lb

value label                  Total
. INAPPLICABLE            4449
0-5 UNDER 6 POUNDS          1125
6 6 POUNDS                2223
7 7 POUNDS                3049
8 8 POUNDS                1889
9-95 9 POUNDS OR MORE         799

And here are the value counts:
>>> df.birthwgt_lb.value_counts(sort=False)
0        8
1       40
2       53
3       98
4      229
5      697
6     2223
7     3049
8     1889
9      623
10     132
11      26
12      10
13       3
14       3
15       1
51       1

The counts for 6, 7, and 8 pounds check out, and if you add up the counts for 0-5 and
9-95, they check out, too. But if you look more closely, you will notice one value that
has to be an error, a 51 pound baby!

To deal with this error, I added a line to CleanFemPreg:
df.birthwgt_lb[df.birthwgt_lb > 20] = np.nan

This statement replaces invalid values with np.nan. The expression in brackets yields a
Series of type bool, where True indicates that the condition is true. When a Boolean
Series is used as an index, it selects only the elements that satisfy the condition.

Interpretation
To work with data effectively, you have to think on two levels at the same time: the level
of statistics and the level of context.
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As an example, let’s look at the sequence of outcomes for a few respondents. Because of
the way the data files are organized, we have to do some processing to collect the preg‐
nancy data for each respondent. Here’s a function that does that:

def MakePregMap(df):
    d = defaultdict(list)
    for index, caseid in df.caseid.iteritems():
        d[caseid].append(index)
    return d

df is the DataFrame with pregnancy data. The iteritems method enumerates the index
(row number) and caseid for each pregnancy.

d is a dictionary that maps from each case ID to a list of indices. If you are not familiar
with defaultdict, it is in the Python collections module. Using d, we can look up a
respondent and get the indices of that respondent’s pregnancies.

This example looks up one respondent and prints a list of outcomes for her pregnancies:
>>> caseid = 10229
>>> indices = preg_map[caseid]
>>> df.outcome[indices].values
[4 4 4 4 4 4 1]

indices is the list of indices for pregnancies corresponding to respondent 10229.

Using this list as an index into df.outcome selects the indicated rows and yields a Series.
Instead of printing the whole Series, I selected the values attribute, which is a NumPy
array.

The outcome code 1 indicates a live birth. Code 4 indicates a miscarriage; that is, a
pregnancy that ended spontaneously, usually with no known medical cause.

Statistically this respondent is not unusual. Miscarriages are common and there are
other respondents who reported as many or more.

But remembering the context, this data tells the story of a woman who was pregnant
six times, each time ending in miscarriage. Her seventh and most recent pregnancy
ended in a live birth. If we consider this data with empathy, it is natural to be moved by
the story it tells.

Each record in the NSFG dataset represents a person who provided honest answers to
many personal and difficult questions. We can use this data to answer statistical ques‐
tions about family life, reproduction, and health. At the same time, we have an obligation
to consider the people represented by the data, and to afford them respect and gratitude.

10 | Chapter 1: Exploratory Data Analysis



Exercises
Exercise 1-1.
In the repository you downloaded, you should find a file named chap01ex.ipynb, which
is an IPython notebook. You can launch IPython notebook from the command line like
this:
$ ipython notebook &

If IPython is installed, it should launch a server that runs in the background and open
a browser to view the notebook. If you are not familiar with IPython, I suggest you start
at the IPython website.

You can add a command-line option that makes figures appear “inline”; that is, in the
notebook rather than a pop-up window:
$ ipython notebook --pylab=inline &

Open chap01ex.ipynb. Some cells are already filled in, and you should execute them.
Other cells give you instructions for exercises you should try.

A solution to this exercise is in chap01soln.ipynb

Exercise 1-2.
Create a file named chap01ex.py and write code that reads the respondent file,
2002FemResp.dat.gz. You might want to start with a copy of nsfg.py and modify it.

The variable pregnum is a recode that indicates how many times each respondent has
been pregnant. Print the value counts for this variable and compare them to the pub‐
lished results in the NSFG codebook.

You can also cross-validate the respondent and pregnancy files by comparing pregnum
for each respondent with the number of records in the pregnancy file.

You can use nsfg.MakePregMap to make a dictionary that maps from each caseid to a
list of indices into the pregnancy DataFrame.

A solution to this exercise is in chap01soln.py

Exercise 1-3.
The best way to learn about statistics is to work on a project you are interested in. Do
you want to investigate a question like “Do first babies arrive late?”

Think about questions you find personally interesting, or items of conventional wisdom,
or controversial topics, or questions that have political consequences, and see if you can
formulate a question that lends itself to statistical inquiry.
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Look for data to help you address the question. Governments are good sources because
data from public research is often freely available. Good places to start include http://
www.data.gov/, and http://www.science.gov/, and in the United Kingdom, http://
data.gov.uk/.

Two of my favorite data sets are the General Social Survey and the European Social
Survey.

If it seems like someone has already answered your question, look closely to see whether
the answer is justified. There might be flaws in the data or the analysis that make the
conclusion unreliable. In that case you could perform a different analysis of the same
data, or look for a better source of data.

If you find a published paper that addresses your question, you should be able to get
the raw data. Many authors make their data available on the web, but for sensitive data
you might have to write to the authors, provide information about how you plan to use
the data, or agree to certain terms of use. Be persistent!

Glossary
anecdotal evidence

Evidence, often personal, that is collected casually rather than by a well-designed
study.

population
A group we are interested in studying. “Population” often refers to a group of people,
but the term is used for other subjects, too.

cross-sectional study
A study that collects data about a population at a particular point in time.

cycle
In a repeated cross-sectional study, each repetition of the study is called a cycle.

longitudinal study
A study that follows a population over time, collecting data from the same group
repeatedly.

record
In a dataset, a collection of information about a single person or other subject.

respondent
A person who responds to a survey.

sample
The subset of a population used to collect data.
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representative
A sample is representative if every member of the population has the same chance
of being in the sample.

oversampling
The technique of increasing the representation of a subpopulation in order to avoid
errors due to small sample sizes.

raw data
Values collected and recorded with little or no checking, calculation or interpreta‐
tion.

recode
A value that is generated by calculation and other logic applied to raw data.

data cleaning
Processes that include validating data, identifying errors, translating between data
types and representations, etc.
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CHAPTER 2

Distributions

One of the best ways to describe a variable is to report the values that appear in the
dataset and how many times each value appears. This description is called the distri‐
bution of the variable.

The most common representation of a distribution is a histogram, which is a graph
that shows the frequency of each value. In this context, “frequency” means the number
of times the value appears.

In Python, an efficient way to compute frequencies is with a dictionary. Given a sequence
of values, t:

hist = {}
for x in t:
    hist[x] = hist.get(x, 0) + 1

The result is a dictionary that maps from values to frequencies. Alternatively, you could
use the Counter class defined in the collections module:

from collections import Counter
counter = Counter(t)

The result is a Counter object, which is a subclass of dictionary.

Another option is to use the pandas method value_counts, which we saw in the pre‐
vious chapter. But for this book I created a class, Hist, that represents histograms and
provides the methods that operate on them.
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Representing Histograms
The Hist constructor can take a sequence, dictionary, pandas Series, or another Hist.
You can instantiate a Hist object like this:

>>> import thinkstats2
>>> hist = thinkstats2.Hist([1, 2, 2, 3, 5])
>>> hist
Hist({1: 1, 2: 2, 3: 1, 5: 1})

Hist objects provide Freq, which takes a value and returns its frequency:
>>> hist.Freq(2)
2

The bracket operator does the same thing:
>>> hist[2]
2

If you look up a value that has never appeared, the frequency is 0:
>>> hist.Freq(4)
0

Values returns an unsorted list of the values in the Hist:
>>> hist.Values()
[1, 5, 3, 2]

To loop through the values in order, you can use the built-in function sorted:
for val in sorted(hist.Values()):
    print(val, hist.Freq(val))

Or you can use Items to iterate through value-frequency pairs:
for val, freq in hist.Items():
     print(val, freq)

Plotting Histograms
For this book I wrote a module called thinkplot.py that provides functions for plotting
Hists and other objects defined in thinkstats2.py. It is based on pyplot, which is part
of the matplotlib package. See “Using the Code” on page xi for information about
installing matplotlib.

To plot hist with thinkplot, try this:
>>> import thinkplot
>>> thinkplot.Hist(hist)
>>> thinkplot.Show(xlabel='value', ylabel='frequency')
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You can read the documentation for thinkplot at http://bit.ly/1sgoj7V.

NSFG Variables
Now let’s get back to the data from the NSFG. The code in this chapter is in first.py.
For information about downloading and working with this code, see “Using the
Code” on page xi.

When you start working with a new dataset, I suggest you explore the variables you are
planning to use one at a time, and a good way to start is by looking at histograms.

In “Transformation” on page 7 we transformed agepreg from centiyears to years, and
combined birthwgt_lb and birthwgt_oz into a single quantity, totalwgt_lb. In this
section I use these variables to demonstrate some features of histograms.

I’ll start by reading the data and selecting records for live births:
    preg = nsfg.ReadFemPreg()
    live = preg[preg.outcome == 1]

The expression in brackets is a boolean Series that selects rows from the DataFrame and
returns a new DataFrame. Next I generate and plot the histogram of birthwgt_lb for
live births.

    hist = thinkstats2.Hist(live.birthwgt_lb, label='birthwgt_lb')
    thinkplot.Hist(hist)
    thinkplot.Show(xlabel='pounds', ylabel='frequency')

When the argument passed to Hist is a pandas Series, any nan values are dropped. label
is a string that appears in the legend when the Hist is plotted.

Figure 2-1 shows the result. The most common value, called the mode, is 7 pounds. The
distribution is approximately bell-shaped, which is the shape of the normal distribution,
also called a Gaussian distribution. But unlike a true normal distribution, this distri‐
bution is asymmetric; it has a tail that extends farther to the left than to the right.

Figure 2-2 shows the histogram of birthwgt_oz, which is the ounces part of birth weight.
In theory we expect this distribution to be uniform; that is, all values should have the
same frequency. In fact, 0 is more common than the other values, and 1 and 15 are less
common, probably because respondents round off birth weights that are close to an
integer value.

Figure 2-3 shows the histogram of agepreg, the mother’s age at the end of pregnancy.
The mode is 21 years. The distribution is very roughly bell-shaped, but in this case the
tail extends farther to the right than left; most mothers are in their 20s, fewer in their
30s.

Figure 2-4 shows the histogram of prglngth, the length of the pregnancy in weeks. By
far the most common value is 39 weeks. The left tail is longer than the right; early babies
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Figure 2-2. Histogram of the ounce part of birth weight

are common, but pregnancies seldom go past 43 weeks, and doctors often intervene if
they do.

Figure 2-1. Histogram of the pound part of birth weight
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Figure 2-3. Histogram of mother’s age at end of pregnancy

Figure 2-4. Histogram of pregnancy length in weeks

Outliers
Looking at histograms, it is easy to identify the most common values and the shape of
the distribution, but rare values are not always visible.
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Before going on, it is a good idea to check for outliers, which are extreme values that
might be errors in measurement and recording, or might be accurate reports of rare
events.

Hist provides methods Largest and Smallest, which take an integer n and return the
n largest or smallest values from the histogram:

    for weeks, freq in hist.Smallest(10):
        print(weeks, freq)

In the list of pregnancy lengths for live births, the 10 lowest values are
[0, 4, 9, 13, 17, 18, 19, 20, 21, 22]. Values below 10 weeks are certainly errors;
the most likely explanation is that the outcome was not coded correctly. Values higher
than 30 weeks are probably legitimate. Between 10 and 30 weeks, it is hard to be sure;
some values are probably errors, but some represent premature babies.

On the other end of the range, the highest values are:
weeks  count
43     148
44     46
45     10
46     1
47     1
48     7
50     2

Most doctors recommend induced labor if a pregnancy exceeds 42 weeks, so some of
the longer values are surprising. In particular, 50 weeks seems medically unlikely.

The best way to handle outliers depends on “domain knowledge”; that is, information
about where the data come from and what they mean. And it depends on what analysis
you are planning to perform.

In this example, the motivating question is whether first babies tend to be early (or late).
When people ask this question, they are usually interested in full-term pregnancies, so
for this analysis I will focus on pregnancies longer than 27 weeks.

First Babies
Now we can compare the distribution of pregnancy lengths for first babies and others.
I divided the DataFrame of live births using birthord, and computed their histograms:

    firsts = live[live.birthord == 1]
    others = live[live.birthord != 1]

    first_hist = thinkstats2.Hist(firsts.prglngth)
    other_hist = thinkstats2.Hist(others.prglngth)

Then I plotted their histograms on the same axis:
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    width = 0.45
    thinkplot.PrePlot(2)
    thinkplot.Hist(first_hist, align='right', width=width)
    thinkplot.Hist(other_hist, align='left', width=width)
    thinkplot.Show(xlabel='weeks', ylabel='frequency')

thinkplot.PrePlot takes the number of histograms we are planning to plot; it uses this
information to choose an appropriate collection of colors.

thinkplot.Hist normally uses align=’center’ so that each bar is centered over its
value. For this figure, I use align=’right’ and align=’left’ to place corresponding
bars on either side of the value.

With width=0.45, the total width of the two bars is 0.9, leaving some space between
each pair.

Finally, I adjust the axis to show only data between 27 and 46 weeks. Figure 2-5 shows
the result.

Figure 2-5. Histogram of pregnancy lengths.

Histograms are useful because they make the most frequent values immediately appa‐
rent. But they are not the best choice for comparing two distributions. In this example,
there are fewer “first babies” than “others,” so some of the apparent differences in the
histograms are due to sample sizes. In the next chapter we address this problem using
probability mass functions.
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Summarizing Distributions
A histogram is a complete description of the distribution of a sample; that is, given a
histogram, we could reconstruct the values in the sample (although not their order).

If the details of the distribution are important, it might be necessary to present a his‐
togram. But often we want to summarize the distribution with a few descriptive statis‐
tics.

Some of the characteristics we might want to report are:
central tendency

Do the values tend to cluster around a particular point?

modes
Is there more than one cluster?

spread
How much variability is there in the values?

tails
How quickly do the probabilities drop off as we move away from the modes?

outliers
Are there extreme values far from the modes?

Statistics designed to answer these questions are called summary statistics. By far the
most common summary statistic is the mean, which is meant to describe the central
tendency of the distribution.

If you have a sample of n values, xi, the mean, x̄, is the sum of the values divided by the
number of values:

x̄ =
1
n ∑

i
xi

The words mean and average are sometimes used interchangeably, but I make this dis‐
tinction:

• The mean of a sample is the summary statistic computed with the previous formula.
• An average is one of several summary statistics you might choose to describe a

central tendency.

Sometimes the mean is a good description of a set of values. For example, apples are all
pretty much the same size (at least the ones sold in supermarkets). So if I buy 6 apples
and the total weight is 3 pounds, it would be a reasonable summary to say they are about
a half pound each.
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But pumpkins are more diverse. Suppose I grow several varieties in my garden, and one
day I harvest three decorative pumpkins that are 1 pound each, two pie pumpkins that
are 3 pounds each, and one Atlantic Giant pumpkin that weighs 591 pounds. The mean
of this sample is 100 pounds, but if I told you “The average pumpkin in my garden is
100 pounds,” that would be misleading. In this example, there is no meaningful average
because there is no typical pumpkin.

Variance
If there is no single number that summarizes pumpkin weights, we can do a little better
with two numbers: mean and variance.

Variance is a summary statistic intended to describe the variability or spread of a dis‐
tribution. The variance of a set of values is

S 2 =
1
n ∑

i
(xi - x̄)2

The term xi - x̄ is called the “deviation from the mean,” so variance is the mean squared
deviation. The square root of variance, S, is the standard deviation.

If you have prior experience, you might have seen a formula for variance with n - 1 in
the denominator, rather than n. This statistic is used to estimate the variance in a pop‐
ulation using a sample. We will come back to this in Chapter 8.

Pandas data structures provides methods to compute mean, variance and standard de‐
viation:

    mean = live.prglngth.mean()
    var = live.prglngth.var()
    std = live.prglngth.std()

For all live births, the mean pregnancy length is 38.6 weeks, the standard deviation is
2.7 weeks, which means we should expect deviations of 2-3 weeks to be common.

Variance of pregnancy length is 7.3, which is hard to interpret, especially since the units
are weeks2, or “square weeks.” Variance is useful in some calculations, but it is not a good
summary statistic.

Effect Size
An effect size is a summary statistic intended to describe (wait for it) the size of an
effect. For example, to describe the difference between two groups, one obvious choice
is the difference in the means.

Mean pregnancy length for first babies is 38.601; for other babies it is 38.523. The dif‐
ference is 0.078 weeks, which works out to 13 hours. As a fraction of the typical preg‐
nancy length, this difference is about 0.2%.
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If we assume this estimate is accurate, such a difference would have no practical con‐
sequences. In fact, without observing a large number of pregnancies, it is unlikely that
anyone would notice this difference at all.

Another way to convey the size of the effect is to compare the difference between groups
to the variability within groups. Cohen’s d is a statistic intended to do that; it is defined

d =
x1̄ - x2̄

s
where x1̄ and x2̄ are the means of the groups and s is the “pooled standard deviation”.
Here’s the Python code that computes Cohen’s d:

def CohenEffectSize(group1, group2):
    diff = group1.mean() - group2.mean()

    var1 = group1.var()
    var2 = group2.var()
    n1, n2 = len(group1), len(group2)

    pooled_var = (n1 * var1 + n2 * var2) / (n1 + n2)
    d = diff / math.sqrt(pooled_var)
    return d

In this example, the difference in means is 0.029 standard deviations, which is small. To
put that in perspective, the difference in height between men and women is about 1.7
standard deviations (see Wikipedia).

Reporting Results
We have seen several ways to describe the difference in pregnancy length (if there is
one) between first babies and others. How should we report these results?

The answer depends on who is asking the question. A scientist might be interested in
any (real) effect, no matter how small. A doctor might only care about effects that are
clinically significant; that is, differences that affect treatment decisions. A pregnant
woman might be interested in results that are relevant to her, like the probability of
delivering early or late.

How you report results also depends on your goals. If you are trying to demonstrate the
importance of an effect, you might choose summary statistics that emphasize differ‐
ences. If you are trying to reassure a patient, you might choose statistics that put the
differences in context.

Of course your decisions should also be guided by professional ethics. It’s OK to be
persuasive; you should design statistical reports and visualizations that tell a story clearly.
But you should also do your best to make your reports honest, and to acknowledge
uncertainty and limitations.
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Exercises
Exercise 2-1.
Based on the results in this chapter, suppose you were asked to summarize what you
learned about whether first babies arrive late.

Which summary statistics would you use if you wanted to get a story on the evening
news? Which ones would you use if you wanted to reassure an anxious patient?

Finally, imagine that you are Cecil Adams, author of The Straight Dope, and your job is
to answer the question, “Do first babies arrive late?” Write a paragraph that uses the
results in this chapter to answer the question clearly, precisely, and honestly.

Exercise 2-2.
In the repository you downloaded, you should find a file named chap02ex.ipynb; open
it. Some cells are already filled in, and you should execute them. Other cells give you
instructions for exercises. Follow the instructions and fill in the answers.

A solution to this exercise is in chap02soln.ipynb

For the following exercises, create a file named chap02ex.py. You can find a solution
in chap02soln.py.

Exercise 2-3.
The mode of a distribution is the most frequent value; see Wikipedia. Write a function
called Mode that takes a Hist and returns the most frequent value.

As a more challenging exercise, write a function called AllModes that returns a list of
value-frequency pairs in descending order of frequency.

Exercise 2-4.
Using the variable totalwgt_lb, investigate whether first babies are lighter or heavier
than others. Compute Cohen’s d to quantify the difference between the groups. How
does it compare to the difference in pregnancy length?

Glossary
distribution

The values that appear in a sample and the frequency of each.

histogram
A mapping from values to frequencies, or a graph that shows this mapping.

frequency
The number of times a value appears in a sample.
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mode
The most frequent value in a sample, or one of the most frequent values.

normal distribution
An idealization of a bell-shaped distribution; also known as a Gaussian distribution.

uniform distribution
A distribution in which all values have the same frequency.

tail
The part of a distribution at the high and low extremes.

central tendency
A characteristic of a sample or population; intuitively, it is an average or typical
value.

outlier
A value far from the central tendency.

spread
A measure of how spread out the values in a distribution are.

summary statistic
A statistic that quantifies some aspect of a distribution, like central tendency or
spread.

variance
A summary statistic often used to quantify spread.

standard deviation
The square root of variance, also used as a measure of spread.

effect size
A summary statistic intended to quantify the size of an effect like a difference be‐
tween groups.

clinically significant
A result, like a difference between groups, that is relevant in practice.
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CHAPTER 3

Probability Mass Functions

The code for this chapter is in probability.py. For information about downloading
and working with this code, see “Using the Code” on page xi.

Pmfs
Another way to represent a distribution is a probability mass function (PMF), which
maps from each value to its probability. A probability is a frequency expressed as a
fraction of the sample size, n. To get from frequencies to probabilities, we divide through
by n, which is called normalization.

Given a Hist, we can make a dictionary that maps from each value to its probability:
n = hist.Total()
d = {}
for x, freq in hist.Items():
    d[x] = freq / n

Or we can use the Pmf class provided by thinkstats2. Like Hist, the Pmf constructor
can take a list, pandas Series, dictionary, Hist, or another Pmf object. Here’s an example
with a simple list:

>>> import thinkstats2
>>> pmf = thinkstats2.Pmf([1, 2, 2, 3, 5])
>>> pmf
Pmf({1: 0.2, 2: 0.4, 3: 0.2, 5: 0.2})

The Pmf is normalized so total probability is 1.

Pmf and Hist objects are similar in many ways; in fact, they inherit many of their meth‐
ods from a common parent class. For example, the methods Values and Items work
the same way for both. The biggest difference is that a Hist maps from values to integer
counters; a Pmf maps from values to floating-point probabilities.
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To look up the probability associated with a value, use Prob:
>>> pmf.Prob(2)
0.4

The bracket operator is equivalent:
>>> pmf[2]
0.4

You can modify an existing Pmf by incrementing the probability associated with a value:
>>> pmf.Incr(2, 0.2)
>>> pmf.Prob(2)
0.6

Or you can multiply a probability by a factor:
>>> pmf.Mult(2, 0.5)
>>> pmf.Prob(2)
0.3

If you modify a Pmf, the result may not be normalized; that is, the probabilities may no
longer add up to 1. To check, you can call Total, which returns the sum of the proba‐
bilities:

>>> pmf.Total()
0.9

To renormalize, call Normalize:
>>> pmf.Normalize()
>>> pmf.Total()
1.0

Pmf objects provide a Copy method so you can make and modify a copy without affecting
the original.

My notation in this section might seem inconsistent, but there is a system: I use Pmf for
the name of the class, pmf for an instance of the class, and PMF for the mathematical
concept of a probability mass function.

Plotting PMFs
thinkplot provides two ways to plot Pmfs:

• To plot a Pmf as a bar graph, you can use thinkplot.Hist. Bar graphs are most
useful if the number of values in the Pmf is small.

• To plot a Pmf as a step function, you can use thinkplot.Pmf. This option is most
useful if there are a large number of values and the Pmf is smooth. This function
also works with Hist objects.
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In addition, pyplot provides a function called hist that takes a sequence of values,
computes a histogram, and plots it. Since I use Hist objects, I usually don’t use
pyplot.hist.

Figure 3-1 shows PMFs of pregnancy length for first babies and others using bar graphs
(left) and step functions (right).

Figure 3-1. PMF of pregnancy lengths for first babies and others, using bar graphs and
step functions

Here’s the code that generates Figure 3-1:
    thinkplot.PrePlot(2, cols=2)
    thinkplot.Hist(first_pmf, align='right', width=width)
    thinkplot.Hist(other_pmf, align='left', width=width)
    thinkplot.Config(xlabel='weeks',
                     ylabel='probability',
                     axis=[27, 46, 0, 0.6])

    thinkplot.PrePlot(2)
    thinkplot.SubPlot(2)
    thinkplot.Pmfs([first_pmf, other_pmf])
    thinkplot.Show(xlabel='weeks',
                   axis=[27, 46, 0, 0.6])

By plotting the PMF instead of the histogram, we can compare the two distributions
without being misled by the difference in sample size. Based on this figure, first babies

Plotting PMFs | 29



seem to be less likely than others to arrive on time (week 39) and more likely to be late
(weeks 41 and 42).

PrePlot takes optional parameters rows and cols to make a grid of figures, in this case
one row of two figures. The figure on the left displays the Pmfs using
thinkplot.Hist, as we have seen before.

The second call to PrePlot resets the color generator. Then SubPlot switches to the
second figure (on the right) and displays the Pmfs using thinkplot.Pmfs. I used the
axis option to ensure that the two figures are on the same axes, which is generally a
good idea if you intend to compare two figures.

Other Visualizations
Histograms and PMFs are useful while you are exploring data and trying to identify
patterns and relationships. Once you have an idea what is going on, a good next step is
to design a visualization that makes the patterns you have identified as clear as possible.

In the NSFG data, the biggest differences in the distributions are near the mode. So it
makes sense to zoom in on that part of the graph, and transform the data to emphasize
differences:

    weeks = range(35, 46)
    diffs = []
    for week in weeks:
        p1 = first_pmf.Prob(week)
        p2 = other_pmf.Prob(week)
        diff = 100 * (p1 - p2)
        diffs.append(diff)

    thinkplot.Bar(weeks, diffs)

In this code, weeks is the range of weeks; diffs is the difference between the two PMFs
in percentage points. Figure 3-2 shows the result as a bar chart. This figure makes the
pattern clearer: first babies are less likely to be born in week 39, and somewhat more
likely to be born in weeks 41 and 42.

For now we should hold this conclusion only tentatively. We used the same dataset to
identify an apparent difference and then chose a visualization that makes the difference
apparent. We can’t be sure this effect is real; it might be due to random variation. We’ll
address this concern later.

The Class Size Paradox
Before we go on, I want to demonstrate one kind of computation you can do with Pmf
objects; I call this example the “class size paradox.”
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Figure 3-2. Difference, in percentage points, by week

At many American colleges and universities, the student-to-faculty ratio is about 10:1.
But students are often surprised to discover that their average class size is bigger than
10. There are two reasons for the discrepancy:

• Students typically take 4–5 classes per semester, but professors often teach 1 or 2.
• The number of students who enjoy a small class is small, but the number of students

in a large class is (ahem!) large.

The first effect is obvious, at least once it is pointed out; the second is more subtle. Let’s
look at an example. Suppose that a college offers 65 classes in a given semester, with the
following distribution of sizes:

 size      count
 5- 9          8
10-14          8
15-19         14
20-24          4
25-29          6
30-34         12
35-39          8
40-44          3
45-49          2
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If you ask the Dean for the average class size, he would construct a PMF, compute the
mean, and report that the average class size is 23.7. Here’s the code:

    d = { 7: 8, 12: 8, 17: 14, 22: 4, 
          27: 6, 32: 12, 37: 8, 42: 3, 47: 2 }

    pmf = thinkstats2.Pmf(d, label='actual')
    print('mean', pmf.Mean())

But if you survey a group of students, ask them how many students are in their classes,
and compute the mean, you would think the average class size was bigger. Let’s see how
much bigger.

First, I compute the distribution as observed by students, where the probability asso‐
ciated with each class size is “biased” by the number of students in the class.

def BiasPmf(pmf, label):
    new_pmf = pmf.Copy(label=label)

    for x, p in pmf.Items():
        new_pmf.Mult(x, x)
        
    new_pmf.Normalize()
    return new_pmf

For each class size, x, we multiply the probability by x, the number of students who
observe that class size. The result is a new Pmf that represents the biased distribution.

Now we can plot the actual and observed distributions:
    biased_pmf = BiasPmf(pmf, label='observed')
    thinkplot.PrePlot(2)
    thinkplot.Pmfs([pmf, biased_pmf])
    thinkplot.Show(xlabel='class size', ylabel='PMF')

Figure 3-3 shows the result. In the biased distribution there are fewer small classes and
more large ones. The mean of the biased distribution is 29.1, almost 25% higher than
the actual mean.
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Figure 3-3. Distribution of class sizes, actual and as observed by students

It is also possible to invert this operation. Suppose you want to find the distribution of
class sizes at a college, but you can’t get reliable data from the Dean. An alternative is to
choose a random sample of students and ask how many students are in their classes.

The result would be biased for the reasons we’ve just seen, but you can use it to estimate
the actual distribution. Here’s the function that unbiases a Pmf:

def UnbiasPmf(pmf, label):
    new_pmf = pmf.Copy(label=label)

    for x, p in pmf.Items():
        new_pmf.Mult(x, 1.0/x)
        
    new_pmf.Normalize()
    return new_pmf

It’s similar to BiasPmf; the only difference is that it divides each probability by x instead
of multiplying.
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DataFrame Indexing
In “DataFrames” on page 4 we read a pandas DataFrame and used it to select and modify
data columns. Now let’s look at row selection. To start, I create a NumPy array of random
numbers and use it to initialize a DataFrame:

>>> import numpy as np
>>> import pandas
>>> array = np.random.randn(4, 2)
>>> df = pandas.DataFrame(array)
>>> df
          0         1
0 -0.143510  0.616050
1 -1.489647  0.300774
2 -0.074350  0.039621
3 -1.369968  0.545897

By default, the rows and columns are numbered starting at zero, but you can provide
column names:

>>> columns = ['A', 'B']
>>> df = pandas.DataFrame(array, columns=columns)
>>> df
          A         B
0 -0.143510  0.616050
1 -1.489647  0.300774
2 -0.074350  0.039621
3 -1.369968  0.545897

You can also provide row names. The set of row names is called the index; the row
names themselves are called labels.

>>> index = ['a', 'b', 'c', 'd']
>>> df = pandas.DataFrame(array, columns=columns, index=index)
>>> df
          A         B
a -0.143510  0.616050
b -1.489647  0.300774
c -0.074350  0.039621
d -1.369968  0.545897

As we saw in the previous chapter, simple indexing selects a column, returning a Series:
>>> df['A']
a   -0.143510
b   -1.489647
c   -0.074350
d   -1.369968
Name: A, dtype: float64

To select a row by label, you can use the loc attribute, which returns a Series:
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>>> df.loc['a']
A   -0.14351
B    0.61605
Name: a, dtype: float64

If you know the integer position of a row, rather than its label, you can use the iloc
attribute, which also returns a Series.

>>> df.iloc[0]
A   -0.14351
B    0.61605
Name: a, dtype: float64

loc can also take a list of labels; in that case, the result is a DataFrame.
>>> indices = ['a', 'c']
>>> df.loc[indices]
         A         B
a -0.14351  0.616050
c -0.07435  0.039621

Finally, you can use a slice to select a range of rows by label:
>>> df['a':'c']
          A         B
a -0.143510  0.616050
b -1.489647  0.300774
c -0.074350  0.039621

Or by integer position:
>>> df[0:2]
          A         B
a -0.143510  0.616050
b -1.489647  0.300774

The result in either case is a DataFrame, but notice that the first result includes the end
of the slice; the second doesn’t.

My advice: if your rows have labels that are not simple integers, use the labels consistently
and avoid using integer positions.

Exercises
Solutions to these exercises are in chap03soln.ipynb and chap03soln.py

Exercise 3-1.
Something like the class size paradox appears if you survey children and ask how many
children are in their family. Families with many children are more likely to appear in
your sample, and families with no children have no chance to be in the sample.
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Use the NSFG respondent variable NUMKDHH to construct the actual distribution for the
number of children under 18 in the household.

Now compute the biased distribution we would see if we surveyed the children and
asked them how many children under 18 (including themselves) are in their household.

Plot the actual and biased distributions, and compute their means. As a starting place,
you can use chap03ex.ipynb.

Exercise 3-2.
In “Summarizing Distributions” on page 22 we computed the mean of a sample by
adding up the elements and dividing by n. If you are given a PMF, you can still compute
the mean, but the process is slightly different:

x̄ = ∑
i

pi xi

where the xi are the unique values in the PMF and pi = PMF (xi). Similarly, you can
compute variance like this:

S 2 = ∑
i

pi (xi - x̄)2

Write functions called PmfMean and PmfVar that take a Pmf object and compute the
mean and variance. To test these methods, check that they are consistent with the
methods Mean and Var provided by Pmf.

Exercise 3-3.
I started with the question, “Are first babies more likely to be late?” To address it, I
computed the difference in means between groups of babies, but I ignored the possibility
that there might be a difference between first babies and others for the same woman.

To address this version of the question, select respondents who have at least two babies
and compute pairwise differences. Does this formulation of the question yield a different
result?

Hint: use nsfg.MakePregMap.

Exercise 3-4.
In most foot races, everyone starts at the same time. If you are a fast runner, you usually
pass a lot of people at the beginning of the race, but after a few miles everyone around
you is going at the same speed.

When I ran a long-distance (209 miles) relay race for the first time, I noticed an odd
phenomenon: when I overtook another runner, I was usually much faster, and when
another runner overtook me, he was usually much faster.
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At first I thought that the distribution of speeds might be bimodal; that is, there were
many slow runners and many fast runners, but few at my speed.

Then I realized that I was the victim of a bias similar to the effect of class size. The race
was unusual in two ways: it used a staggered start, so teams started at different times;
also, many teams included runners at different levels of ability.

As a result, runners were spread out along the course with little relationship between
speed and location. When I joined the race, the runners near me were (pretty much) a
random sample of the runners in the race.

So where does the bias come from? During my time on the course, the chance of over‐
taking a runner, or being overtaken, is proportional to the difference in our speeds. I
am more likely to catch a slow runner, and more likely to be caught by a fast runner.
But runners at the same speed are unlikely to see each other.

Write a function called ObservedPmf that takes a Pmf representing the actual distribu‐
tion of runners’ speeds, and the speed of a running observer, and returns a new Pmf
representing the distribution of runners’ speeds as seen by the observer.

To test your function, you can use relay.py, which reads the results from the James
Joyce Ramble 10K in Dedham MA and converts the pace of each runner to mph.

Compute the distribution of speeds you would observe if you ran a relay race at 7.5 mph
with this group of runners. A solution to this exercise is in relay_soln.py.

Glossary
Probability mass function (PMF)

a representation of a distribution as a function that maps from values to probabil‐
ities.

probability
A frequency expressed as a fraction of the sample size.

normalization
The process of dividing a frequency by a sample size to get a probability.

index
In a pandas DataFrame, the index is a special column that contains the row labels.
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CHAPTER 4

Cumulative Distribution Functions

The code for this chapter is in cumulative.py. For information about downloading and
working with this code, see “Using the Code” on page xi.

The Limits of PMFs
PMFs work well if the number of values is small. But as the number of values increases,
the probability associated with each value gets smaller and the effect of random noise
increases.

For example, we might be interested in the distribution of birth weights. In the NSFG
data, the variable totalwgt_lb records weight at birth in pounds. Figure 4-1 shows the
PMF of these values for first babies and others.

Overall, these distributions resemble the bell shape of a normal distribution, with many
values near the mean and a few values much higher and lower.

But parts of this figure are hard to interpret. There are many spikes and valleys, and
some apparent differences between the distributions. It is hard to tell which of these
features are meaningful. Also, it is hard to see overall patterns; for example, which
distribution do you think has the higher mean?

These problems can be mitigated by binning the data; that is, dividing the range of values
into non-overlapping intervals and counting the number of values in each bin. Binning
can be useful, but it is tricky to get the size of the bins right. If they are big enough to
smooth out noise, they might also smooth out useful information.

An alternative that avoids these problems is the cumulative distribution function (CDF),
which is the subject of this chapter. But before I can explain CDFs, I have to explain
percentiles.
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Figure 4-1. PMF of birth weights showing a limitation of PMFs: they are hard to com‐
pare visually

Percentiles
If you have taken a standardized test, you probably got your results in the form of a raw
score and a percentile rank. In this context, the percentile rank is the fraction of people
who scored lower than you (or the same). So if you are “in the 90th percentile,” you did
as well as or better than 90% of the people who took the exam.

Here’s how you could compute the percentile rank of a value, your_score, relative to
the values in the sequence scores:

def PercentileRank(scores, your_score):
    count = 0
    for score in scores:
        if score <= your_score:
            count += 1

    percentile_rank = 100.0 * count / len(scores)
    return percentile_rank
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As an example, if the scores in the sequence were 55, 66, 77, 88 and 99, and you got the
88, then your percentile rank would be 100 * 4 / 5 which is 80.

If you are given a value, it is easy to find its percentile rank; going the other way is slightly
harder. If you are given a percentile rank and you want to find the corresponding value,
one option is to sort the values and search for the one you want:

def Percentile(scores, percentile_rank):
    scores.sort()
    for score in scores:
        if PercentileRank(scores, score) >= percentile_rank:
            return score

The result of this calculation is a percentile. For example, the 50th percentile is the value
with percentile rank 50. In the distribution of exam scores, the 50th percentile is 77.

This implementation of Percentile is not efficient. A better approach is to use the
percentile rank to compute the index of the corresponding percentile:

def Percentile2(scores, percentile_rank):
    scores.sort()
    index = percentile_rank * (len(scores)-1) / 100
    return scores[index]

The difference between “percentile” and “percentile rank” can be confusing, and people
do not always use the terms precisely. To summarize, PercentileRank takes a value and
computes its percentile rank in a set of values; Percentile takes a percentile rank and
computes the corresponding value.

CDFs
Now that we understand percentiles and percentile ranks, we are ready to tackle the
cumulative distribution function (CDF). The CDF is the function that maps from a
value to its percentile rank.

The CDF is a function of x, where x is any value that might appear in the distribution.
To evaluate CDF(x) for a particular value of x, we compute the fraction of values in the
distribution less than or equal to x.

Here’s what that looks like as a function that takes a sequence, t, and a value, x:
def EvalCdf(t, x):
    count = 0.0
    for value in t:
        if value <= x:
            count += 1

    prob = count / len(t)
    return prob
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This function is almost identical to PercentileRank, except that the result is a proba‐
bility in the range 0–1 rather than a percentile rank in the range 0–100.

As an example, suppose we collect a sample with the values [1, 2, 2, 3, 5]. Here are
some values from its CDF:

CDF (0) = 0
CDF (1) = 0.2
CDF (2) = 0.6
CDF (3) = 0.8
CDF (4) = 0.8
CDF (5) = 1

We can evaluate the CDF for any value of x, not just values that appear in the sample.
If x is less than the smallest value in the sample, CDF(x) is 0. If x is greater than the
largest value, CDF(x) is 1.

Figure 4-2 is a graphical representation of this CDF. The CDF of a sample is a step
function.

Figure 4-2. Example of a CDF

Representing CDFs
thinkstats2 provides a class named Cdf that represents CDFs. The fundamental meth‐
ods Cdf provides are:
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Prob(x)

Given a value x, computes the probability p = CDF(x). The bracket operator is
equivalent to Prob.

Value(p)

Given a probability p, computes the corresponding value, x; that is, the inverse
CDF of p.

The Cdf constructor can take as an argument a list of values, a pandas Series, a Hist,
Pmf, or another Cdf. The following code makes a Cdf for the distribution of pregnancy
lengths in the NSFG:

    live, firsts, others = first.MakeFrames()
    cdf = thinkstats2.Cdf(live.prglngth, label='prglngth')

thinkplot provides a function named Cdf that plots Cdfs as lines:
    thinkplot.Cdf(cdf)
    thinkplot.Show(xlabel='weeks', ylabel='CDF')

Figure 4-3 shows the result. One way to read a CDF is to look up percentiles. For example,
it looks like about 10% of pregnancies are shorter than 36 weeks, and about 90% are
shorter than 41 weeks. The CDF also provides a visual representation of the shape of
the distribution. Common values appear as steep or vertical sections of the CDF; in this
example, the mode at 39 weeks is apparent. There are few values below 30 weeks, so the
CDF in this range is flat.

Figure 4-3. CDF of pregnancy length

Representing CDFs | 43



It takes some time to get used to CDFs, but once you do, I think you will find that they
show more information, more clearly, than PMFs.

Comparing CDFs
CDFs are especially useful for comparing distributions. For example, here is the code
that plots the CDF of birth weights for first babies and others.

    first_cdf = thinkstats2.Cdf(firsts.totalwgt_lb, label='first')
    other_cdf = thinkstats2.Cdf(others.totalwgt_lb, label='other')

    thinkplot.PrePlot(2)
    thinkplot.Cdfs([first_cdf, other_cdf])
    thinkplot.Show(xlabel='weight (pounds)', ylabel='CDF')

Figure 4-4 shows the result. Compared to Figure 4-1, this figure makes the shape of the
distributions, and the differences between them, much clearer. We can see that first
babies are slightly lighter throughout the distribution, with a larger discrepancy above
the mean.

Figure 4-4. CDF of birth weights for first babies and others

Percentile-Based Statistics
Once you have computed a CDF, it is easy to compute percentiles and percentile ranks.
The Cdf class provides these two methods:
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PercentileRank(x)

Given a value x, computes its percentile rank, 100 · CDF(x).

Percentile(p)

Given a percentile rank rank, computes the corresponding value, x. Equivalent to
Value(p/100).

Percentile can be used to compute percentile-based summary statistics. For example,
the 50th percentile is the value that divides the distribution in half, also known as the
median. Like the mean, the median is a measure of the central tendency of a distribution.

Actually, there are several definitions of “median,” each with different properties. But
Percentile(50) is simple and efficient to compute.

Another percentile-based statistic is the interquartile range (IQR), which is a measure
of the spread of a distribution. The IQR is the difference between the 75th and 25th
percentiles.

More generally, percentiles are often used to summarize the shape of a distribution. For
example, the distribution of income is often reported in “quintiles”; that is, it is split at
the 20th, 40th, 60th and 80th percentiles. Other distributions are divided into 10 “dec‐
iles”. Statistics like these that represent equally spaced points in a CDF are called quan‐
tiles.

Random Numbers
Suppose we choose a random sample from the population of live births and look up the
percentile rank of their birth weights. Now suppose we compute the CDF of the per‐
centile ranks. What do you think the distribution will look like?

Here’s how we can compute it. First, we make the Cdf of birth weights:
    weights = live.totalwgt_lb
    cdf = thinkstats2.Cdf(weights, label='totalwgt_lb')

Then we generate a sample and compute the percentile rank of each value in the sample.
    sample = np.random.choice(weights, 100, replace=True)
    ranks = [cdf.PercentileRank(x) for x in sample]

sample is a random sample of 100 birth weights, chosen with replacement; that is, the
same value could be chosen more than once. ranks is a list of percentile ranks.

Finally we make and plot the Cdf of the percentile ranks.
    rank_cdf = thinkstats2.Cdf(ranks)
    thinkplot.Cdf(rank_cdf)
    thinkplot.Show(xlabel='percentile rank', ylabel='CDF')
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Figure 4-5 shows the result. The CDF is approximately a straight line, which means that
the distribution is uniform.

Figure 4-5. CDF of percentile ranks for a random sample of birth weights

That outcome might not be obvious, but it is a consequence of the way the CDF is
defined. What this figure shows is that 10% of the sample is below the 10th percentile,
20% is below the 20th percentile, and so on, exactly as we should expect.

So, regardless of the shape of the CDF, the distribution of percentile ranks is uniform.
This property is useful, because it is the basis of a simple and efficient algorithm for
generating random numbers with a given CDF. Here’s how:

• Choose a percentile rank uniformly from the range 0–100.
• Use Cdf.Percentile to find the value in the distribution that corresponds to the

percentile rank you chose.

Cdf provides an implementation of this algorithm, called Random:
# class Cdf:
    def Random(self):
        return self.Percentile(random.uniform(0, 100))

Cdf also provides Sample, which takes an integer, n, and returns a list of n values chosen
at random from the Cdf.
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Comparing Percentile Ranks
Percentile ranks are useful for comparing measurements across different groups. For
example, people who compete in foot races are usually grouped by age and gender. To
compare people in different age groups, you can convert race times to percentile ranks.

A few years ago I ran the James Joyce Ramble 10K in Dedham MA; I finished in 42:44,
which was 97th in a field of 1633. I beat or tied 1537 runners out of 1633, so my percentile
rank in the field was 94%.

More generally, given position and field size, we can compute percentile rank:
def PositionToPercentile(position, field_size):
    beat = field_size - position + 1
    percentile = 100.0 * beat / field_size
    return percentile

In my age group, denoted M4049 for “males between 40 and 49 years of age”, I came in
26th out of 256. So my percentile rank in my age group was 90%.

If I am still running in 10 years (and I hope I am), I will be in the M5059 division.
Assuming that my percentile rank in my division is the same, how much slower should
I expect to be?

I can answer that question by converting my percentile rank in M4049 to a position in
M5059. Here’s the code:

def PercentileToPosition(percentile, field_size):
    beat = percentile * field_size / 100.0
    position = field_size - beat + 1
    return position

There were 171 people in M5059, so I would have to come in between 17th and 18th
place to have the same percentile rank. The finishing time of the 17th runner in M5059
was 46:05, so that’s the time I will have to beat to maintain my percentile rank.

Exercises
For the following exercises, you can start with chap04ex.ipynb. My solution is in
chap04soln.ipynb.

Exercise 4-1.
How much did you weigh at birth? If you don’t know, call your mother or someone else
who knows. Using the NSFG data (all live births), compute the distribution of birth
weights and use it to find your percentile rank. If you were a first baby, find your per‐
centile rank in the distribution for first babies. Otherwise use the distribution for others.
If you are in the 90th percentile or higher, call your mother back and apologize.
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Exercise 4-2.
The numbers generated by random.random are supposed to be uniform between 0 and
1; that is, every value in the range should have the same probability.

Generate 1000 numbers from random.random and plot their PMF and CDF. Is the dis‐
tribution uniform?

Glossary
percentile rank

The percentage of values in a distribution that are less than or equal to a given value.

percentile
The value associated with a given percentile rank.

cumulative distribution function (CDF)
A function that maps from values to their cumulative probabilities. CDF(x) is the
fraction of the sample less than or equal to x.

inverse CDF
A function that maps from a cumulative probability, p, to the corresponding value.

median
The 50th percentile, often used as a measure of central tendency.

interquartile range
The difference between the 75th and 25th percentiles, used as a measure of spread.

quantile
A sequence of values that correspond to equally spaced percentile ranks; for ex‐
ample, the quartiles of a distribution are the 25th, 50th and 75th percentiles.

replacement
A property of a sampling process. “With replacement” means that the same value
can be chosen more than once; “without replacement” means that once a value is
chosen, it is removed from the population.
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CHAPTER 5

Modeling Distributions

The distributions we have used so far are called empirical distributions because they
are based on empirical observations, which are necessarily finite samples.

The alternative is an analytic distribution, which is characterized by a CDF that is a
mathematical function. Analytic distributions can be used to model empirical distri‐
butions. In this context, a model is a simplification that leaves out unneeded details.
This chapter presents common analytic distributions and uses them to model data from
a variety of sources.

The code for this chapter is in analytic.py. For information about downloading and
working with this code, see “Using the Code” on page xi.

The Exponential Distribution
I’ll start with the exponential distribution because it is relatively simple. The CDF of 
the exponential distribution is

CDF(x) = 1 - e -λx

The parameter, λ, determines the shape of the distribution. Figure 5-1 shows what this
CDF looks like with λ =  0.5, 1, and 2.

In the real world, exponential distributions come up when we look at a series of events
and measure the times between events, called interarrival times. If the events are equally
likely to occur at any time, the distribution of interarrival times tends to look like an
exponential distribution.
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1. This example is based on information and data from Dunn, “A Simple Dataset for Demonstrating Common
Distributions,” Journal of Statistics Education v.7, n.3 (1999).

Figure 5-1. CDFs of exponential distributions with various parameters.

As an example, we will look at the interarrival time of births. On December 18, 1997,
44 babies were born in a hospital in Brisbane, Australia.1 The time of birth for all 44
babies was reported in the local paper; the complete dataset is in a file called
babyboom.dat, in the ThinkStats2 repository.

    df = ReadBabyBoom()
    diffs = df.minutes.diff()
    cdf = thinkstats2.Cdf(diffs, label='actual')

    thinkplot.Cdf(cdf)
    thinkplot.Show(xlabel='minutes', ylabel='CDF')

ReadBabyBoom reads the data file and returns a DataFrame with columns time, sex,
weight_g, and minutes, where minutes is the time of birth converted to minutes since
midnight.

diffs is the difference between consecutive birth times, and cdf is the distribution of
these interarrival times. Figure 5-2 (left) shows the CDF. It seems to have the general
shape of an exponential distribution, but how can we tell?
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Figure 5-2. CDF of interarrival times (left) and CCDF on a log-y scale (right)

One way is to plot the complementary CDF, which is 1 - CDF(x), on a log-y scale. For
data from an exponential distribution, the result is a straight line. Let’s see why that
works.

If you plot the complementary CDF (CCDF) of a dataset that you think is exponential,
you expect to see a function like:

y ≈ e -λx

Taking the log of both sides yields:
log y ≈ - λx

So on a log-y scale the CCDF is a straight line with slope -λ. Here’s how we can generate
a plot like that:

    thinkplot.Cdf(cdf, complement=True)
    thinkplot.Show(xlabel='minutes',
                   ylabel='CCDF',
                   yscale='log')

With the argument complement=True, thinkplot.Cdf computes the complementary
CDF before plotting. And with yscale=’log’, thinkplot.Show sets the y axis to a log‐
arithmic scale.

Figure 5-2 (right) shows the result. It is not exactly straight, which indicates that the
exponential distribution is not a perfect model for this data. Most likely the underlying
assumption—that a birth is equally likely at any time of day—is not exactly true. Nev‐
ertheless, it might be reasonable to model this dataset with an exponential distribution.
With that simplification, we can summarize the distribution with a single parameter.
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The parameter, λ, can be interpreted as a rate; that is, the number of events that occur,
on average, in a unit of time. In this example, 44 babies are born in 24 hours, so the rate
is λ = 0.0306 births per minute. The mean of an exponential distribution is 1 / λ, so the
mean time between births is 32.7 minutes.

The Normal Distribution
The normal distribution, also called Gaussian, is commonly used because it describes
many phenomena, at least approximately. It turns out that there is a good reason for its
ubiquity, which we will get to in “Central Limit Theorem” on page 186.

The normal distribution is characterized by two parameters: the mean, μ, and standard
deviation σ. The normal distribution with μ = 0 and σ = 1 is called the standard normal
distribution. Its CDF is defined by an integral that does not have a closed form solution,
but there are algorithms that evaluate it efficiently. One of them is provided by SciPy:
scipy.stats.norm is an object that represents a normal distribution; it provides a
method, cdf, that evaluates the standard normal CDF:

>>> import scipy.stats
>>> scipy.stats.norm.cdf(0)
0.5

This result is correct: the median of the standard normal distribution is 0 (the same as
the mean), and half of the values fall below the median, so CDF(0) is 0.5.

norm.cdf takes optional parameters: loc, which specifies the mean, and scale, which
specifies the standard deviation.

thinkstats2 makes this function a little easier to use by providing EvalNormalCdf,
which takes parameters mu and sigma and evaluates the CDF at x:

def EvalNormalCdf(x, mu=0, sigma=1):
    return scipy.stats.norm.cdf(x, loc=mu, scale=sigma)

Figure 5-3 shows CDFs for normal distributions with a range of parameters. The sig‐
moid shape of these curves is a recognizable characteristic of a normal distribution.

In the previous chapter, we looked at the distribution of birth weights in the NSFG.
Figure 5-4 shows the empirical CDF of weights for all live births and the CDF of a normal
distribution with the same mean and variance.

The normal distribution is a good model for this dataset, so if we summarize the dis‐
tribution with the parameters μ = 7.28 and σ = 1.24, the resulting error (difference
between the model and the data) is small.
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Figure 5-3. CDF of normal distributions with a range of parameters.

Figure 5-4. CDF of birth weights with a normal model

Below the 10th percentile there is a discrepancy between the data and the model; there
are more light babies than we would expect in a normal distribution. If we are specifically
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interested in preterm babies, it would be important to get this part of the distribution
right, so it might not be appropriate to use the normal model.

Normal Probability Plot
For the exponential distribution, and a few others, there are simple transformations we
can use to test whether an analytic distribution is a good model for a dataset.

For the normal distribution there is no such transformation, but there is an alternative
called a normal probability plot. There are two ways to generate a normal probability
plot: the hard way and the easy way. Here’s the easy way:

1. Sort the values in the sample.
2. From a standard normal distribution (μ = 0 and σ = 1), generate a random sample

with the same size as the sample, and sort it.
3. Plot the sorted values from the sample versus the random values.

If the distribution of the sample is approximately normal, the result is a straight line
with intercept mu and slope sigma. thinkstats2 provides NormalProbability, which
takes a sample and returns two NumPy arrays:

xs, ys = thinkstats2.NormalProbability(sample)

ys contains the sorted values from sample; xs contains the random values from the
standard normal distribution.

To test NormalProbability I generated some fake samples that were actually drawn
from normal distributions with various parameters. Figure 5-5 shows the results. The
lines are approximately straight, with values in the tails deviating more than values near
the mean.

Now let’s try it with real data. Here’s code to generate a normal probability plot for the
birth weight data from the previous section. It plots a gray line that represents the model
and a blue line that represents the data.

def MakeNormalPlot(weights):
    mean = weights.mean()
    std = weights.std()

    xs = [-4, 4]
    fxs, fys = thinkstats2.FitLine(xs, inter=mean, slope=std)
    thinkplot.Plot(fxs, fys, color='gray', label='model')

    xs, ys = thinkstats2.NormalProbability(weights)
    thinkplot.Plot(xs, ys, label='birth weights')

weights is a pandas Series of birth weights; mean and std are the mean and standard
deviation.
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Figure 5-5. Normal probability plot for random samples from normal distributions

FitLine takes a sequence of xs, an intercept, and a slope; it returns xs and ys that
represent a line with the given parameters, evaluated at the values in xs.

NormalProbability returns xs and ys that contain values from the standard normal
distribution and values from weights. If the distribution of weights is normal, the data
should match the model.

Figure 5-6 shows the results for all live births, and also for full term births (pregnancy
length greater than 36 weeks). Both curves match the model near the mean and deviate
in the tails. The heaviest babies are heavier than what the model expects, and the lightest
babies are lighter.

When we select only full term births, we remove some of the lightest weights, which
reduces the discrepancy in the lower tail of the distribution.

This plot suggests that the normal model describes the distribution well within a few
standard deviations from the mean, but not in the tails. Whether it is good enough for
practical purposes depends on the purposes.

The lognormal Distribution
If the logarithms of a set of values have a normal distribution, the values have a log‐
normal distribution. The CDF of the lognormal distribution is the same as the CDF of
the normal distribution, with log x substituted for x.
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2. I was tipped off to this possibility by a comment (without citation). Subsequently I found a paper that proposes
the log transform and suggests a cause: Penman and Johnson, “The Changing Shape of the Body Mass Index
Distribution Curve in the Population,” Preventing Chronic Disease, 2006 July; 3(3): A74.

3. Centers for Disease Control and Prevention (CDC). Behavioral Risk Factor Surveillance System Survey Data.
Atlanta, Georgia: US Department of Health and Human Services, Centers for Disease Control and Prevention,
2008.

Figure 5-6. Normal probability plot of birth weights

CDF lognormal(x) = CDFnormal( log x)

The parameters of the lognormal distribution are usually denoted μ and σ. But remem‐
ber that these parameters are not the mean and standard deviation; the mean of a log‐
normal distribution is exp (μ + σ 2 / 2) and the standard deviation is ugly (see Wikipe‐
dia).

If a sample is approximately lognormal and you plot its CDF on a log-x scale, it will
have the characteristic shape of a normal distribution. To test how well the sample fits
a lognormal model, you can make a normal probability plot using the log of the values
in the sample.

As an example, let’s look at the distribution of adult weights, which is approximately
lognormal.2

The National Center for Chronic Disease Prevention and Health Promotion conducts
an annual survey as part of the Behavioral Risk Factor Surveillance System (BRFSS).3

56 | Chapter 5: Modeling Distributions

http://bit.ly/1o0hAOd
http://1.usa.gov/Zo2o7V
http://1.usa.gov/Zo2o7V
http://wikipedia.org/wiki/Log-normal_distribution
http://wikipedia.org/wiki/Log-normal_distribution


 In 2008, they interviewed 414,509 respondents and asked about their demographics,
health, and health risks. Among the data they collected are the weights in kilograms of
398,484 respondents.

The repository for this book contains CDBRFS08.ASC.gz, a fixed-width ASCII file that
contains data from the BRFSS, and brfss.py, which reads the file and analyzes the data.

Figure 5-7 (left) shows the distribution of adult weights on a linear scale with a normal
model. Figure 5-7 (right) shows the same distribution on a log scale with a lognormal
model. The lognormal model is a better fit, but this representation of the data does not
make the difference particularly dramatic.

Figure 5-7. CDF of adult weights on a linear scale (left) and log scale (right)

Figure 5-8 shows normal probability plots for adult weights, w, and for their logarithms,
log10 w. Now it is apparent that the data deviate substantially from the normal model.
The lognormal model is a good match for the data within a few standard deviations of
the mean, but it deviates in the tails. I conclude that the lognormal distribution is a good
model for this data.

The Pareto Distribution
The Pareto distribution is named after the economist Vilfredo Pareto, who used it to
describe the distribution of wealth. Since then, it has been used to describe phenomena
in the natural and social sciences including sizes of cities and towns, sand particles and
meteorites, and forest fires and earthquakes.

The CDF of the Pareto distribution is:
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Figure 5-8. Normal probability plots for adult weight on a linear scale (left) and log
scale (right).

CDF (x) = 1 - ( x
xm

)-α

The parameters xm and α determine the location and shape of the distribution. xm is the
minimum possible value. Figure 5-9 shows CDFs of Pareto distributions with xm = 0.5
and different values of α.

There is a simple visual test that indicates whether an empirical distribution fits a Pareto
distribution: on a log-log scale, the CCDF looks like a straight line. Let’s see why that
works.

If you plot the CCDF of a sample from a Pareto distribution on a linear scale, you expect
to see a function like:

y ≈ ( x
xm

)-α

Taking the log of both sides yields:

log y ≈ - α( log x - log xm)
So if you plot log y versus log x, it should look like a straight line with slope -α and
intercept α log xm.

As an example, let’s look at the sizes of cities and towns. The US Census Bureau publishes
the population of every incorporated city and town in the United States.

I downloaded their data; it is in the repository for this book in a file named
PEP_2012_PEPANNRES_with_ann.csv. The repository also contains populations.py,
which reads the file and plots the distribution of populations.
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Figure 5-9. CDFs of Pareto distributions with different parameters.

Figure 5-10 shows the CCDF of populations on a log-log scale. The largest 1% of cities
and towns, below 10-2, fall along a straight line. So we could conclude, as some re‐
searchers have, that the tail of this distribution fits a Pareto model.

Figure 5-10. CCDFs of city and town populations, on a log-log scale
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On the other hand, a lognormal distribution also models the data well. Figure 5-11
shows the CDF of populations and a lognormal model (left), and a normal probability
plot (right). Both plots show good agreement between the data and the model.

Neither model is perfect. The Pareto model only applies to the largest 1% of cities, but
it is a better fit for that part of the distribution. The lognormal model is a better fit for
the other 99%. Which model is appropriate depends on which part of the distribution
is relevant.

Figure 5-11. CDF of city and town populations on a log-x scale (left), and normal prob‐
ability plot of log-transformed populations (right)

Generating Random Numbers
Analytic CDFs can be used to generate random numbers with a given distribution
function, p = CDF(x). If there is an efficient way to compute the inverse CDF, we can
generate random values with the appropriate distribution by choosing p from a uniform
distribution between 0 and 1, and then choosing x = ICDF (p).

For example, the CDF of the exponential distribution is

p = 1 - e -λx

Solving for x yields:
x = - log (1 - p) / λ

So in Python we can write
def expovariate(lam):
    p = random.random()
    x = -math.log(1-p) / lam
    return x
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expovariate takes lam and returns a random value chosen from the exponential dis‐
tribution with parameter lam.

Two notes about this implementation: I called the parameter lam because lambda is a
Python keyword. Also, since log 0 is undefined, we have to be a little careful. The 
implementation of random.random can return 0 but not 1, so 1 - p can be 1 but not 0,
so log(1-p) is always defined.

Why Model?
At the beginning of this chapter, I said that many real world phenomena can be modeled
with analytic distributions. “So,” you might ask, “what?”

Like all models, analytic distributions are abstractions, which means they leave out
details that are considered irrelevant. For example, an observed distribution might have
measurement errors or quirks that are specific to the sample; analytic models smooth
out these idiosyncrasies.

Analytic models are also a form of data compression. When a model fits a dataset well,
a small set of parameters can summarize a large amount of data.

It is sometimes surprising when data from a natural phenomenon fit an analytic dis‐
tribution, but these observations can provide insight into physical systems. Sometimes
we can explain why an observed distribution has a particular form. For example, Pareto
distributions are often the result of generative processes with positive feedback (so-
called preferential attachment processes).

Also, analytic distributions lend themselves to mathematical analysis, as we will see in
Chapter 14.

But it is important to remember that all models are imperfect. Data from the real world
never fit an analytic distribution perfectly. People sometimes talk as if data are generated
by models; for example, they might say that the distribution of human heights is normal,
or the distribution of income is lognormal. Taken literally, these claims cannot be true;
there are always differences between the real world and mathematical models.

Models are useful if they capture the relevant aspects of the real world and leave out
unneeded details. But what is “relevant” or “unneeded” depends on what you are plan‐
ning to use the model for.

Exercises
For the following exercises, you can start with chap05ex.ipynb. My solution is in
chap05soln.ipynb.

Why Model? | 61

http://wikipedia.org/wiki/Preferential_attachment


Exercise 5-1.
In the BRFSS (see “The lognormal Distribution” on page 55), the distribution of heights
is roughly normal with parameters μ = 178 cm and σ = 7.7 cm for men, and μ = 163
cm and σ = 7.3 cm for women.

In order to join Blue Man Group, you have to be male and between 5′10″ and 6′1″ tall.
What percentage of the US male population is in this range? Hint: use
scipy.stats.norm.cdf.

Exercise 5-2.
To get a feel for the Pareto distribution, let’s see how different the world would be if the
distribution of human height were Pareto. With the parameters xm = 1 m and α = 1.7,
we get a distribution with a reasonable minimum, 1 m, and median, 1.5 m.

Plot this distribution. What is the mean human height in Pareto world? What fraction
of the population is shorter than the mean? If there are 7 billion people in Pareto world,
how many do we expect to be taller than 1 km? How tall do we expect the tallest person
to be?

Exercise 5-3.
The Weibull distribution is a generalization of the exponential distribution that comes
up in failure analysis. Its CDF is:

CDF (x) = 1 - e -(x /λ)k

Can you find a transformation that makes a Weibull distribution look like a straight
line? What do the slope and intercept of the line indicate?

Use random.weibullvariate to generate a sample from a Weibull distribution and use
it to test your transformation.

Exercise 5-4.
For small values of n, we don’t expect an empirical distribution to fit an analytic distri‐
bution exactly. One way to evaluate the quality of fit is to generate a sample from an
analytic distribution and see how well it matches the data.

For example, in “The Exponential Distribution” on page 49 we plotted the distribution
of time between births and saw that it is approximately exponential. But the distribution
is based on only 44 data points. To see whether the data might have come from an
exponential distribution, generate 44 values from an exponential distribution with the
same mean as the data, about 33 minutes between births.

Plot the distribution of the random values and compare it to the actual distribution.
You can use random.expovariate to generate the values.
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Exercise 5-5.
In the repository for this book, you’ll find a set of data files called mystery0.dat,
mystery1.dat, and so on. Each contains a sequence of random numbers generated from
an analytic distribution.

You will also find test_models.py, a script that reads data from a file and plots the CDF
under a variety of transforms. You can run it like this:
$ python test_models.py mystery0.dat

Based on these plots, you should be able to infer what kind of distribution generated
each file. If you are stumped, you can look in mystery.py, which contains the code that
generated the files.

Exercise 5-6.
The distributions of wealth and income are sometimes modeled using lognormal and
Pareto distributions. To see which is better, let’s look at some data.

The Current Population Survey (CPS) is a joint effort of the Bureau of Labor Statistics
and the Census Bureau to study income and related variables. Data collected in 2013 is
available from the Census Bureau. I downloaded hinc06.xls, which is an Excel spread‐
sheet with information about household income, and converted it to hinc06.csv, a CSV
file you will find in the repository for this book. You will also find hinc.py, which reads
this file.

Extract the distribution of incomes from this dataset. Are any of the analytic distribu‐
tions in this chapter a good model of the data? A solution to this exercise is in
hinc_soln.py .

Glossary
empirical distribution

The distribution of values in a sample.

analytic distribution
A distribution whose CDF is an analytic function.

model
A useful simplification. Analytic distributions are often good models of more com‐
plex empirical distributions.

interarrival time
The elapsed time between two events.

complementary CDF
A function that maps from a value, x, to the fraction of values that exceed x, which
is 1 - CDF(x).
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standard normal distribution
The normal distribution with mean 0 and standard deviation 1.

normal probability plot
A plot of the values in a sample versus random values from a standard normal
distribution.
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CHAPTER 6

Probability Density Functions

The code for this chapter is in density.py. For information about downloading and
working with this code, see “Using the Code” on page xi.

PDFs
The derivative of a CDF is called a probability density function, or PDF. For example,
the PDF of an exponential distribution is

PDFexpo(x) = λe -λx

The PDF of a normal distribution is

PDFnormal(x) =
1

σ 2π
exp -

1
2 ( x - μ

σ )2

Evaluating a PDF for a particular value of x is usually not useful. The result is not a
probability; it is a probability density.

In physics, density is mass per unit of volume; in order to get a mass, you have to multiply
by volume or, if the density is not constant, you have to integrate over volume.

Similarly, probability density measures probability per unit of x. In order to get a
probability mass, you have to integrate over x.

thinkstats2 provides a class called Pdf that represents a probability density function.
Every Pdf object provides the following methods:

• Density, which takes a value, x, and returns the density of the distribution at x.
• Render, which evaluates the density at a discrete set of values and returns a pair of

sequences: the sorted values, xs, and their probability densities, ds.
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• MakePmf, which evaluates Density at a discrete set of values and returns a normal‐
ized Pmf that approximates the Pdf.

• GetLinspace, which returns the default set of points used by Render and MakePmf.

Pdf is an abstract parent class, which means you should not instantiate it; that is, you
cannot create a Pdf object. Instead, you should define a child class that inherits from
Pdf and provides definitions of Density and GetLinspace. Pdf provides Render and
MakePmf.

For example, thinkstats2 provides a class named NormalPdf that evaluates the normal
density function.

class NormalPdf(Pdf):

    def __init__(self, mu=0, sigma=1, label=''):
        self.mu = mu
        self.sigma = sigma
        self.label = label

    def Density(self, xs):
        return scipy.stats.norm.pdf(xs, self.mu, self.sigma)

    def GetLinspace(self):
        low, high = self.mu-3*self.sigma, self.mu+3*self.sigma
        return np.linspace(low, high, 101)

The NormalPdf object contains the parameters mu and sigma. Density uses
scipy.stats.norm, which is an object that represents a normal distribution and pro‐
vides cdf and pdf, among other methods (see “The Normal Distribution” on page 52).

The following example creates a NormalPdf with the mean and variance of adult female
heights, in cm, from the BRFSS (see “The lognormal Distribution” on page 55). Then
it computes the density of the distribution at a location one standard deviation from
the mean.

>>> mean, var = 163, 52.8
>>> std = math.sqrt(var)
>>> pdf = thinkstats2.NormalPdf(mean, std)
>>> pdf.Density(mean + std)
0.0333001

The result is about 0.03, in units of probability mass per cm. Again, a probability density
doesn’t mean much by itself. But if we plot the Pdf, we can see the shape of the distri‐
bution:

>>> thinkplot.Pdf(pdf, label='normal')
>>> thinkplot.Show()

66 | Chapter 6: Probability Density Functions



thinkplot.Pdf plots the Pdf as a smooth function, as contrasted with thinkplot.Pmf,
which renders a Pmf as a step function. Figure 6-1 shows the result, as well as a PDF
estimated from a sample, which we’ll compute in the next section.

Figure 6-1. A normal PDF that models adult female height in the US, and the kernel
density estimate of a sample with n = 500.

You can use MakePmf to approximate the Pdf:
>>> pmf = pdf.MakePmf()

By default, the resulting Pmf contains 101 points equally spaced from mu - 3*sigma to
mu + 3*sigma. Optionally, MakePmf and Render can take keyword arguments low,
high, and n.

Kernel Density Estimation
Kernel density estimation (KDE) is an algorithm that takes a sample and finds an
appropriately smooth PDF that fits the data. You can read details at Wikipedia.
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scipy provides an implementation of KDE and thinkstats2 provides a class called
EstimatedPdf that uses it:

class EstimatedPdf(Pdf):

    def __init__(self, sample):
        self.kde = scipy.stats.gaussian_kde(sample)

    def Density(self, xs):
        return self.kde.evaluate(xs)

__init__ takes a sample and computes a kernel density estimate. The result is a
gaussian_kde object that provides an evaluate method.

Density takes a value or sequence, calls gaussian_kde.evaluate, and returns the re‐
sulting density. The word “Gaussian” appears in the name because it uses a filter based
on a Gaussian distribution to smooth the KDE.

Here’s an example that generates a sample from a normal distribution and then makes
an EstimatedPdf to fit it:

>>> sample = [random.gauss(mean, std) for i in range(500)]
>>> sample_pdf = thinkstats2.EstimatedPdf(sample)
>>> thinkplot.Pdf(pdf, label='sample KDE')

sample is a list of 500 random heights. sample_pdf is a Pdf object that contains the
estimated KDE of the sample. pmf is a Pmf object that approximates the Pdf by evaluating
the density at a sequence of equally spaced values.

Figure 6-1 shows the normal density function and a KDE based on a sample of 500
random heights. The estimate is a good match for the original distribution.

Estimating a density function with KDE is useful for several purposes:
Visualization

During the exploration phase of a project, CDFs are usually the best visualization
of a distribution. After you look at a CDF, you can decide whether an estimated
PDF is an appropriate model of the distribution. If so, it can be a better choice for
presenting the distribution to an audience that is unfamiliar with CDFs.

Interpolation
An estimated PDF is a way to get from a sample to a model of the population. If
you have reason to believe that the population distribution is smooth, you can use
KDE to interpolate the density for values that don’t appear in the sample.

Simulation
Simulations are often based on the distribution of a sample. If the sample size is
small, it might be appropriate to smooth the sample distribution using KDE, which
allows the simulation to explore more possible outcomes, rather than replicating
the observed data.
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The Distribution Framework
At this point we have seen PMFs, CDFs and PDFs; let’s take a minute to review. Figure 6-2
shows how these functions relate to each other.

Figure 6-2. A framework that relates representations of distribution functions

We started with PMFs, which represent the probabilities for a discrete set of values. To
get from a PMF to a CDF, you add up the probability masses to get cumulative proba‐
bilities. To get from a CDF back to a PMF, you compute differences in cumulative prob‐
abilities. We’ll see the implementation of these operations in the next few sections.

A PDF is the derivative of a continuous CDF; or, equivalently, a CDF is the integral of
a PDF. Remember that a PDF maps from values to probability densities; to get a prob‐
ability, you have to integrate.

To get from a discrete to a continuous distribution, you can perform various kinds of
smoothing. One form of smoothing is to assume that the data come from an analytic
continuous distribution (like exponential or normal) and to estimate the parameters of
that distribution. Another option is kernel density estimation.

The opposite of smoothing is discretizing, or quantizing. If you evaluate a PDF at dis‐
crete points, you can generate a PMF that is an approximation of the PDF. You can get
a better approximation using numerical integration.

To distinguish between continuous and discrete CDFs, it might be better for a discrete
CDF to be a “cumulative mass function,” but as far as I can tell no one uses that term.

Hist Implementation
At this point you should know how to use the basic types provided by thinkstats2:
Hist, Pmf, Cdf, and Pdf. The next few sections provide details about how they are im‐
plemented. This material might help you use these classes more effectively, but it is not
strictly necessary.
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Hist and Pmf inherit from a parent class called _DictWrapper. The leading underscore
indicates that this class is “internal”; that is, it should not be used by code in other
modules. The name indicates what it is: a dictionary wrapper. Its primary attribute is
d, the dictionary that maps from values to their frequencies.

The values can be any hashable type. The frequencies should be integers, but can be any
numeric type.

_DictWrapper contains methods appropriate for both Hist and Pmf, including
__init__, Values, Items and Render. It also provides modifier methods Set, Incr,
Mult, and Remove. These methods are all implemented with dictionary operations. For
example:

# class _DictWrapper

    def Incr(self, x, term=1):
        self.d[x] = self.d.get(x, 0) + term

    def Mult(self, x, factor):
        self.d[x] = self.d.get(x, 0) * factor

    def Remove(self, x):
        del self.d[x]

Hist also provides Freq, which looks up the frequency of a given value.

Because Hist operators and methods are based on dictionaries, these methods are con‐
stant time operations; that is, their runtime does not increase as the Hist gets bigger.

Pmf Implementation
Pmf and Hist are almost the same thing, except that a Pmf maps values to floating-point
probabilities, rather than integer frequencies. If the sum of the probabilities is 1, the
Pmf is normalized.

Pmf provides Normalize, which computes the sum of the probabilities and divides
through by a factor:

# class Pmf

    def Normalize(self, fraction=1.0):
        total = self.Total()
        if total == 0.0:
            raise ValueError('Total probability is zero.')

        factor = float(fraction) / total
        for x in self.d:
            self.d[x] *= factor

        return total

70 | Chapter 6: Probability Density Functions



fraction determines the sum of the probabilities after normalizing; the default value
is 1. If the total probability is 0, the Pmf cannot be normalized, so Normalize raises
ValueError.

Hist and Pmf have the same constructor. It can take as an argument a dict, Hist, Pmf
or Cdf, a pandas Series, a list of (value, frequency) pairs, or a sequence of values.

If you instantiate a Pmf, the result is normalized. If you instantiate a Hist, it is not. To
construct an unnormalized Pmf, you can create an empty Pmf and modify it. The Pmf
modifiers do not renormalize the Pmf.

Cdf Implementation
A CDF maps from values to cumulative probabilities, so I could have implemented Cdf
as a _DictWrapper. But the values in a CDF are ordered and the values in a _DictWrapper
are not. Also, it is often useful to compute the inverse CDF; that is, the map from cu‐
mulative probability to value. So the implementaion I chose is two sorted lists. That way
I can use binary search to do a forward or inverse lookup in logarithmic time.

The Cdf constructor can take as a parameter a sequence of values or a pandas Series, a
dictionary that maps from values to probabilities, a sequence of (value, probability)
pairs, a Hist, Pmf, or Cdf. Or if it is given two parameters, it treats them as a sorted
sequence of values and the sequence of corresponding cumulative probabilities.

Given a sequence, pandas Series, or dictionary, the constructor makes a Hist. Then it
uses the Hist to initialize the attributes:

        self.xs, freqs = zip(*sorted(dw.Items()))
        self.ps = np.cumsum(freqs, dtype=np.float)
        self.ps /= self.ps[-1]

xs is the sorted list of values; freqs is the list of corresponding frequencies. np.cumsum
computes the cumulative sum of the frequencies. Dividing through by the total fre‐
quency yields cumulative probabilities. For n values, the time to construct the Cdf is
proportional to n log n.

Here is the implementation of Prob, which takes a value and returns its cumulative
probability:

# class Cdf
    def Prob(self, x):
        if x < self.xs[0]:
            return 0.0
        index = bisect.bisect(self.xs, x)
        p = self.ps[index - 1]
        return p
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The bisect module provides an implementation of binary search. And here is the im‐
plementation of Value, which takes a cumulative probability and returns the corre‐
sponding value:

# class Cdf
    def Value(self, p):
        if p < 0 or p > 1:
            raise ValueError('p must be in range [0, 1]')

        index = bisect.bisect_left(self.ps, p)
        return self.xs[index]

Given a Cdf, we can compute the Pmf by computing differences between consecutive
cumulative probabilities. If you call the Cdf constructor and pass a Pmf, it computes
differences by calling Cdf.Items:

# class Cdf
    def Items(self):
        a = self.ps
        b = np.roll(a, 1)
        b[0] = 0
        return zip(self.xs, a-b)

np.roll shifts the elements of a to the right, and “rolls” the last one back to the beginning.
We replace the first element of b with 0 and then compute the difference a-b. The result
is a NumPy array of probabilities.

Cdf provides Shift and Scale, which modify the values in the Cdf, but the probabilities
should be treated as immutable.

Moments
Any time you take a sample and reduce it to a single number, that number is a statistic.
The statistics we have seen so far include mean, variance, median, and interquartile
range.

A raw moment is a kind of statistic. If you have a sample of values, xi, the kth raw
moment is:

mk
' =

1
n ∑

i
xi

k

Or if you prefer Python notation:
def RawMoment(xs, k):
    return sum(x**k for x in xs) / len(xs)

When k = 1 the result is the sample mean, x̄. The other raw moments don’t mean much
by themselves, but they are used in some computations.

The central moments are more useful. The kth central moment is:
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mk =
1
n ∑

i
(xi - x̄)k

Or in Python:
def CentralMoment(xs, k):
    mean = RawMoment(xs, 1)
    return sum((x - mean)**k for x in xs) / len(xs)

When k = 2 the result is the second central moment, which you might recognize as
variance. The definition of variance gives a hint about why these statistics are called
moments. If we attach a weight along a ruler at each location, xi, and then spin the ruler
around the mean, the moment of inertia of the spinning weights is the variance of the
values. If you are not familiar with moment of inertia, see Wikipedia..

When you report moment-based statistics, it is important to think about the units. For
example, if the values xi are in cm, the first raw moment is also in cm. But the second
moment is in cm2, the third moment is in cm3, and so on.

Because of these units, moments are hard to interpret by themselves. That’s why, for the
second moment, it is common to report standard deviation, which is the square root of
variance, so it is in the same units as xi.

Skewness
Skewness is a property that describes the shape of a distribution. If the distribution is
symmetric around its central tendency, it is unskewed. If the values extend farther to
the right, it is “right skewed” and if the values extend left, it is “left skewed.”

This use of “skewed” does not have the usual connotation of “biased.” Skewness only
describes the shape of the distribution; it says nothing about whether the sampling
process might have been biased.

Several statistics are commonly used to quantify the skewness of a distribution. Given
a sequence of values, xi, the sample skewness, g1, can be computed like this:

def StandardizedMoment(xs, k):
    var = CentralMoment(xs, 2)
    std = math.sqrt(var)
    return CentralMoment(xs, k) / std**k

def Skewness(xs):
    return StandardizedMoment(xs, 3)

g1 is the third standardized moment, which means that it has been normalized so it has
no units.
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Negative skewness indicates that a distribution skews left; positive skewness indicates
that a distribution skews right. The magnitude of g1 indicates the strength of the skew‐
ness, but by itself it is not easy to interpret.

In practice, computing sample skewness is usually not a good idea. If there are any
outliers, they have a disproportionate effect on g1.

Another way to evaluate the asymmetry of a distribution is to look at the relationship
between the mean and the median. Extreme values have more effect on the mean than
the median, so in a distribution that skews left, the mean is less than the median. In a
distribution that skews right, the mean is greater.

Pearson’s median skewness coefficient is a measure of skewness based on the difference
between the sample mean and median:

gp = 3(x̄ - m) / S

Where x̄ is the sample mean, m is the median, and S is the standard deviation. Or in
Python:

def Median(xs):
    cdf = thinkstats2.MakeCdfFromList(xs)
    return cdf.Value(0.5)

def PearsonMedianSkewness(xs):
    median = Median(xs)
    mean = RawMoment(xs, 1)
    var = CentralMoment(xs, 2)
    std = math.sqrt(var)
    gp = 3 * (mean - median) / std
    return gp

This statistic is robust, which means that it is less vulnerable to the effect of outliers.

As an example, let’s look at the skewness of birth weights in the NSFG pregnancy data.
Here’s the code to estimate and plot the PDF:

    live, firsts, others = first.MakeFrames()
    data = live.totalwgt_lb.dropna()
    pdf = thinkstats2.EstimatedPdf(data)
    thinkplot.Pdf(pdf, label='birth weight')

Figure 6-3 shows the result. The left tail appears longer than the right, so we suspect the
distribution is skewed left. The mean, 7.27 lbs, is a bit less than the median, 7.38 lbs, so
that is consistent with left skew. And both skewness coefficients are negative: sample
skewness is -0.59; Pearson’s median skewness is -0.23.
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Figure 6-3. Estimated PDF of birthweight data from the NSFG

Now let’s compare this distribution to the distribution of adult weight in the BRFSS.
Again, here’s the code:

    df = brfss.ReadBrfss(nrows=None)
    data = df.wtkg2.dropna()
    pdf = thinkstats2.EstimatedPdf(data)
    thinkplot.Pdf(pdf, label='adult weight')

Figure 6-4 shows the result. The distribution appears skewed to the right. Sure enough,
the mean, 79.0, is bigger than the median, 77.3. The sample skewness is 1.1 and Pearson’s
median skewness is 0.26.

The sign of the skewness coefficient indicates whether the distribution skews left or
right, but other than that, they are hard to interpret. Sample skewness is less robust; that
is, it is more susceptible to outliers. As a result it is less reliable when applied to skewed
distributions, exactly when it would be most relevant.

Pearson’s median skewness is based on a computed mean and variance, so it is also
susceptible to outliers, but since it does not depend on a third moment, it is somewhat
more robust.

Exercises
A solution to this exercise is in chap06soln.py.
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Figure 6-4. Estimated PDF of adult weight data from the BRFSS.

Exercise 6-1.
The distribution of income is famously skewed to the right. In this exercise, we’ll meas‐
ure how strong that skew is.

The Current Population Survey (CPS) is a joint effort of the Bureau of Labor Statistics
and the Census Bureau to study income and related variables. Data collected in 2013 is
available from the Census Burea’s website. I downloaded hinc06.xls, which is an Excel
spreadsheet with information about household income, and converted it to
hinc06.csv, a CSV file you will find in the repository for this book. You will also find
hinc2.py, which reads this file and transforms the data.

The dataset is in the form of a series of income ranges and the number of respondents
who fell in each range. The lowest range includes respondents who reported annual
household income “Under $5000.” The highest range includes respondents who made
“$250,000 or more.”

To estimate mean and other statistics from these data, we have to make some assump‐
tions about the lower and upper bounds, and how the values are distributed in each
range. hinc2.py provides InterpolateSample, which shows one way to model this data.
It takes a DataFrame with a column, income, that contains the upper bound of each
range, and freq, which contains the number of respondents in each frame.

It also takes log_upper, which is an assumed upper bound on the highest range, ex‐
pressed in log10 dollars. The default value, log_upper=6.0 represents the assumption
that the largest income among the respondents is 106, or one million dollars.

76 | Chapter 6: Probability Density Functions

http://1.usa.gov/XvCNZs


InterpolateSample generates a pseudo-sample; that is, a sample of household incomes
that yields the same number of respondents in each range as the actual data. It assumes
that incomes in each range are equally spaced on a log10 scale.

Compute the median, mean, skewness and Pearson’s skewness of the resulting sample.
What fraction of households reports a taxable income below the mean? How do the
results depend on the assumed upper bound?

Glossary
Probability density function (PDF)

The derivative of a continuous CDF, a function that maps a value to its probability
density.

Probability density
A quantity that can be integrated over a range of values to yield a probability. If the
values are in units of cm, for example, probability density is in units of probability
per cm.

Kernel density estimation (KDE)
An algorithm that estimates a PDF based on a sample.

discretize
To approximate a continuous function or distribution with a discrete function. The
opposite of smoothing.

raw moment
A statistic based on the sum of data raised to a power.

central moment
A statistic based on deviation from the mean, raised to a power.

standardized moment
A ratio of moments that has no units.

skewness
A measure of how asymmetric a distribution is.

sample skewness
A moment-based statistic intended to quantify the skewness of a distribution.

Pearson’s median skewness coefficient
A statistic intended to quantify the skewness of a distribution based on the median,
mean, and standard deviation.

robust
A statistic is robust if it is relatively immune to the effect of outliers.
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CHAPTER 7

Relationships Between Variables

So far we have only looked at one variable at a time. In this chapter we look at relation‐
ships between variables. Two variables are related if knowing one gives you information
about the other. For example, height and weight are related; people who are taller tend
to be heavier. Of course, it is not a perfect relationship: there are short heavy people and
tall light ones. But if you are trying to guess someone’s weight, you will be more accurate
if you know their height than if you don’t.

The code for this chapter is in scatter.py. For information about downloading and
working with this code, see “Using the Code” on page xi.

Scatter Plots
The simplest way to check for a relationship between two variables is a scatter plot, but
making a good scatter plot is not always easy. As an example, I’ll plot weight versus
height for the respondents in the BRFSS (see “The lognormal Distribution” on page 55).

Here’s the code that reads the data file and extracts height and weight:
    df = brfss.ReadBrfss(nrows=None)
    sample = thinkstats2.SampleRows(df, 5000)
    heights, weights = sample.htm3, sample.wtkg2

SampleRows chooses a random subset of the data:
def SampleRows(df, nrows, replace=False):
    indices = np.random.choice(df.index, nrows, replace=replace)
    sample = df.loc[indices]
    return sample

df is the DataFrame, nrows is the number of rows to choose, and replace is a boolean
indicating whether sampling should be done with replacement; in other words, whether
the same row could be chosen more than once.
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thinkplot provides Scatter, which makes scatter plots:
    thinkplot.Scatter(heights, weights)
    thinkplot.Show(xlabel='Height (cm)',
                   ylabel='Weight (kg)',
                   axis=[140, 210, 20, 200])

The result, in Figure 7-1 (left), shows the shape of the relationship. As we expected, taller
people tend to be heavier.

Figure 7-1. Scatter plots of weight versus height for the respondents in the BRFSS, unjit‐
tered (left), jittered (right).

But this is not the best representation of the data, because the data are packed into
columns. The problem is that the heights are rounded to the nearest inch, converted to
centimeters, and then rounded again. Some information is lost in translation.

We can’t get that information back, but we can minimize the effect on the scatter plot 
by jittering the data, which means adding random noise to reverse the effect of rounding
off. Since these measurements were rounded to the nearest inch, they might be off by
up to 0.5 inches or 1.3 cm. Similarly, the weights might be off by 0.5 kg.

    heights = thinkstats2.Jitter(heights, 1.3)
    weights = thinkstats2.Jitter(weights, 0.5)

Here’s the implementation of Jitter:
def Jitter(values, jitter=0.5):
    n = len(values)
    return np.random.uniform(-jitter, +jitter, n) + values

The values can be any sequence; the result is a NumPy array.
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Figure 7-1 (right) shows the result. Jittering reduces the visual effect of rounding and
makes the shape of the relationship clearer. But in general you should only jitter data
for purposes of visualization and avoid using jittered data for analysis.

Even with jittering, this is not the best way to represent the data. There are many over‐
lapping points, which hides data in the dense parts of the figure and gives dispropor‐
tionate emphasis to outliers. This effect is called saturation.

We can solve this problem with the alpha parameter, which makes the points partly
transparent:

    thinkplot.Scatter(heights, weights, alpha=0.2)

Figure 7-2 (left) shows the result. Overlapping data points look darker, so darkness is
proportional to density. In this version of the plot we can see two details that were not
apparent before: vertical clusters at several heights and a horizontal line near 90 kg or
200 pounds. Since this data is based on self-reports in pounds, the most likely explan‐
ation is that some respondents reported rounded values.

Figure 7-2. Scatter plot with jittering and transparency (left), hexbin plot (right).

Using transparency works well for moderate-sized datasets, but this figure only shows
the first 5000 records in the BRFSS, out of a total of 414,509.

To handle larger datasets, another option is a hexbin plot, which divides the graph into
hexagonal bins and colors each bin according to how many data points fall in it.
thinkplot provides HexBin:

    thinkplot.HexBin(heights, weights)
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Figure 7-2 (right) shows the result. An advantage of a hexbin is that it shows the shape
of the relationship well, and it is efficient for large datasets, both in time and in the size
of the file it generates. A drawback is that it makes the outliers invisible.

The point of this example is that it is not easy to make a scatter plot that shows rela‐
tionships clearly without introducing misleading artifacts.

Characterizing Relationships
Scatter plots provide a general impression of the relationship between variables, but
there are other visualizations that provide more insight into the nature of the relation‐
ship. One option is to bin one variable and plot percentiles of the other.

NumPy and pandas provide functions for binning data:
    df = df.dropna(subset=['htm3', 'wtkg2'])
    bins = np.arange(135, 210, 5)
    indices = np.digitize(df.htm3, bins)
    groups = df.groupby(indices)

dropna drops rows with nan in any of the listed columns. arange makes a NumPy array
of bins from 135 to, but not including, 210, in increments of 5.

digitize computes the index of the bin that contains each value in df.htm3. The result
is a NumPy array of integer indices. Values that fall below the lowest bin are mapped to
index 0. Values above the highest bin are mapped to len(bins).

groupby is a DataFrame method that returns a GroupBy object; used in a for loop,
groups iterates the names of the groups and the DataFrames that represent them. So,
for example, we can print the number of rows in each group like this:

for i, group in groups:
    print(i, len(group))

Now for each group we can compute the mean height and the CDF of weight:
    heights = [group.htm3.mean() for i, group in groups]
    cdfs = [thinkstats2.Cdf(group.wtkg2) for i, group in groups]

Finally, we can plot percentiles of weight versus height:
    for percent in [75, 50, 25]:
        weights = [cdf.Percentile(percent) for cdf in cdfs]
        label = '%dth' % percent
        thinkplot.Plot(heights, weights, label=label)

Figure 7-3 shows the result. Between 140 and 200 cm the relationship between these
variables is roughly linear. This range includes more than 99% of the data, so we don’t
have to worry too much about the extremes.
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Figure 7-3. Percentiles of weight for a range of height bins.

Correlation
A correlation is a statistic intended to quantify the strength of the relationship between
two variables.

A challenge in measuring correlation is that the variables we want to compare are often
not expressed in the same units. And even if they are in the same units, they come from
different distributions.

There are two common solutions to these problems:

• Transform each value to a standard scores, which is the number of standard devi‐
ations from the mean. This transform leads to the “Pearson product-moment cor‐
relation coefficient.”

• Transform each value to its rank, which is its index in the sorted list of values. This
transform leads to the “Spearman rank correlation coefficient.”

If X is a series of n values, xi, we can convert to standard scores by subtracting the mean
and dividing by the standard deviation: zi = (xi - μ) / σ.

The numerator is a deviation: the distance from the mean. Dividing by σ standard‐
izes the deviation, so the values of Z are dimensionless (no units) and their distribution
has mean 0 and variance 1.

If X is normally distributed, so is Z. But if X is skewed or has outliers, so does Z; in those
cases, it is more robust to use percentile ranks. If we compute a new variable, R, so that
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ri is the rank of xi, the distribution of R is uniform from 1 to n, regardless of the distri‐
bution of X.

Covariance
Covariance is a measure of the tendency of two variables to vary together. If we have
two series, X and Y, their deviations from the mean are

d xi = xi - x̄

d yi = yi - ȳ

where x̄ is the sample mean of X and ȳ is the sample mean of Y. If X and Y vary together,
their deviations tend to have the same sign.

If we multiply them together, the product is positive when the deviations have the same
sign and negative when they have the opposite sign. So adding up the products gives a
measure of the tendency to vary together.

Covariance is the mean of these products:

Cov(X , Y ) =
1
n ∑ d xi d yi

where n is the length of the two series (they have to be the same length).

If you have studied linear algebra, you might recognize that Cov is the dot product of
the deviations, divided by their length. So the covariance is maximized if the two vectors
are identical, 0 if they are orthogonal, and negative if they point in opposite directions.
thinkstats2 uses np.dot to implement Cov efficiently:

def Cov(xs, ys, meanx=None, meany=None):
    xs = np.asarray(xs)
    ys = np.asarray(ys)

    if meanx is None:
        meanx = np.mean(xs)
    if meany is None:
        meany = np.mean(ys)

    cov = np.dot(xs-meanx, ys-meany) / len(xs)
    return cov

By default Cov computes deviations from the sample means, or you can provide known
means. If xs and ys are Python sequences, np.asarray converts them to NumPy arrays.
If they are already NumPy arrays, np.asarray does nothing.

This implementation of covariance is meant to be simple for purposes of explanation.
NumPy and pandas also provide implementations of covariance, but both of them apply

84 | Chapter 7: Relationships Between Variables



a correction for small sample sizes that we have not covered yet, and np.cov returns a
covariance matrix, which is more than we need for now.

Pearson’s Correlation
Covariance is useful in some computations, but it is seldom reported as a summary
statistic because it is hard to interpret. Among other problems, its units are the product
of the units of X and Y. For example, the covariance of weight and height in the BRFSS
dataset is 113 kilogram-centimeters, whatever that means.

One solution to this problem is to divide the deviations by the standard deviation, which
yields standard scores, and compute the product of standard scores:

pi =
(xi - x̄)

SX

(yi - ȳ)
SY

Where SX and SY are the standard deviations of X and Y. The mean of these products is

ρ =
1
n ∑ pi

Or we can rewrite ρ by factoring out SX and SY:

ρ =
Cov(X , Y )

SX SY

This value is called Pearson’s correlation after Karl Pearson, an influential early statis‐
tician. It is easy to compute and easy to interpret. Because standard scores are dimen‐
sionless, so is ρ.

Here is the implementation in thinkstats2:
def Corr(xs, ys):
    xs = np.asarray(xs)
    ys = np.asarray(ys)

    meanx, varx = MeanVar(xs)
    meany, vary = MeanVar(ys)

    corr = Cov(xs, ys, meanx, meany) / math.sqrt(varx * vary)
    return corr

MeanVar computes mean and variance slightly more efficiently than separate calls to
np.mean and np.var.

Pearson’s correlation is always between -1 and +1 (including both). If ρ is positive, we
say that the correlation is positive, which means that when one variable is high, the other
tends to be high. If ρ is negative, the correlation is negative, so when one variable is high,
the other is low.
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The magnitude of ρ indicates the strength of the correlation. If ρ is 1 or -1, the variables
are perfectly correlated, which means that if you know one, you can make a perfect
prediction about the other.

Most correlation in the real world is not perfect, but it is still useful. The correlation of
height and weight is 0.51, which is a strong correlation compared to similar human-
related variables.

Nonlinear Relationships
If Pearson’s correlation is near 0, it is tempting to conclude that there is no relationship
between the variables, but that conclusion is not valid. Pearson’s correlation only meas‐
ures linear relationships. If there’s a nonlinear relationship, ρ understates its strength.

Figure 7-4 is from the Wikipedia page for correlation and dependence. It shows scatter
plots and correlation coefficients for several carefully constructed datasets.

Figure 7-4. Examples of datasets with a range of correlations.

The top row shows linear relationships with a range of correlations; you can use this
row to get a sense of what different values of ρ look like. The second row shows perfect
correlations with a range of slopes, which demonstrates that correlation is unrelated to
slope (we’ll talk about estimating slope soon). The third row shows variables that are
clearly related, but because the relationship is non-linear, the correlation coefficient
is 0.

The moral of this story is that you should always look at a scatter plot of your data before
blindly computing a correlation coefficient.
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Spearman’s Rank Correlation
Pearson’s correlation works well if the relationship between variables is linear and if the
variables are roughly normal. But it is not robust in the presence of outliers. Spearman’s
rank correlation is an alternative that mitigates the effect of outliers and skewed distri‐
butions. To compute Spearman’s correlation, we have to compute the rank of each value,
which is its index in the sorted sample. For example, in the sample [1, 2, 5, 7] the
rank of the value 5 is 3, because it appears third in the sorted list. Then we compute
Pearson’s correlation for the ranks.

thinkstats2 provides a function that computes Spearman’s rank correlation:
def SpearmanCorr(xs, ys):
    xranks = pandas.Series(xs).rank()
    yranks = pandas.Series(ys).rank()
    return Corr(xranks, yranks)

I convert the arguments to pandas Series objects so I can use rank, which computes the
rank for each value and returns a Series. Then I use Corr to compute the correlation of
the ranks.

I could also use Series.corr directly and specify Spearman’s method:
def SpearmanCorr(xs, ys):
    xranks = pandas.Series(xs)
    yranks = pandas.Series(ys)
    return xs.corr(ys, method='spearman')

The Spearman rank correlation for the BRFSS data is 0.54, which is a little higher than
the Pearson correlation, 0.51. There are several possible reasons for the difference, in‐
cluding the following:

• If the relationship is nonlinear, Pearson’s correlation tends to underestimate the
strength of the relationship.

• Pearson’s correlation can be affected (in either direction) if one of the distributions
is skewed or contains outliers. Spearman’s rank correlation is more robust.

In the BRFSS example, we know that the distribution of weights is roughly lognormal;
under a log transform, it approximates a normal distribution, so it has no skew. So
another way to eliminate the effect of skewness is to compute Pearson’s correlation with
log-weight and height:

    thinkstats2.Corr(df.htm3, np.log(df.wtkg2)))

The result is 0.53, close to the rank correlation, 0.54. So that suggests that skewness in
the distribution of weight explains most of the difference between Pearson’s and Spear‐
man’s correlation.
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Correlation and Causation
If variables A and B are correlated, there are three possible explanations: A causes B, or
B causes A, or some other set of factors causes both A and B. These explanations are
called “causal relationships”.

Correlation alone does not distinguish between these explanations, so it does not tell
you which ones are true. This rule is often summarized with the phrase “Correlation
does not imply causation,” which is so pithy, it has its own Wikipedia page.

So what can you do to provide evidence of causation?

• Use time. If A comes before B, then A can cause B but not the other way around (at
least according to our common understanding of causation). The order of events
can help us infer the direction of causation, but it does not preclude the possibility
that something else causes both A and B.

• Use randomness. If you divide a large sample into two groups at random and com‐
pute the means of almost any variable, you expect the difference to be small. If the
groups are nearly identical in all variables but one, you can eliminate spurious
relationships.
This works even if you don’t know what the relevant variables are, but it works even
better if you do, because you can check that the groups are identical.

These ideas are the motivation for the randomized controlled trial, in which subjects
are assigned randomly to two (or more) groups: a treatment group that receives some
kind of intervention, like a new medicine, and a control group that receives no inter‐
vention, or another treatment whose effects are known.

A randomized controlled trial is the most reliable way to demonstrate a causal rela‐
tionship, and it is the foundation of science-based medicine.

Unfortunately, controlled trials are only possible in the laboratory sciences, medicine,
and a few other disciplines. In the social sciences, controlled experiments are rare, usu‐
ally because they are impossible or unethical.

An alternative is to look for a natural experiment, where different “treatments” are
applied to groups that are otherwise similar. One danger of natural experiments is that
the groups might differ in ways that are not apparent.

In some cases it is possible to infer causal relationships using regression analysis, which
is the topic of Chapter 11.

Exercises
A solution to this exercise is in chap07soln.py.
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Exercise 7-1.
Using data from the NSFG, make a scatter plot of birth weight versus mother’s age. Plot
percentiles of birth weight versus mother’s age. Compute Pearson’s and Spearman’s cor‐
relations. How would you characterize the relationship between these variables?

Glossary
scatter plot

A visualization of the relationship between two variables, showing one point for
each row of data.

jitter
Random noise added to data for purposes of visualization.

saturation
Loss of information when multiple points are plotted on top of each other.

correlation
A statistic that measures the strength of the relationship between two variables.

standardize
To transform a set of values so that their mean is 0 and their variance is 1.

standard score
A value that has been standardized so that it is expressed in standard deviations
from the mean.

covariance
A measure of the tendency of two variables to vary together.

rank
The index where an element appears in a sorted list.

randomized controlled trial
An experimental design in which subjects are divided into groups at random, and
different groups are given different treatments.

treatment group
A group in a controlled trial that receives some kind of intervention.

control group
A group in a controlled trial that receives no treatment, or a treatment whose effect
is known.

natural experiment
An experimental design that takes advantage of a natural division of subjects into
groups in ways that are at least approximately random.
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CHAPTER 8

Estimation

The code for this chapter is in estimation.py. For information about downloading and
working with this code, see “Using the Code” on page xi.

The Estimation Game
Let’s play a game. I think of a distribution, and you have to guess what it is. I’ll give you
two hints: it’s a normal distribution, and here’s a random sample drawn from it:

[-0.441, 1.774, -0.101, -1.138, 2.975, -2.138]

What do you think is the mean parameter, μ, of this distribution?

One choice is to use the sample mean, x̄, as an estimate of μ. In this example, x̄ is 0.155,
so it would be reasonable to guess μ = 0.155. This process is called estimation, and the
statistic we used (the sample mean) is called an estimator.

Using the sample mean to estimate μ is so obvious that it is hard to imagine a reasonable
alternative. But suppose we change the game by introducing outliers.

I’m thinking of a distribution. It’s a normal distribution, and here’s a sample that was
collected by an unreliable surveyor who occasionally puts the decimal point in the wrong
place.

[-0.441, 1.774, -0.101, -1.138, 2.975, -213.8]

Now what’s your estimate of μ? If you use the sample mean, your guess is -35.12. Is that
the best choice? What are the alternatives?

One option is to identify and discard outliers, and then compute the sample mean of
the rest. Another option is to use the median as an estimator.
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Which estimator is best depends on the circumstances (for example, whether there are
outliers) and on what the goal is. Are you trying to minimize errors, or maximize your
chance of getting the right answer?

If there are no outliers, the sample mean minimizes the mean squared error (MSE).
That is, if we play the game many times, and each time compute the error x̄ - μ, the
sample mean minimizes

MSE =
1
m ∑ (x̄ - μ)2

Where m is the number of times you play the estimation game, not to be confused with
n, which is the size of the sample used to compute x̄.

Here is a function that simulates the estimation game and computes the root mean
squared error (RMSE), which is the square root of MSE:

def Estimate1(n=7, m=1000):
    mu = 0
    sigma = 1

    means = []
    medians = []
    for _ in range(m):
        xs = [random.gauss(mu, sigma) for i in range(n)]
        xbar = np.mean(xs)
        median = np.median(xs)
        means.append(xbar)
        medians.append(median)

    print('rmse xbar', RMSE(means, mu))
    print('rmse median', RMSE(medians, mu))

Again, n is the size of the sample, and m is the number of times we play the game. means
is the list of estimates based on x̄. medians is the list of medians.

Here’s the function that computes RMSE:
def RMSE(estimates, actual):
    e2 = [(estimate-actual)**2 for estimate in estimates]
    mse = np.mean(e2)
    return math.sqrt(mse)

estimates is a list of estimates; actual is the actual value being estimated. In practice,
of course, we don’t know actual; if we did, we wouldn’t have to estimate it. The purpose
of this experiment is to compare the performance of the two estimators.

When I ran this code, the RMSE of the sample mean was 0.41, which means that if we
use x̄ to estimate the mean of this distribution, based on a sample with n = 7, we should
expect to be off by 0.41 on average. Using the median to estimate the mean yields RMSE
0.53, which confirms that x̄ yields lower RMSE, at least for this example.
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Minimizing MSE is a nice property, but it’s not always the best strategy. For example,
suppose we are estimating the distribution of wind speeds at a building site. If the es‐
timate is too high, we might overbuild the structure, increasing its cost. But if it’s too
low, the building might collapse. Because cost as a function of error is not symmetric,
minimizing MSE is not the best strategy.

As another example, suppose I roll three six-sided dice and ask you to predict the total.
If you get it exactly right, you get a prize; otherwise you get nothing. In this case the
value that minimizes MSE is 10.5, but that would be a bad guess, because the total of
three dice is never 10.5. For this game, you want an estimator that has the highest chance
of being right, which is a maximum likelihood estimator (MLE). If you pick 10 or 11,
your chance of winning is 1 in 8, and that’s the best you can do.

Guess the Variance
I’m thinking of a distribution. It’s a normal distribution, and here’s a (familiar) sample:

[-0.441, 1.774, -0.101, -1.138, 2.975, -2.138]

What do you think is the variance, σ2, of my distribution? Again, the obvious choice is
to use the sample variance, S2, as an estimator.

S 2 =
1
n ∑ (xi - x̄)2

For large samples, S2 is an adequate estimator, but for small samples it tends to be too
low. Because of this unfortunate property, it is called a biased estimator. An estimator
is unbiased if the expected total (or mean) error, after many iterations of the estimation
game, is 0.

Fortunately, there is another simple statistic that is an unbiased estimator of σ2:

Sn-1
2 =

1
n - 1 ∑ (xi - x̄)2

For an explanation of why S2 is biased, and a proof that Sn-1
2  is unbiased, see this Wikipedia

page.

The biggest problem with this estimator is that its name and symbol are used inconsis‐
tently. The name “sample variance” can refer to either S2 or Sn-1

2 , and the symbol S2 is
used for either or both.

Here is a function that simulates the estimation game and tests the performance of S2

and Sn-1
2 :

def Estimate2(n=7, m=1000):
    mu = 0
    sigma = 1
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    estimates1 = []
    estimates2 = []
    for _ in range(m):
        xs = [random.gauss(mu, sigma) for i in range(n)]
        biased = np.var(xs)
        unbiased = np.var(xs, ddof=1)
        estimates1.append(biased)
        estimates2.append(unbiased)

    print('mean error biased', MeanError(estimates1, sigma**2))
    print('mean error unbiased', MeanError(estimates2, sigma**2))

Again, n is the sample size and m is the number of times we play the game. np.var
computes S2 by default and Sn-1

2  if you provide the argument ddof=1, which stands for
“delta degrees of freedom.” I won’t explain that term, but you can read about it at
Wikipedia.

MeanError computes the mean difference between the estimates and the actual value:
def MeanError(estimates, actual):
    errors = [estimate-actual for estimate in estimates]
    return np.mean(errors)

When I ran this code, the mean error for S2 was -0.13. As expected, this biased estimator
tends to be too low. For Sn-1

2 , the mean error was 0.014, about 10 times smaller. As m
increases, we expect the mean error for Sn-1

2  to approach 0.

Properties like MSE and bias are long-term expectations based on many iterations of
the estimation game. By running simulations like the ones in this chapter, we can com‐
pare estimators and check whether they have desired properties.

But when you apply an estimator to real data, you just get one estimate. It would not be
meaningful to say that the estimate is unbiased; being unbiased is a property of the
estimator, not the estimate.

After you choose an estimator with appropriate properties, and use it to generate an
estimate, the next step is to characterize the uncertainty of the estimate, which is the
topic of the next section.

Sampling Distributions
Suppose you are a scientist studying gorillas in a wildlife preserve. You want to know
the average weight of the adult female gorillas in the preserve. To weigh them, you have
to tranquilize them, which is dangerous, expensive, and possibly harmful to the gorillas.
But if it is important to obtain this information, it might be acceptable to weigh a sample
of 9 gorillas. Let’s assume that the population of the preserve is well known, so we can
choose a representative sample of adult females. We could use the sample mean, x̄, to
estimate the unknown population mean, μ.
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Having weighed 9 female gorillas, you might find x̄ = 90 kg and sample standard de‐
viation, S = 7.5 kg. The sample mean is an unbiased estimator of μ, and in the long run
it minimizes MSE. So if you report a single estimate that summarizes the results, you
would report 90 kg.

But how confident should you be in this estimate? If you only weigh n = 9 gorillas out
of a much larger population, you might be unlucky and choose the 9 heaviest gorillas
(or the 9 lightest ones) just by chance. Variation in the estimate caused by random
selection is called sampling error.

To quantify sampling error, we can simulate the sampling process with hypothetical
values of μ and σ, and see how much x̄ varies.

Since we don’t know the actual values of μ and σ in the population, we’ll use the estimates
x̄ and S. So the question we answer is: “If the actual values of μ and σ were 90 kg and
7.5 kg, and we ran the same experiment many times, how much would the estimated
mean, x̄, vary?”

The following function answers that question:
def SimulateSample(mu=90, sigma=7.5, n=9, m=1000):
    means = []
    for j in range(m):
        xs = np.random.normal(mu, sigma, n)
        xbar = np.mean(xs)
        means.append(xbar)

    cdf = thinkstats2.MakeCdfFromList(means)
    ci = cdf.Percentile(5), cdf.Percentile(95)
    stderr = RMSE(means, mu)

mu and sigma are the hypothetical values of the parameters. n is the sample size, the
number of gorillas we measured. m is the number of times we run the simulation.

In each iteration, we choose n values from a normal distribution with the given param‐
eters, and compute the sample mean, xbar. We run 1000 simulations and then compute
the distribution, cdf, of the estimates. The result is shown in Figure 8-1. This distribu‐
tion is called the sampling distribution of the estimator. It shows how much the esti‐
mates would vary if we ran the experiment over and over.

The mean of the sampling distribution is pretty close to the hypothetical value of μ,
which means that the experiment yields the right answer, on average. After 1,000 tries,
the lowest result is 82 kg, and the highest is 98 kg. This range suggests that the estimate
might be off by as much as 8 kg.
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Figure 8-1. Sampling distribution of x̄, with confidence interval

There are two common ways to summarize the sampling distribution:
Standard error (SE)

A measure of how far we expect the estimate to be off, on average. For each simulated
experiment, we compute the error, x̄ - μ, and then compute the root mean squared
error (RMSE). In this example, it is roughly 2.5 kg.

Confidence interval (CI)
A range that includes a given fraction of the sampling distribution. For example,
the 90% confidence interval is the range from the 5th to the 95th percentile. In this
example, the 90% CI is (86, 94) kg.

Standard errors and confidence intervals are the source of much confusion:

• People often confuse standard error and standard deviation. Remember that stan‐
dard deviation describes variability in a measured quantity; in this example, the
standard deviation of gorilla weight is 7.5 kg. Standard error describes variability
in an estimate. In this example, the standard error of the mean, based on a sample
of 9 measurements, is 2.5 kg.
One way to remember the difference is that, as sample size increases, standard error
gets smaller; standard deviation does not.

• People often think that there is a 90% probability that the actual parameter, μ, falls
in the 90% confidence interval. Sadly, that is not true. If you want to make a claim
like that, you have to use Bayesian methods (see my book, Think Bayes).
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The sampling distribution answers a different question: it gives you a sense of how
reliable an estimate is by telling you how much it would vary if you ran the experi‐
ment again.

It is important to remember that confidence intervals and standard errors only quantify
sampling error; that is, error due to measuring only part of the population. The sampling
distribution does not account for other sources of error, notably sampling bias and
measurement error, which are the topics of the next section.

Sampling Bias
Suppose that instead of the weight of gorillas in a nature preserve, you want to know
the average weight of women in the city where you live. It is unlikely that you would be
allowed to choose a representative sample of women and weigh them.

A simple alternative would be “telephone sampling;” that is, you could choose random
numbers from the phone book, call and ask to speak to an adult woman, and ask how
much she weighs.

Telephone sampling has obvious limitations. For example, the sample is limited to peo‐
ple whose telephone numbers are listed, so it eliminates people without phones (who
might be poorer than average) and people with unlisted numbers (who might be richer).
Also, if you call home telephones during the day, you are less likely to sample people
with jobs. And if you only sample the person who answers the phone, you are less likely
to sample people who share a phone line.

If factors like income, employment, and household size are related to weight—and it is
plausible that they are—the results of your survey would be affected one way or another.
This problem is called sampling bias because it is a property of the sampling process.

This sampling process is also vulnerable to self-selection, which is a kind of sampling
bias. Some people will refuse to answer the question, and if the tendency to refuse is
related to weight, that would affect the results.

Finally, if you ask people how much they weigh, rather than weighing them, the results
might not be accurate. Even helpful respondents might round up or down if they are
uncomfortable with their actual weight. And not all respondents are helpful. These
inaccuracies are examples of measurement error.

When you report an estimated quantity, it is useful to report standard error, or a con‐
fidence interval, or both, in order to quantify sampling error. But it is also important to
remember that sampling error is only one source of error, and often it is not the biggest.
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Exponential Distributions
Let’s play one more round of the estimation game. I’m thinking of a distribution. It’s an
exponential distribution, and here’s a sample:

[5.384, 4.493, 19.198, 2.790, 6.122, 12.844]

What do you think is the parameter, λ, of this distribution?

In general, the mean of an exponential distribution is 1 / λ, so working backwards, we
might choose

L = 1 / x̄
L is an estimator of λ. And not just any estimator; it is also the maximum likelihood
estimator. So if you want to maximize your chance of guessing λ exactly, L is the way to
go.

But we know that x̄ is not robust in the presence of outliers, so we expect L to have the
same problem.

We can choose an alternative based on the sample median. The median of an exponential
distribution is ln (2) / λ, so working backwards again, we can define an estimator

L m = ln (2) / m

where m is the sample median.

To test the performance of these estimators, we can simulate the sampling process:
def Estimate3(n=7, m=1000):
    lam = 2

    means = []
    medians = []
    for _ in range(m):
        xs = np.random.exponential(1.0/lam, n)
        L = 1 / np.mean(xs)
        Lm = math.log(2) / thinkstats2.Median(xs)
        means.append(L)
        medians.append(Lm)

    print('rmse L', RMSE(means, lam))
    print('rmse Lm', RMSE(medians, lam))
    print('mean error L', MeanError(means, lam))
    print('mean error Lm', MeanError(medians, lam))

When I run this experiment with λ = 2, the RMSE of L is 1.1. For the median-based
estimator Lm, RMSE is 1.8. We can’t tell from this experiment whether L minimizes MSE,
but at least it seems better than Lm.
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Sadly, it seems that both estimators are biased. For L the mean error is 0.33, and for Lm

it is 0.45. And neither converges to 0 as m increases.

It turns out that x̄ is an unbiased estimator of the mean of the distribution, 1 / λ, but L
is not an unbiased estimator of λ.

Exercises
For the following exercises, you might want to start with a copy of estimation.py.
Solutions are in chap08soln.py

Exercise 8-1.
In this chapter we used x̄ and median to estimate μ, and found that x̄ yields lower MSE.
Also, we used S2 and Sn-1

2  to estimate σ, and found that S2 is biased and Sn-1
2  is unbiased.

Run similar experiments to see if x̄ and median are biased estimates of μ. Also check
whether S2 or Sn-1

2  yields a lower MSE.

Exercise 8-2.
Suppose that you draw a sample with size n = 10 from an exponential distribution with
λ = 2. Simulate this experiment 1000 times and plot the sampling distribution of the
estimate L. Compute the standard error of the estimate and the 90% confidence interval.

Repeat the experiment with a few different values of n and make a plot of standard error
versus n.

Exercise 8-3.
In games like hockey and soccer, the time between goals is roughly exponential. So you
could estimate a team’s goal-scoring rate by observing the number of goals they score
in a game. This estimation process is a little different from sampling the time between
goals, so let’s see how it works.

Write a function that takes a goal-scoring rate, lam, in goals per game, and simulates a
game by generating the time between goals until the total time exceeds one game, then
returns the number of goals scored.

Write another function that simulates many games, stores the estimates of lam, then
computes their mean error and RMSE.

Is this way of making an estimate biased? Plot the sampling distribution of the estimates
and the 90% confidence interval. What is the standard error? What happens to sampling
error for increasing values of lam?
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Glossary
estimation

The process of inferring the parameters of a distribution from a sample.

estimator
A statistic used to estimate a parameter.

mean squared error (MSE)
A measure of estimation error.

root mean squared error (RMSE)
The square root of MSE, a more meaningful representation of typical error mag‐
nitude.

maximum likelihood estimator (MLE)
An estimator that computes the point estimate most likely to be correct.

bias (of an estimator)
The tendency of an estimator to be above or below the actual value of the parameter,
when averaged over repeated experiments.

sampling error
Error in an estimate due to the limited size of the sample and variation due to chance.

sampling bias
Error in an estimate due to a sampling process that is not representative of the
population.

measurement error
Error in an estimate due to inaccuracy collecting or recording data.

sampling distribution
The distribution of a statistic if an experiment is repeated many times.

standard error
The RMSE of an estimate, which quantifies variability due to sampling error (but
not other sources of error).

confidence interval
An interval that represents the expected range of an estimator if an experiment is
repeated many times.
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1. For more about Bayesian inference, see the sequel to this book, Think Bayes.

CHAPTER 9

Hypothesis Testing

The code for this chapter is in hypothesis.py. For information about downloading and
working with this code, see “Using the Code” on page xi.

Classical Hypothesis Testing
Exploring the data from the NSFG, we saw several “apparent effects,” including differ‐
ences between first babies and others. So far we have taken these effects at face value;
in this chapter, we put them to the test.

The fundamental question we want to address is whether the effects we see in a sample
are likely to appear in the larger population. For example, in the NSFG sample we see
a difference in mean pregnancy length for first babies and others. We would like to know
if that effect reflects a real difference for women in the U.S., or if it might appear in the
sample by chance.

There are several ways we could formulate this question, including Fisher null hypoth‐
esis testing, Neyman-Pearson decision theory, and Bayesian inference.1 What I present
here is a subset of all three that makes up most of what people use in practice, which I
will call classical hypothesis testing.

The goal of classical hypothesis testing is to answer the question, “Given a sample and
an apparent effect, what is the probability of seeing such an effect by chance?” Here’s
how we answer that question:

• The first step is to quantify the size of the apparent effect by choosing a test statis‐
tic. In the NSFG example, the apparent effect is a difference in pregnancy length
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between first babies and others, so a natural choice for the test statistic is the dif‐
ference in means between the two groups.

• The second step is to define a null hypothesis, which is a model of the system based
on the assumption that the apparent effect is not real. In the NSFG example the null
hypothesis is that there is no difference between first babies and others; that is, that
pregnancy lengths for both groups have the same distribution.

• The third step is to compute a p-value, which is the probability of seeing the ap‐
parent effect if the null hypothesis is true. In the NSFG example, we would compute
the actual difference in means, then compute the probability of seeing a difference
as big, or bigger, under the null hypothesis.

• The last step is to interpret the result. If the p-value is low, the effect is said to be
statistically significant, which means that it is unlikely to have occurred by chance.
In that case we infer that the effect is more likely to appear in the larger population.

The logic of this process is similar to a proof by contradiction. To prove a mathematical
statement, A, you assume temporarily that A is false. If that assumption leads to a con‐
tradiction, you conclude that A must actually be true.

Similarly, to test a hypothesis like, “This effect is real,” we assume, temporarily, that it is
not. That’s the null hypothesis. Based on that assumption, we compute the probability
of the apparent effect. That’s the p-value. If the p-value is low, we conclude that the null
hypothesis is unlikely to be true.

HypothesisTest
thinkstats2 provides HypothesisTest, a class that represents the structure of a clas‐
sical hypothesis test. Here is the definition:

class HypothesisTest(object):

    def __init__(self, data):
        self.data = data
        self.MakeModel()
        self.actual = self.TestStatistic(data)

    def PValue(self, iters=1000):
        self.test_stats = [self.TestStatistic(self.RunModel()) 
                           for _ in range(iters)]

        count = sum(1 for x in self.test_stats if x >= self.actual)
        return count / iters

    def TestStatistic(self, data):
        raise UnimplementedMethodException()
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2. Adapted from MacKay, Information Theory, Inference, and Learning Algorithms, 2003.

    def MakeModel(self):
        pass

    def RunModel(self):
        raise UnimplementedMethodException()

HypothesisTest is an abstract parent class that provides complete definitions for some
methods and place-keepers for others. Child classes based on HypothesisTest inherit
__init__ and PValue and provide TestStatistic, RunModel, and optionally
MakeModel.

__init__ takes the data in whatever form is appropriate. It calls MakeModel, which builds
a representation of the null hypothesis, then passes the data to TestStatistic, which
computes the size of the effect in the sample.

PValue computes the probability of the apparent effect under the null hypothesis. It
takes as a parameter iters, which is the number of simulations to run. The first line
generates simulated data, computes test statistics, and stores them in test_stats. The
result is the fraction of elements in test_stats that exceed or equal the observed test
statistic, self.actual.

As a simple example,2 suppose we toss a coin 250 times and see 140 heads and 110 tails.
Based on this result, we might suspect that the coin is biased; that is, more likely to land
heads. To test this hypothesis, we compute the probability of seeing such a difference if
the coin is actually fair:

class CoinTest(thinkstats2.HypothesisTest):

    def TestStatistic(self, data):
        heads, tails = data
        test_stat = abs(heads - tails)
        return test_stat

    def RunModel(self):
        heads, tails = self.data
        n = heads + tails
        sample = [random.choice('HT') for _ in range(n)]
        hist = thinkstats2.Hist(sample)
        data = hist['H'], hist['T']
        return data

The parameter, data, is a pair of integers: the number of heads and tails. The test statistic
is the absolute difference between them, so self.actual is 30.
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RunModel simulates coin tosses assuming that the coin is actually fair. It generates a
sample of 250 tosses, uses Hist to count the number of heads and tails, and returns a
pair of integers.

Now all we have to do is instantiate CoinTest and call PValue:
    ct = CoinTest((140, 110))
    pvalue = ct.PValue()

The result is about 0.07, which means that if the coin is fair, we expect to see a difference
as big as 30 about 7% of the time.

How should we interpret this result? By convention, 5% is the threshold of statistical
significance. If the p-value is less than 5%, the effect is considered significant; otherwise
it is not.

But the choice of 5% is arbitrary, and (as we will see later) the p-value depends on the
choice of the test statistics and the model of the null hypothesis. So p-values should not
be considered precise measurements.

I recommend interpreting p-values according to their order of magnitude: if the p-value
is less than 1%, the effect is unlikely to be due to chance; if it is greater than 10%, the
effect can plausibly be explained by chance. P-values between 1% and 10% should be
considered borderline. So in this example I conclude that the data do not provide strong
evidence that the coin is biased or not.

Testing a Difference in Means
One of the most common effects to test is a difference in mean between two groups. In
the NSFG data, we saw that the mean pregnancy length for first babies is slightly longer,
and the mean birth weight is slightly smaller. Now we will see if those effects are stat‐
istically significant.

For these examples, the null hypothesis is that the distributions for the two groups are
the same. One way to model the null hypothesis is by permutation; that is, we can take
values for first babies and others and shuffle them, treating the two groups as one big
group:

class DiffMeansPermute(thinkstats2.HypothesisTest):

    def TestStatistic(self, data):
        group1, group2 = data
        test_stat = abs(group1.mean() - group2.mean())
        return test_stat

    def MakeModel(self):
        group1, group2 = self.data
        self.n, self.m = len(group1), len(group2)
        self.pool = np.hstack((group1, group2))
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    def RunModel(self):
        np.random.shuffle(self.pool)
        data = self.pool[:self.n], self.pool[self.n:]
        return data

data is a pair of sequences, one for each group. The test statistic is the absolute difference
in the means.

MakeModel records the sizes of the groups, n and m, and combines the groups into one
NumPy array, self.pool.

RunModel simulates the null hypothesis by shuffling the pooled values and splitting them
into two groups with sizes n and m. As always, the return value from RunModel has the
same format as the observed data.

To test the difference in pregnancy length, we run:
    live, firsts, others = first.MakeFrames()
    data = firsts.prglngth.values, others.prglngth.values
    ht = DiffMeansPermute(data)
    pvalue = ht.PValue()

MakeFrames reads the NSFG data and returns DataFrames representing all live births,
first babies, and others. We extract pregnancy lengths as NumPy arrays, pass them as
data to DiffMeansPermute, and compute the p-value. The result is about 0.17, which
means that we expect to see a difference as big as the observed effect about 17% of the
time. So this effect is not statistically significant.

HypothesisTest provides PlotCdf, which plots the distribution of the test statistic and
a gray line indicating the observed effect size:

    ht.PlotCdf()
    thinkplot.Show(xlabel='test statistic',
                   ylabel='CDF')

Figure 9-1 shows the result. The CDF intersects the observed difference at 0.83, which
is the complement of the p-value, 0.17.

If we run the same analysis with birth weight, the computed p-value is 0; after 1000
attempts, the simulation never yields an effect as big as the observed difference, 0.12
lbs. So we would report p < 0.001, and conclude that the difference in birth weight is
statistically significant.

Other Test Statistics
Choosing the best test statistic depends on what question you are trying to address. For
example, if the relevant question is whether pregnancy lengths are different for first
babies, then it makes sense to test the absolute difference in means, as we did in the
previous section.

Other Test Statistics | 105



Figure 9-1. CDF of difference in mean pregnancy length under the null hypothesis

If we had some reason to think that first babies are likely to be late, then we would not
take the absolute value of the difference; instead, we would use this test statistic:

class DiffMeansOneSided(DiffMeansPermute):

    def TestStatistic(self, data):
        group1, group2 = data
        test_stat = group1.mean() - group2.mean()
        return test_stat

DiffMeansOneSided inherits MakeModel and RunModel from DiffMeansPermute; the
only difference is that TestStatistic does not take the absolute value of the difference.
This kind of test is called one-sided because it only counts one side of the distribution
of differences. The previous test, using both sides, is two-sided.

For this version of the test, the p-value is 0.09. In general, the p-value for a one-sided
test is about half the p-value for a two-sided test, depending on the shape of the distri‐
bution.

The one-sided hypothesis, that first babies are born late, is more specific than the two-
sided hypothesis, so the p-value is smaller. But even for the stronger hypothesis, the
difference is not statistically significant.

We can use the same framework to test for a difference in standard deviation. In “Other
Visualizations” on page 30, we saw some evidence that first babies are more likely to be

106 | Chapter 9: Hypothesis Testing



early or late, and less likely to be on time. So we might hypothesize that the standard
deviation is higher. Here’s how we can test that:

class DiffStdPermute(DiffMeansPermute):

    def TestStatistic(self, data):
        group1, group2 = data
        test_stat = group1.std() - group2.std()
        return test_stat

This is a one-sided test because the hypothesis is that the standard deviation for first
babies is higher, not just different. The p-value is 0.09, which is not statistically signif‐
icant.

Testing a Correlation
This framework can also test correlations. For example, in the NSFG data set, the cor‐
relation between birth weight and mother’s age is about 0.07. It seems like older mothers
have heavier babies. But could this effect be due to chance?

For the test statistic, I use Pearson’s correlation, but Spearman’s would work as well. If
we had reason to expect positive correlation, we would do a one-sided test. But since
we have no such reason, I’ll do a two-sided test using the absolute value of correlation.

The null hypothesis is that there is no correlation between mother’s age and birth weight.
By shuffling the observed values, we can simulate a world where the distributions of age
and birth weight are the same, but where the variables are unrelated:

class CorrelationPermute(thinkstats2.HypothesisTest):

    def TestStatistic(self, data):
        xs, ys = data
        test_stat = abs(thinkstats2.Corr(xs, ys))
        return test_stat

    def RunModel(self):
        xs, ys = self.data
        xs = np.random.permutation(xs)
        return xs, ys

data is a pair of sequences. TestStatistic computes the absolute value of Pearson’s
correlation. RunModel shuffles the xs and returns simulated data.

Here’s the code that reads the data and runs the test:
    live, firsts, others = first.MakeFrames()
    live = live.dropna(subset=['agepreg', 'totalwgt_lb'])
    data = live.agepreg.values, live.totalwgt_lb.values
    ht = CorrelationPermute(data)
    pvalue = ht.PValue()
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I use dropna with the subset argument to drop rows that are missing either of the
variables we need.

The actual correlation is 0.07. The computed p-value is 0; after 1000 iterations the largest
simulated correlation is 0.04. So although the observed correlation is small, it is statis‐
tically significant.

This example is a reminder that “statistically significant” does not always mean that an
effect is important, or significant in practice. It only means that it is unlikely to have
occurred by chance.

Testing Proportions
Suppose you run a casino and you suspect that a customer is using a crooked die; that
is, one that has been modified to make one of the faces more likely than the others. You
apprehend the alleged cheater and confiscate the die, but now you have to prove that it
is crooked. You roll the die 60 times and get the following results:

Value 1 2 3 4 5 6

Frequency 8 9 19 5 8 11

On average you expect each value to appear 10 times. In this dataset, the value 3 appears
more often than expected, and the value 4 appears less often. But are these differences
statistically significant?

To test this hypothesis, we can compute the expected frequency for each value, the
difference between the expected and observed frequencies, and the total absolute dif‐
ference. In this example, we expect each side to come up 10 times out of 60; the deviations
from this expectation are -2, -1, 9, -5, -2, and 1; so the total absolute difference is 20.
How often would we see such a difference by chance?

Here’s a version of HypothesisTest that answers that question:
class DiceTest(thinkstats2.HypothesisTest):

    def TestStatistic(self, data):
        observed = data
        n = sum(observed)
        expected = np.ones(6) * n / 6
        test_stat = sum(abs(observed - expected))
        return test_stat

    def RunModel(self):
        n = sum(self.data)
        values = [1, 2, 3, 4, 5, 6]
        rolls = np.random.choice(values, n, replace=True)
        hist = thinkstats2.Hist(rolls)
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        freqs = hist.Freqs(values)
        return freqs

The data are represented as a list of frequencies: the observed values are
[8, 9, 19, 5, 8, 11]; the expected frequencies are all 10. The test statistic is the sum
of the absolute differences.

The null hypothesis is that the die is fair, so we simulate that by drawing random samples
from values. RunModel uses Hist to compute and return the list of frequencies.

The p-value for this data is 0.13, which means that if the die is fair we expect to see the
observed total deviation, or more, about 13% of the time. So the apparent effect is not 
statistically significant.

Chi-Squared Tests
In the previous section we used total deviation as the test statistic. But for testing pro‐
portions it is more common to use the chi-squared statistic:

χ 2 = ∑
i

(Oi - Ei)2

Ei

Where Oi are the observed frequencies and Ei are the expected frequencies. Here’s the
Python code:

class DiceChiTest(DiceTest):

    def TestStatistic(self, data):
        observed = data
        n = sum(observed)
        expected = np.ones(6) * n / 6
        test_stat = sum((observed - expected)**2 / expected)
        return test_stat

Squaring the deviations (rather than taking absolute values) gives more weight to large
deviations. Dividing through by expected standardizes the deviations, although in this
case it has no effect because the expected frequencies are all equal.

The p-value using the chi-squared statistic is 0.04, substantially smaller than what we
got using total deviation, 0.13. If we take the 5% threshold seriously, we would consider
this effect statistically significant. But considering the two tests together, I would say
that the results are borderline. I would not rule out the possibility that the die is crooked,
but I would not convict the accused cheater.

This example demonstrates an important point: the p-value depends on the choice of
test statistic and the model of the null hypothesis, and sometimes these choices deter‐
mine whether an effect is statistically significant or not.
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First Babies Again
Earlier in this chapter we looked at pregnancy lengths for first babies and others, and
concluded that the apparent differences in mean and standard deviation are not statis‐
tically significant. But in “Other Visualizations” on page 30, we saw several apparent
differences in the distribution of pregnancy length, especially in the range from 35 to
43 weeks. To see whether those differences are statistically significant, we can use a test
based on a chi-squared statistic.

The code combines elements from previous examples:
class PregLengthTest(thinkstats2.HypothesisTest):

    def MakeModel(self):
        firsts, others = self.data
        self.n = len(firsts)
        self.pool = np.hstack((firsts, others))

        pmf = thinkstats2.Pmf(self.pool)
        self.values = range(35, 44)
        self.expected_probs = np.array(pmf.Probs(self.values))

    def RunModel(self):
        np.random.shuffle(self.pool)
        data = self.pool[:self.n], self.pool[self.n:]
        return data

The data are represented as two lists of pregnancy lengths. The null hypothesis is that
both samples are drawn from the same distribution. MakeModel models that distribution
by pooling the two samples using hstack. Then RunModel generates simulated data by
shuffling the pooled sample and splitting it into two parts.

MakeModel also defines values, which is the range of weeks we’ll use, and
expected_probs, which is the probability of each value in the pooled distribution.

Here’s the code that computes the test statistic:
# class PregLengthTest:

    def TestStatistic(self, data):
        firsts, others = data
        stat = self.ChiSquared(firsts) + self.ChiSquared(others)
        return stat

    def ChiSquared(self, lengths):
        hist = thinkstats2.Hist(lengths)
        observed = np.array(hist.Freqs(self.values))
        expected = self.expected_probs * len(lengths)
        stat = sum((observed - expected)**2 / expected)
        return stat
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TestStatistic computes the chi-squared statistic for first babies and others, and adds
them.

ChiSquared takes a sequence of pregnancy lengths, computes its histogram, and com‐
putes observed, which is a list of frequencies corresponding to self.values. To com‐
pute the list of expected frequencies, it multiplies the precomputed probabilities,
expected_probs, by the sample size. It returns the chi-squared statistic, stat.

For the NSFG data the total chi-squared statistic is 102, which doesn’t mean much by
itself. But after 1,000 iterations, the largest test statistic generated under the null hy‐
pothesis is 32. We conclude that the observed chi-squared statistic is unlikely under the
null hypothesis, so the apparent effect is statistically significant.

This example demonstrates a limitation of chi-squared tests: they indicate that there is
a difference between the two groups, but they don’t say anything specific about what
the difference is.

Errors
In classical hypothesis testing, an effect is considered statistically significant if the p-
value is below some threshold, commonly 5%. This procedure raises two questions:

• If the effect is actually due to chance, what is the probability that we will wrongly
consider it significant? This probability is the false positive rate.

• If the effect is real, what is the chance that the hypothesis test will fail? This prob‐
ability is the false negative rate.

The false positive rate is relatively easy to compute: if the threshold is 5%, the false
positive rate is 5%. Here’s why:

• If there is no real effect, the null hypothesis is true, so we can compute the distri‐
bution of the test statistic by simulating the null hypothesis. Call this distribution
CDFT.

• Each time we run an experiment, we get a test statistic, t, which is drawn from
CDFT. Then we compute a p-value, which is the probability that a random value
from CDFT exceeds t, so that’s 1 - CDFT (t).

• The p-value is less than 5% if CDFT (t) is greater than 95%; that is, if t exceeds the
95th percentile. And how often does a value chosen from CDFT exceed the 95th
percentile? 5% of the time.

So if you perform one hypothesis test with a 5% threshold, you expect a false positive 1
time in 20.
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Power
The false negative rate is harder to compute because it depends on the actual effect size,
and normally we don’t know that. One option is to compute a rate conditioned on a
hypothetical effect size.

For example, if we assume that the observed difference between groups is accurate, we
can use the observed samples as a model of the population and run hypothesis tests with
simulated data:

def FalseNegRate(data, num_runs=100):
    group1, group2 = data
    count = 0

    for i in range(num_runs):
        sample1 = thinkstats2.Resample(group1)
        sample2 = thinkstats2.Resample(group2)

        ht = DiffMeansPermute((sample1, sample2))
        pvalue = ht.PValue(iters=101)
        if pvalue > 0.05:
            count += 1

    return count / num_runs

FalseNegRate takes data in the form of two sequences, one for each group. Each time
through the loop, it simulates an experiment by drawing a random sample from each
group and running a hypothesis test. Then it checks the result and counts the number
of false negatives.

Resample takes a sequence and draws a sample with the same length, with replacement:
def Resample(xs):
    return np.random.choice(xs, len(xs), replace=True)

Here’s the code that tests pregnancy lengths:
    live, firsts, others = first.MakeFrames()
    data = firsts.prglngth.values, others.prglngth.values
    neg_rate = FalseNegRate(data)

The result is about 70%, which means that if the actual difference in mean pregnancy
length is 0.78 weeks, we expect an experiment with this sample size to yield a negative
test 70% of the time.

This result is often presented the other way around: if the actual difference is 0.78 weeks,
we should expect a positive test only 30% of the time. This “correct positive rate” is called
the power of the test, or sometimes “sensitivity.” It reflects the ability of the test to detect
an effect of a given size.
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In this example, the test had only a 30% chance of yielding a positive result (again,
assuming that the difference is 0.78 weeks). As a rule of thumb, a power of 80% is
considered acceptable, so we would say that this test was “underpowered.”

In general a negative hypothesis test does not imply that there is no difference between
the groups; instead it suggests that if there is a difference, it is too small to detect with
this sample size.

Replication
The hypothesis testing process I demonstrated in this chapter is not, strictly speaking,
good practice.

First, I performed multiple tests. If you run one hypothesis test, the chance of a false
positive is about 1 in 20, which might be acceptable. But if you run 20 tests, you should
expect at least one false positive, most of the time.

Second, I used the same dataset for exploration and testing. If you explore a large dataset,
find a surprising effect, and then test whether it is significant, you have a good chance
of generating a false positive.

To compensate for multiple tests, you can adjust the p-value threshold (see this Wiki‐
pedia page). Or you can address both problems by partitioning the data, using one set
for exploration and the other for testing.

In some fields these practices are required or at least encouraged. But it is also common
to address these problems implicitly by replicating published results. Typically the first
paper to report a new result is considered exploratory. Subsequent papers that replicate
the result with new data are considered confirmatory.

As it happens, we have an opportunity to replicate the results in this chapter. The first
edition of this book is based on Cycle 6 of the NSFG, which was released in 2002. In
October 2011, the CDC released additional data based on interviews conducted from
2006–2010. nsfg2.py contains code to read and clean this data. In the new dataset:

• The difference in mean pregnancy length is 0.16 weeks and statistically significant
with p < 0.001 (compared to 0.078 weeks in the original dataset).

• The difference in birth weight is 0.17 pounds with p < 0.001 (compared to 0.12 lbs
in the original dataset).

• The correlation between birth weight and mother’s age is 0.08 with p < 0.001
(compared to 0.07).

• The chi-squared test is statistically significant with p < 0.001 (as it was in the orig‐
inal).
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In summary, all of the effects that were statistically significant in the original dataset
were replicated in the new dataset, and the difference in pregnancy length, which was
not significant in the original, is bigger in the new dataset and significant.

Exercises
A solution to these exercises is in chap09soln.py.

Exercise 9-1.
As sample size increases, the power of a hypothesis test increases, which means it is
more likely to be positive if the effect is real. Conversely, as sample size decreases, the
test is less likely to be positive even if the effect is real.

To investigate this behavior, run the tests in this chapter with different subsets of the
NSFG data. You can use thinkstats2.SampleRows to select a random subset of the rows
in a DataFrame.

What happens to the p-values of these tests as the sample size decreases? What is the
smallest sample size that yields a positive test?

Exercise 9-2.
In “Testing a Difference in Means” on page 104, we simulated the null hypothesis by
permutation; that is, we treated the observed values as if they represented the entire
population, and randomly assigned the members of the population to the two groups.

An alternative is to use the sample to estimate the distribution for the population, then
draw a random sample from that distribution. This process is called resampling. There
are several ways to implement resampling, but one of the simplest is to draw a sample
with replacement from the observed values, as in “Power” on page 112.

Write a class named DiffMeansResample that inherits from DiffMeansPermute and
overrides RunModel to implement resampling, rather than permutation.

Use this model to test the differences in pregnancy length and birth weight. How much
does the model affect the results?

Glossary
hypothesis testing

The process of determining whether an apparent effect is statistically significant.

test statistic
A statistic used to quantify an effect size.
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null hypothesis
A model of a system based on the assumption that an apparent effect is due to
chance.

p-value
The probability that an effect could occur by chance.

statistically significant
An effect is statistically significant if it is unlikely to occur by chance.

permutation test
A way to compute p-values by generating permutations of an observed dataset.

resampling test
A way to compute p-values by generating samples, with replacement, from an ob‐
served dataset.

two-sided test
A test that asks, “What is the chance of an effect as big as the observed effect, positive
or negative?”

one-sided test
A test that asks, “What is the chance of an effect as big as the observed effect, and
with the same sign?”

chi-squared test
A test that uses the chi-squared statistic as the test statistic.

false positive
The conclusion that an effect is real when it is not.

false negative
The conclusion that an effect is due to chance when it is not.

power
The probability of a positive test if the null hypothesis is false.
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CHAPTER 10

Linear Least Squares

The code for this chapter is in linear.py. For information about downloading and
working with this code, see “Using the Code” on page xi.

Least Squares Fit
Correlation coefficients measure the strength and sign of a relationship, but not the
slope. There are several ways to estimate the slope; the most common is a linear least
squares fit. A “linear fit” is a line intended to model the relationship between variables.
A “least squares” fit is one that minimizes the mean squared error (MSE) between the
line and the data.

Suppose we have a sequence of points, ys, that we want to express as a function of
another sequence xs. If there is a linear relationship between xs and ys with intercept
inter and slope slope, we expect each y[i] to be inter + slope * x[i].

But unless the correlation is perfect, this prediction is only approximate. The vertical
deviation from the line, or residual, is

res = ys - (inter + slope * xs)

The residuals might be due to random factors like measurement error, or nonrandom
factors that are unknown. For example, if we are trying to predict weight as a function
of height, unknown factors might include diet, exercise, and body type.

If we get the parameters inter and slope wrong, the residuals get bigger, so it makes
intuitive sense that the parameters we want are the ones that minimize the residuals.

We might try to minimize the absolute value of the residuals, or their squares, or their
cubes; but the most common choice is to minimize the sum of squared residuals,
sum(res**2)).

Why? There are three good reasons and one less important one:
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• Squaring has the feature of treating positive and negative residuals the same, which
is usually what we want.

• Squaring gives more weight to large residuals, but not so much weight that the
largest residual always dominates.

• If the residuals are uncorrelated and normally distributed with mean 0 and constant
(but unknown) variance, then the least squares fit is also the maximum likelihood
estimator of inter and slope. See Wikipedia.

• The values of inter and slope that minimize the squared residuals can be computed
efficiently.

The last reason made sense when computational efficiency was more important than
choosing the method most appropriate to the problem at hand. That’s no longer the
case, so it is worth considering whether squared residuals are the right thing to mini‐
mize.

For example, if you are using xs to predict values of ys, guessing too high might be
better (or worse) than guessing too low. In that case you might want to compute some
cost function for each residual, and minimize total cost, sum(cost(res)). However,
computing a least squares fit is quick, easy and often good enough.

Implementation
thinkstats2 provides simple functions that demonstrate linear least squares:

def LeastSquares(xs, ys):
    meanx, varx = MeanVar(xs)
    meany = Mean(ys)

    slope = Cov(xs, ys, meanx, meany) / varx
    inter = meany - slope * meanx

    return inter, slope

LeastSquares takes sequences xs and ys and returns the estimated parameters inter
and slope. For details on how it works, see Wikipedia.

thinkstats2 also provides FitLine, which takes inter and slope and returns the fitted
line for a sequence of xs.

def FitLine(xs, inter, slope):
    fit_xs = np.sort(xs)
    fit_ys = inter + slope * fit_xs
    return fit_xs, fit_ys

We can use these functions to compute the least squares fit for birth weight as a function
of mother’s age.
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    live, firsts, others = first.MakeFrames()
    live = live.dropna(subset=['agepreg', 'totalwgt_lb'])
    ages = live.agepreg
    weights = live.totalwgt_lb

    inter, slope = thinkstats2.LeastSquares(ages, weights)
    fit_xs, fit_ys = thinkstats2.FitLine(ages, inter, slope)

The estimated intercept and slope are 6.8 lbs and 0.017 lbs per year. These values are
hard to interpret in this form: the intercept is the expected weight of a baby whose
mother is 0 years old, which doesn’t make sense in context, and the slope is too small
to grasp easily.

Instead of presenting the intercept at x = 0, it is often helpful to present the intercept
at the mean of x. In this case the mean age is about 25 years and the mean baby weight
for a 25-year-old mother is 7.3 pounds. The slope is 0.27 ounces per year, or 0.17 pounds
per decade.

Figure 10-1 shows a scatter plot of birth weight and age along with the fitted line. It’s a
good idea to look at a figure like this to assess whether the relationship is linear and
whether the fitted line seems like a good model of the relationship. 

Figure 10-1. Scatter plot of birth weight and mother’s age with a linear fit

Residuals
Another useful test is to plot the residuals. thinkstats2 provides a function that com‐
putes residuals:

Residuals | 119



def Residuals(xs, ys, inter, slope):
    xs = np.asarray(xs)
    ys = np.asarray(ys)
    res = ys - (inter + slope * xs)
    return res

Residuals takes sequences xs and ys and estimated parameters inter and slope. It
returns the differences between the actual values and the fitted line.

To visualize the residuals, I group respondents by age and compute percentiles in each
group, as we saw in “Characterizing Relationships” on page 82. Figure 10-2 shows the
25th, 50th and 75th percentiles of the residuals for each age group. The median is near
zero, as expected, and the interquartile range is about 2 pounds. So if we know the
mother’s age, we can guess the baby’s weight within a pound, about 50% of the time.

Figure 10-2. Residuals of the linear fit

Ideally these lines should be flat, indicating that the residuals are random, and parallel,
indicating that the variance of the residuals is the same for all age groups. In fact, the
lines are close to parallel, so that’s good; but they have some curvature, indicating that
the relationship is non-linear. Nevertheless, the linear fit is a simple model that is prob‐
ably good enough for some purposes.

Estimation
The parameters slope and inter are estimates based on a sample; like other estimates,
they are vulnerable to sampling bias, measurement error, and sampling error. As dis‐
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cussed in Chapter 8, sampling bias is caused by nonrepresentative sampling, measure‐
ment error is caused by errors in collecting and recording data, and sampling error is
the result of measuring a sample rather than the entire population.

To assess sampling error, we ask, “If we run this experiment again, how much variability
do we expect in the estimates?” We can answer this question by running simulated
experiments and computing sampling distributions of the estimates.

I simulate the experiments by resampling the data; that is, I treat the observed preg‐
nancies as if they were the entire population and draw samples, with replacement, from
the observed sample.

def SamplingDistributions(live, iters=101):
    t = []
    for _ in range(iters):
        sample = thinkstats2.ResampleRows(live)
        ages = sample.agepreg
        weights = sample.totalwgt_lb
        estimates = thinkstats2.LeastSquares(ages, weights)
        t.append(estimates)

    inters, slopes = zip(*t)
    return inters, slopes

SamplingDistributions takes a DataFrame with one row per live birth, and iters, the
number of experiments to simulate. It uses ResampleRows to resample the observed
pregnancies. We’ve already seen SampleRows, which chooses random rows from a Da‐
taFrame. thinkstats2 also provides ResampleRows, which returns a sample the same
size as the original:

def ResampleRows(df):
    return SampleRows(df, len(df), replace=True)

After resampling, we use the simulated sample to estimate parameters. The result is two
sequences: the estimated intercepts and estimated slopes.

I summarize the sampling distributions by printing the standard error and confidence
interval:

def Summarize(estimates, actual=None):
    mean = thinkstats2.Mean(estimates)
    stderr = thinkstats2.Std(estimates, mu=actual)
    cdf = thinkstats2.Cdf(estimates)
    ci = cdf.ConfidenceInterval(90)
    print('mean, SE, CI', mean, stderr, ci)

Summarize takes a sequence of estimates and the actual value. It prints the mean of the
estimates, the standard error and a 90% confidence interval.

For the intercept, the mean estimate is 6.83, with standard error 0.07 and 90% confidence
interval (6.71, 6.94). The estimated slope, in more compact form, is 0.0174, SE 0.0028,
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CI (0.0126, 0.0220). There is almost a factor of two between the low and high ends of
this CI, so it should be considered a rough estimate.

To visualize the sampling error of the estimate, we could plot all of the fitted lines, or
for a less cluttered representation, plot a 90% confidence interval for each age. Here’s
the code:

def PlotConfidenceIntervals(xs, inters, slopes,
                            percent=90, **options):
    fys_seq = []
    for inter, slope in zip(inters, slopes):
        fxs, fys = thinkstats2.FitLine(xs, inter, slope)
        fys_seq.append(fys)

    p = (100 - percent) / 2
    percents = p, 100 - p
    low, high = thinkstats2.PercentileRows(fys_seq, percents)
    thinkplot.FillBetween(fxs, low, high, **options)

xs is the sequence of mother’s age. inters and slopes are the estimated parameters
generated by SamplingDistributions. percent indicates which confidence interval to
plot.

PlotConfidenceIntervals generates a fitted line for each pair of inter and slope and
stores the results in a sequence, fys_seq. Then it uses PercentileRows to select the
upper and lower percentiles of y for each value of x. For a 90% confidence interval, it
selects the 5th and 95th percentiles. FillBetween draws a polygon that fills the space
between two lines.

Figure 10-3 shows the 50% and 90% confidence intervals for curves fitted to birth weight
as a function of mother’s age. The vertical width of the region represents the effect of
sampling error; the effect is smaller for values near the mean and larger for the extremes.

Goodness of Fit
There are several ways to measure the quality of a linear model, or goodness of fit. One
of the simplest is the standard deviation of the residuals.

If you use a linear model to make predictions, Std(res) is the root mean squared error
(RMSE) of your predictions. For example, if you use mother’s age to guess birth weight,
the RMSE of your guess would be 1.40 lbs.

If you guess birth weight without knowing the mother’s age, the RMSE of your guess is
Std(ys), which is 1.41 lbs. So in this example, knowing a mother’s age does not improve
the predictions substantially.

Another way to measure goodness of fit is the coefficient of determination, usually
denoted R2 and called “R-squared”:
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Figure 10-3. 50% and 90% confidence intervals showing variability in the fitted line due
to sampling error of inter and slope

def CoefDetermination(ys, res):
    return 1 - Var(res) / Var(ys)

Var(res) is the MSE of your guesses using the model, Var(ys) is the MSE without it.
So their ratio is the fraction of MSE that remains if you use the model, and R2 is the
fraction of MSE the model eliminates.

For birth weight and mother’s age, R2 is 0.0047, which means that mother’s age predicts
about half of 1% of variance in birth weight.

There is a simple relationship between the coefficient of determination and Pearson’s
coefficient of correlation: R 2 = ρ 2. For example, if ρ is 0.8 or -0.8, R 2 = 0.64.

Although ρ and R2 are often used to quantify the strength of a relationship, they are not
easy to interpret in terms of predictive power. In my opinion, Std(res) is the best
representation of the quality of prediction, especially if it is presented in relation to
Std(ys).

For example, when people talk about the validity of the SAT (a standardized test used
for college admission in the U.S.) they often talk about correlations between SAT scores
and other measures of intelligence.

According to one study, there is a Pearson correlation of ρ = 0.72 between total SAT
scores and IQ scores, which sounds like a strong correlation. But R 2 = ρ 2 = 0.52, so
SAT scores account for only 52% of variance in IQ.
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IQ scores are normalized with Std(ys) = 15, so
>>> var_ys = 15**2
>>> rho = 0.72
>>> r2 = rho**2
>>> var_res = (1 - r2) * var_ys
>>> std_res = math.sqrt(var_res)
10.4096

So using SAT score to predict IQ reduces RMSE from 15 points to 10.4 points. A cor‐
relation of 0.72 yields a reduction in RMSE of only 31%.

If you see a correlation that looks impressive, remember that R2 is a better indicator of
reduction in MSE, and reduction in RMSE is a better indicator of predictive power.

Testing a Linear Model
The effect of mother’s age on birth weight is small, and has little predictive power. So is
it possible that the apparent relationship is due to chance? There are several ways we
might test the results of a linear fit.

One option is to test whether the apparent reduction in MSE is due to chance. In that
case, the test statistic is R2 and the null hypothesis is that there is no relationship between
the variables. We can simulate the null hypothesis by permutation, as in “Testing a
Correlation” on page 107, when we tested the correlation between mother’s age and
birth weight. In fact, because R 2 = ρ 2, a one-sided test of R2 is equivalent to a two-sided
test of ρ. We’ve already done that test, and found p < 0.001, so we conclude that the
apparent relationship between mother’s age and birth weight is statistically significant.

Another approach is to test whether the apparent slope is due to chance. The null hy‐
pothesis is that the slope is actually zero; in that case we can model the birth weights as
random variations around their mean. Here’s a HypothesisTest for this model:

class SlopeTest(thinkstats2.HypothesisTest):

    def TestStatistic(self, data):
        ages, weights = data
        _, slope = thinkstats2.LeastSquares(ages, weights)
        return slope

    def MakeModel(self):
        _, weights = self.data
        self.ybar = weights.mean()
        self.res = weights - self.ybar

    def RunModel(self):
        ages, _ = self.data
        weights = self.ybar + np.random.permutation(self.res)
        return ages, weights
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The data are represented as sequences of ages and weights. The test statistic is the slope
estimated by LeastSquares. The model of the null hypothesis is represented by the
mean weight of all babies and the deviations from the mean. To generate simulated data,
we permute the deviations and add them to the mean.

Here’s the code that runs the hypothesis test:
    live, firsts, others = first.MakeFrames()
    live = live.dropna(subset=['agepreg', 'totalwgt_lb'])
    ht = SlopeTest((live.agepreg, live.totalwgt_lb))
    pvalue = ht.PValue()

The p-value is less than 0.001, so although the estimated slope is small, it is unlikely to
be due to chance.

Estimating the p-value by simulating the null hypothesis is strictly correct, but there is
a simpler alternative. Remember that we already computed the sampling distribution
of the slope, in “Estimation” on page 120. To do that, we assumed that the observed
slope was correct and simulated experiments by resampling.

Figure 10-4 shows the sampling distribution of the slope, from “Estimation” on page
120, and the distribution of slopes generated under the null hypothesis. The sampling
distribution is centered about the estimated slope, 0.017 lbs/year, and the slopes under
the null hypothesis are centered around 0; but other than that, the distributions are
identical. The distributions are also symmetric, for reasons we will see in “Central Limit
Theorem” on page 186.

So we could estimate the p-value two ways:

• Compute the probability that the slope under the null hypothesis exceeds the ob‐
served slope.

• Compute the probability that the slope in the sampling distribution falls below 0.
(If the estimated slope were negative, we would compute the probability that the
slope in the sampling distribution exceeds 0.)

The second option is easier because we normally want to compute the sampling distri‐
bution of the parameters anyway. And it is a good approximation unless the sample size
is small and the distribution of residuals is skewed. Even then, it is usually good enough,
because p-values don’t have to be precise.

Here’s the code that estimates the p-value of the slope using the sampling distribution:
    inters, slopes = SamplingDistributions(live, iters=1001)
    slope_cdf = thinkstats2.Cdf(slopes)
    pvalue = slope_cdf[0]

Again, we find p < 0.001.
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Figure 10-4. The sampling distribution of the estimated slope and the distribution of
slopes generated under the null hypothesis. The vertical lines are at 0 and the observed
slope, 0.017 lbs/year.

Weighted Resampling
So far we have treated the NSFG data as if it were a representative sample, but as I
mentioned in “The National Survey of Family Growth” on page 2, it is not. The survey
deliberately oversamples several groups in order to improve the chance of getting stat‐
istically significant results; that is, in order to improve the power of tests involving these
groups.

This survey design is useful for many purposes, but it means that we cannot use the
sample to estimate values for the general population without accounting for the sam‐
pling process.

For each respondent, the NSFG data includes a variable called finalwgt, which is the
number of people in the general population the respondent represents. This value is
called a sampling weight, or just “weight.”

As an example, if you survey 100,000 people in a country of 300 million, each respondent
represents 3,000 people. If you oversample one group by a factor of 2, each person in
the oversampled group would have a lower weight, about 1500.

To correct for oversampling, we can use resampling; that is, we can draw samples from
the survey using probabilities proportional to sampling weights. Then, for any quantity
we want to estimate, we can generate sampling distributions, standard errors, and con‐
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fidence intervals. As an example, I will estimate mean birth weight with and without
sampling weights.

In “Estimation” on page 120, we saw ResampleRows, which chooses rows from a Data‐
Frame, giving each row the same probability. Now we need to do the same thing using
probabilities proportional to sampling weights. ResampleRowsWeighted takes a Data‐
Frame, resamples rows according to the weights in finalwgt, and returns a DataFrame
containing the resampled rows:

def ResampleRowsWeighted(df):
    weights = df.finalwgt
    pmf = thinkstats2.Pmf(weights.iteritems())
    cdf = pmf.MakeCdf()
    indices = cdf.Sample(len(weights))
    sample = df.loc[indices]
    return sample

pmf maps from each row index to its normalized weight. Converting to a Cdf makes the
sampling process faster. indices is a sequence of row indices; sample is a DataFrame
that contains the selected rows. Since we sample with replacement, the same row might
appear more than once.

Now we can compare the effect of resampling with and without weights. Without
weights, we generate the sampling distribution like this:

    estimates = [ResampleRows(live).totalwgt_lb.mean()
                 for _ in range(iters)]

With weights, it looks like this:
    estimates = [ResampleRowsWeighted(live).totalwgt_lb.mean()
                 for _ in range(iters)]

The following table summarizes the results:

 Mean birth weight (lbs) Standard error 90% CI

Unweighted 7.27 0.014 (7.24, 7.29)

Weighted 7.35 0.014 (7.32, 7.37)

In this example, the effect of weighting is small but non-negligible. The difference in
estimated means, with and without weighting, is about 0.08 pounds, or 1.3 ounces. This
difference is substantially larger than the standard error of the estimate, 0.014 pounds,
which implies that the difference is not due to chance.

Exercises
A solution to this exercise is in chap10soln.ipynb.
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Exercise 10-1.
Using the data from the BRFSS, compute the linear least squares fit for log(weight)
versus height. How would you best present the estimated parameters for a model like
this where one of the variables is log-transformed? If you were trying to guess someone’s
weight, how much would it help to know their height?

Like the NSFG, the BRFSS oversamples some groups and provides a sampling weight
for each respondent. In the BRFSS data, the variable name for these weights is
totalwt. Use resampling, with and without weights, to estimate the mean height of
respondents in the BRFSS, the standard error of the mean, and a 90% confidence in‐
terval. How much does correct weighting affect the estimates?

Glossary
linear fit

A line intended to model the relationship between variables.

least squares fit
A model of a dataset that minimizes the sum of squares of the residuals.

residual
The deviation of an actual value from a model.

goodness of fit
A measure of how well a model fits data.

coefficient of determination
A statistic intended to quantify goodness of fit.

sampling weight
A value associated with an observation in a sample that indicates what part of the
population it represents.
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CHAPTER 11

Regression

The linear least squares fit in the previous chapter is an example of regression, which
is the more general problem of fitting any kind of model to any kind of data. This use
of the term “regression” is a historical accident; it is only indirectly related to the original
meaning of the word.

The goal of regression analysis is to describe the relationship between one set of vari‐
ables, called the dependent variables, and another set of variables, called independent
or explanatory variables.

In the previous chapter we used mother’s age as an explanatory variable to predict birth
weight as a dependent variable. When there is only one dependent and one explanatory
variable, that’s simple regression. In this chapter, we move on to multiple regression,
with more than one explanatory variable. If there is more than one dependent variable,
that’s multivariate regression.

If the relationship between the dependent and explanatory variable is linear, that’s linear
regression. For example, if the dependent variable is y and the explanatory variables
are x1 and x2, we would write the following linear regression model:

y = β0 + β1x1 + β2x2 + ε

where β0 is the intercept, β1 is the parameter associated with x1, β2 is the parameter
associated with x2, and ε is the residual due to random variation or other unknown
factors.

Given a sequence of values for y and sequences for x1 and x2, we can find the parameters,
β0, β1, and β2, that minimize the sum of ε2. This process is called ordinary least
squares. The computation is similar to that of thinkstats2.LeastSquare, but gener‐
alized to deal with more than one explanatory variable.
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The code for this chapter is in regression.py. For information about downloading and
working with this code, see “Using the Code” on page xi.

StatsModels
In the previous chapter I presented thinkstats2.LeastSquares, an implementation of
simple linear regression intended to be easy to read. For multiple regression we’ll switch
to StatsModels, a Python package that provides several forms of regression and other
analyses. If you are using Anaconda, you already have StatsModels; otherwise you might
have to install it.

As an example, I’ll run the model from the previous chapter with StatsModels:
    import statsmodels.formula.api as smf

    live, firsts, others = first.MakeFrames()
    formula = 'totalwgt_lb ~ agepreg'
    model = smf.ols(formula, data=live)
    results = model.fit()

statsmodels provides two interfaces (APIs); the “formula” API uses strings to identify
the dependent and explanatory variables. It uses a syntax called patsy; in this example,
the ~ operator separates the dependent variable on the left from the explanatory variables
on the right.

smf.ols takes the formula string and the DataFrame, live, and returns an OLS object
that represents the model. The name ols stands for “ordinary least squares.”

The fit method fits the model to the data and returns a RegressionResults object that
contains the results.

The results are also available as attributes. params is a Series that maps from variable
names to their parameters, so we can get the intercept and slope like this:

    inter = results.params['Intercept']
    slope = results.params['agepreg']

The estimated parameters are 6.83 and 0.0175, the same as from LeastSquares.

pvalues is a Series that maps from variable names to the associated p-values, so we can
check whether the estimated slope is statistically significant:

    slope_pvalue = results.pvalues['agepreg']

The p-value associated with agepreg is 5.7e-11, which is less than 0.001, as expected.

results.rsquared contains R2, which is 0.0047. results also provides f_pvalue, which
is the p-value associated with the model as a whole, similar to testing whether R2 is
statistically significant.
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And results provides resid, a sequence of residuals, and fittedvalues, a sequence
of fitted values corresponding to agepreg.

The results object provides summary(), which represents the results in a readable format.
    print(results.summary())

But it prints a lot of information that is not relevant (yet), so I use a simpler function
called SummarizeResults. Here are the results of this model:

Intercept       6.83    (0)
agepreg         0.0175  (5.72e-11)
R^2 0.004738
Std(ys) 1.408
Std(res) 1.405

Std(ys) is the standard deviation of the dependent variable, which is the RMSE if you
have to guess birth weights without the benefit of any explanatory variables. Std(res)
is the standard deviation of the residuals, which is the RMSE if your guesses are informed
by the mother’s age. As we have already seen, knowing the mother’s age provides no
substantial improvement to the predictions.

Multiple Regression
In “Comparing CDFs” on page 44, we saw that first babies tend to be lighter than others,
and this effect is statistically significant. But it is a strange result because there is no
obvious mechanism that would cause first babies to be lighter. So we might wonder
whether this relationship is spurious.

In fact, there is a possible explanation for this effect. We have seen that birth weight
depends on mother’s age, and we might expect that mothers of first babies are younger
than others.

With a few calculations we can check whether this explanation is plausible. Then we’ll
use multiple regression to investigate more carefully. First, let’s see how big the difference
in weight is:

diff_weight = firsts.totalwgt_lb.mean() - others.totalwgt_lb.mean()

First babies are 0.125 lbs lighter, or 2 ounces. And the difference in ages:
diff_age = firsts.agepreg.mean() - others.agepreg.mean()

The mothers of first babies are 3.59 years younger. Running the linear model again, we
get the change in birth weight as a function of age:

results = smf.ols('totalwgt_lb ~ agepreg', data=live).fit()
slope = results.params['agepreg']
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The slope is 0.175 pounds per year. If we multiply the slope by the difference in ages,
we get the expected difference in birth weight for first babies and others, due to mother’s
age:

slope * diff_age

The result is 0.063, just about half of the observed difference. So we conclude, tentatively,
that the observed difference in birth weight can be partly explained by the difference in
mother’s age.

Using multiple regression, we can explore these relationships more systematically.
    live['isfirst'] = live.birthord == 1
    formula = 'totalwgt_lb ~ isfirst'
    results = smf.ols(formula, data=live).fit()

The first line creates a new column named isfirst that is True for first babies and false
otherwise. Then we fit a model using isfirst as an explanatory variable.

Here are the results:
Intercept         7.33   (0)
isfirst[T.True]  -0.125  (2.55e-05)
R^2 0.00196

Because isfirst is a boolean, ols treats it as a categorical variable, which means that
the values fall into categories, like True and False, and should not be treated as numbers.
The estimated parameter is the effect on birth weight when isfirst is true, so the result,
-0.125 lbs, is the difference in birth weight between first babies and others. 

The slope and the intercept are statistically significant, which means that they were
unlikely to occur by chance, but the the R2 value for this model is small, which means
that isfirst doesn’t account for a substantial part of the variation in birth weight.

The results are similar with agepreg:
Intercept       6.83    (0)
agepreg         0.0175  (5.72e-11)
R^2 0.004738

Again, the parameters are statistically significant, but R2 is low.

These models confirm results we have already seen. But now we can fit a single model
that includes both variables. With the formula totalwgt_lb ~ isfirst + agepreg, we
get:

Intercept        6.91    (0)
isfirst[T.True] -0.0698  (0.0253)
agepreg          0.0154  (3.93e-08)
R^2 0.005289
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In the combined model, the parameter for isfirst is smaller by about half, which means
that part of the apparent effect of isfirst is actually accounted for by agepreg. And
the p-value for isfirst is about 2.5%, which is on the border of statistical significance.

R2 for this model is a little higher, which indicates that the two variables together account
for more variation in birth weight than either alone (but not by much).

Nonlinear Relationships
Remembering that the contribution of agepreg might be non-linear, we might consider
adding a variable to capture more of this relationship. One option is to create a column,
agepreg2, that contains the squares of the ages:

    live['agepreg2'] = live.agepreg**2
    formula = 'totalwgt_lb ~ isfirst + agepreg + agepreg2'

Now by estimating parameters for agepreg and agepreg2, we are effectively fitting a
parabola:

Intercept        5.69     (1.38e-86)
isfirst[T.True] -0.0504   (0.109)
agepreg          0.112    (3.23e-07)
agepreg2        -0.00185  (8.8e-06)
R^2 0.007462

The parameter of agepreg2 is negative, so the parabola curves downward, which is
consistent with the shape of the lines in Figure 10-2.

The quadratic model of agepreg accounts for more of the variability in birth weight;
the parameter for isfirst is smaller in this model, and no longer statistically significant.

Using computed variables like agepreg2 is a common way to fit polynomials and other
functions to data. This process is still considered linear regression, because the depen‐
dent variable is a linear function of the explanatory variables, regardless of whether
some variables are non-linear functions of others.

The following table summarizes the results of these regressions:

 isfirst agepreg agepreg2 R2

Model 1 -0.125 * – – 0.002

Model 2 – 0.0175 * – 0.0047

Model 3 -0.0698 (0.025) 0.0154 * – 0.0053

Model 4 -0.0504 (0.11) 0.112 * -0.00185 * 0.0075

The columns in this table are the explanatory variables and the coefficient of determi‐
nation, R2. Each entry is an estimated parameter and either a p-value in parentheses or
an asterisk to indicate a p-value less that 0.001.
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We conclude that the apparent difference in birth weight is explained, at least in part,
by the difference in mother’s age. When we include mother’s age in the model, the effect
of isfirst gets smaller, and the remaining effect might be due to chance.

In this example, mother’s age acts as a control variable; including agepreg in the model
“controls for” the difference in age between first-time mothers and others, making it
possible to isolate the effect (if any) of isfirst.

Data Mining
So far we have used regression models for explanation; for example, in the previous
section we discovered that an apparent difference in birth weight is actually due to a
difference in mother’s age. But the R2 values of those models is very low, which means
that they have little predictive power. In this section we’ll try to do better. 

Suppose one of your co-workers is expecting a baby and there is an office pool to guess
the baby’s birth weight (if you are not familiar with betting pools, see Wikipedia).

Now suppose that you really want to win the pool. What could you do to improve your
chances? Well, the NSFG dataset includes 244 variables about each pregnancy and an‐
other 3087 variables about each respondent. Maybe some of those variables have pre‐
dictive power. To find out which ones are most useful, why not try them all?

Testing the variables in the pregnancy table is easy, but in order to use the variables in
the respondent table, we have to match up each pregnancy with a respondent. In theory
we could iterate through the rows of the pregnancy table, use the caseid to find the
corresponding respondent, and copy the values from the correspondent table into the
pregnancy table. But that would be slow.

A better option is to recognize this process as a join operation as defined in SQL and
other relational database languages (see ). Join is implemented as a DataFrame method,
so we can perform the operation like this:

    live = live[live.prglngth>30]
    resp = chap01soln.ReadFemResp()
    resp.index = resp.caseid
    join = live.join(resp, on='caseid', rsuffix='_r')

The first line selects records for pregnancies longer than 30 weeks, assuming that the
office pool is formed several weeks before the due date.

The next line reads the respondent file. The result is a DataFrame with integer indices;
in order to look up respondents efficiently, I replace resp.index with resp.caseid.

The join method is invoked on live, which is considered the “left” table, and passed
resp, which is the “right” table. The keyword argument on indicates the variable used
to match up rows from the two tables.
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In this example some column names appear in both tables, so we have to provide
rsuffix, which is a string that will be appended to the names of overlapping columns
from the right table. For example, both tables have a column named race that encodes
the race of the respondent. The result of the join contains two columns named race and
race_r.

The pandas implementation is fast. Joining the NSFG tables takes less than a second on
an ordinary desktop computer. Now we can start testing variables.

    t = []
    for name in join.columns:
        try:
            if join[name].var() < 1e-7:
                continue

            formula = 'totalwgt_lb ~ agepreg + ' + name
            model = smf.ols(formula, data=join)
            if model.nobs < len(join)/2:
                continue

            results = model.fit()
        except (ValueError, TypeError):
            continue

        t.append((results.rsquared, name))

For each variable we construct a model, compute R2, and append the results to a list.
The models all include agepreg, since we already know that it has some predictive
power.

I check that each explanatory variable has some variability; otherwise the results of the
regression are unreliable. I also check the number of observations for each model. Vari‐
ables that contains a large number of nans are not good candidates for prediction.

For most of these variables, we haven’t done any cleaning. Some of them are encoded
in ways that don’t work very well for linear regression. As a result, we might overlook
some variables that would be useful if they were cleaned properly. But maybe we will
find some good candidates.

Prediction
The next step is to sort the results and select the variables that yield the highest values
of R2.

    t.sort(reverse=True)
    for mse, name in t[:30]:
        print(name, mse)
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The first variable on the list is totalwgt_lb, followed by birthwgt_lb. Obviously, we
can’t use birth weight to predict birth weight.

Similarly prglngth has useful predictive power, but for the office pool we assume preg‐
nancy length (and the related variables) are not known yet.

The first useful predictive variable is babysex which indicates whether the baby is male
or female. In the NSFG dataset, boys are about 0.3 lbs heavier. So, assuming that the sex
of the baby is known, we can use it for prediction.

Next is race, which indicates whether the respondent is white, black, or other. As an
explanatory variable, race can be problematic. In datasets like the NSFG, race is corre‐
lated with many other variables, including income and other socioeconomic factors. In
a regression model, race acts as a proxy variable, so apparent correlations with race are
often caused, at least in part, by other factors.

The next variable on the list is nbrnaliv, which indicates whether the pregnancy yielded
multiple births. Twins and triplets tend to be smaller than other babies, so if we know
whether our hypothetical co-worker is expecting twins, that would help.

Next on the list is paydu, which indicates whether the respondent owns her home. It is
one of several income-related variables that turn out to be predictive. In datasets like
the NSFG, income and wealth are correlated with just about everything. In this example,
income is related to diet, health, health care, and other factors likely to affect birth
weight.

Some of the other variables on the list are things that would not be known until later,
like bfeedwks, the number of weeks the baby was breast fed. We can’t use these variables
for prediction, but you might want to speculate on reasons bfeedwks might be correlated
with birth weight.

Sometimes you start with a theory and use data to test it. Other times you start with
data and go looking for possible theories. The second approach, which this section
demonstrates, is called data mining. An advantage of data mining is that it can discover
unexpected patterns. A hazard is that many of the patterns it discovers are either random
or spurious.

Having identified potential explanatory variables, I tested a few models and settled on
this one:

    formula = ('totalwgt_lb ~ agepreg + C(race) + babysex==1 + '
               'nbrnaliv>1 + paydu==1 + totincr')
    results = smf.ols(formula, data=join).fit()

This formula uses some syntax we have not seen yet: C(race) tells the formula parser
(Patsy) to treat race as a categorical variable, even though it is encoded numerically.

The encoding for babysex is 1 for male, 2 for female; writing babysex==1 converts it to
boolean, True for male and false for female.
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Similarly nbrnaliv>1 is True for multiple births and paydu==1 is True for respondents
who own their houses.

totincr is encoded numerically from 1-14, with each increment representing about
$5000 in annual income. So we can treat these values as numerical, expressed in units
of $5000.

Here are the results of the model:
Intercept               6.63    (0)
C(race)[T.2]            0.357   (5.43e-29)
C(race)[T.3]            0.266   (2.33e-07)
babysex == 1[T.True]    0.295   (5.39e-29)
nbrnaliv > 1[T.True]   -1.38    (5.1e-37)
paydu == 1[T.True]      0.12    (0.000114)
agepreg                 0.00741 (0.0035)
totincr                 0.0122  (0.00188)

The estimated parameters for race are larger than I expected, especially since we control
for income. The encoding is 1 for black, 2 for white, and 3 for other. Babies of black
mothers are lighter than babies of other races by 0.27–0.36 lbs.

As we’ve already seen, boys are heavier by about 0.3 lbs; twins and other multiplets are
lighter by 1.4 lbs.

People who own their homes have heavier babies by about 0.12 lbs, even when we control
for income. The parameter for mother’s age is smaller than what we saw in “Multiple
Regression” on page 131, which suggests that some of the other variables are correlated
with age, probably including paydu and totincr.

All of these variables are statistically significant, some with very low p-values, but R2 is
only 0.06, still quite small. RMSE without using the model is 1.27 lbs; with the model it
drops to 1.23. So your chance of winning the pool is not substantially improved. Sorry!

Logistic Regression
In the previous examples, some of the explanatory variables were numerical and some
categorical (including boolean). But the dependent variable was always numerical.

Linear regression can be generalized to handle other kinds of dependent variables. If
the dependent variable is boolean, the generalized model is called logistic regression.
If the dependent variable is an integer count, it’s called Poisson regression.

As an example of logistic regression, let’s consider a variation on the office pool scenario.
Suppose a friend of yours is pregnant and you want to predict whether the baby is a boy
or a girl. You could use data from the NSFG to find factors that affect the “sex ratio”,
which is conventionally defined to be the probability of having a boy.
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If you encode the dependent variable numerically, for example 0 for a girl and 1 for a
boy, you could apply ordinary least squares, but there would be problems. The linear
model might be something like this:

y = β0 + β1x1 + β2x2 + ε

Where y is the dependent variable, and x1 and x2 are explanatory variables. Then we
could find the parameters that minimize the residuals.

The problem with this approach is that it produces predictions that are hard to interpret.
Given estimated parameters and values for x1 and x2, the model might predict y = 0.5,
but the only meaningful values of y are 0 and 1.

It is tempting to interpret a result like that as a probability; for example, we might say
that a respondent with particular values of x1 and x2 has a 50% chance of having a boy.
But it is also possible for this model to predict y = 1.1 or y = - 0.1, and those are not
valid probabilities.

Logistic regression avoids this problem by expressing predictions in terms of odds
rather than probabilities. If you are not familiar with odds, “odds in favor” of an event
is the ratio of the probability it will occur to the probability that it will not.

So if I think my team has a 75% chance of winning, I would say that the odds in their
favor are three to one, because the chance of winning is three times the chance of losing.

Odds and probabilities are different representations of the same information. Given a
probability, you can compute the odds like this:

    o = p / (1-p)

Given odds in favor, you can convert to probability like this:
    p = o / (o+1)

Logistic regression is based on the following model:

log o = β0 + β1x1 + β2x2 + ε

Where o is the odds in favor of a particular outcome; in the example, o would be the
odds of having a boy.

Suppose we have estimated the parameters β0, β1, and β2 (I’ll explain how in a minute).
And suppose we are given values for x1 and x2. We can compute the predicted value of
log o, and then convert to a probability:

    o = np.exp(log_o)
    p = o / (o+1)

So in the office pool scenario we could compute the predictive probability of having a
boy. But how do we estimate the parameters?
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Estimating Parameters
Unlike linear regression, logistic regression does not have a closed form solution, so it
is solved by guessing an initial solution and improving it iteratively.

The usual goal is to find the maximum-likelihood estimate (MLE), which is the set of
parameters that maximizes the likelihood of the data. For example, suppose we have the
following data:

>>> y = np.array([0, 1, 0, 1])
>>> x1 = np.array([0, 0, 0, 1])
>>> x2 = np.array([0, 1, 1, 1])

And we start with the initial guesses β0 = - 1.5, β1 = 2.8, and β2 = 1.1:

>>> beta = [-1.5, 2.8, 1.1]

Then for each row we can compute log_o:
>>> log_o = beta[0] + beta[1] * x1 + beta[2] * x2 
[-1.5 -0.4 -0.4  2.4]

And convert from log odds to probabilities:
>>> o = np.exp(log_o)
[  0.223   0.670   0.670  11.02  ]

>>> p = o / (o+1)
[ 0.182  0.401  0.401  0.916 ]

Notice that when log_o is greater than 0, o is greater than 1 and p is greater than 0.5.

The likelihood of an outcome is p when y==1 and 1-p when y==0. For example, if we
think the probability of a boy is 0.8 and the outcome is a boy, the likelihood is 0.8; if the
outcome is a girl, the likelihood is 0.2. We can compute that like this:

>>> likes = y * p + (1-y) * (1-p)
[ 0.817  0.401  0.598  0.916 ]

The overall likelihood of the data is the product of likes:
>>> like = np.prod(likes)
0.18

For these values of beta, the likelihood of the data is 0.18. The goal of logistic regression
is to find parameters that maximize this likelihood. To do that, most statistics packages
use an iterative solver like Newton’s method.
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Implementation
StatsModels provides an implementation of logistic regression called logit, named for
the function that converts from probability to log odds. To demonstrate its use, I’ll look
for variables that affect the sex ratio.

Again, I load the NSFG data and select pregnancies longer than 30 weeks:
    live, firsts, others = first.MakeFrames()
    df = live[live.prglngth>30]

logit requires the dependent variable to be binary (rather than boolean), so I create a
new column named boy, using astype(int) to convert to binary integers:

    df['boy'] = (df.babysex==1).astype(int)

Factors that have been found to affect sex ratio include parents’ age, birth order, race,
and social status. We can use logistic regression to see if these effects appear in the NSFG
data. I’ll start with the mother’s age: 

    import statsmodels.formula.api as smf

    model = smf.logit('boy ~ agepreg', data=df)
    results = model.fit()
    SummarizeResults(results)

logit takes the same arguments as ols, a formula in Patsy syntax and a DataFrame.
The result is a Logit object that represents the model. It contains attributes called endog
and exog that contain the endogenous variable, another name for the dependent vari‐
able, and the exogenous variables, another name for the explanatory variables. Since
they are NumPy arrays, it is sometimes convenient to convert them to DataFrames:

    endog = pandas.DataFrame(model.endog, columns=[model.endog_names])
    exog = pandas.DataFrame(model.exog, columns=model.exog_names)

The result of model.fit is a BinaryResults object, which is similar to the Regression‐
Results object we got from ols. Here is a summary of the results:

Intercept   0.00579   (0.953)
agepreg     0.00105   (0.783)
R^2 6.144e-06

The parameter of agepreg is positive, which suggests that older mothers are more likely
to have boys, but the p-value is 0.783, which means that the apparent effect could easily
be due to chance.

The coefficient of determination, R2, does not apply to logistic regression, but there are
several alternatives that are used as “pseudo R2 values.” These values can be useful for
comparing models. For example, here’s a model that includes several factors believed
to be associated with sex ratio:
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    formula = 'boy ~ agepreg + hpagelb + birthord + C(race)'
    model = smf.logit(formula, data=df)
    results = model.fit()

Along with mother’s age, this model includes father’s age at birth (hpagelb), birth order
(birthord), and race as a categorical variable. Here are the results:

Intercept      -0.0301     (0.772)
C(race)[T.2]   -0.0224     (0.66)
C(race)[T.3]   -0.000457   (0.996)
agepreg        -0.00267    (0.629)
hpagelb         0.0047     (0.266)
birthord        0.00501    (0.821)
R^2 0.000144

None of the estimated parameters are statistically significant. The pseudo-R2 value is a
little higher, but that could be due to chance.

Accuracy
In the office pool scenario, we are most interested in the accuracy of the model: the
number of successful predictions, compared with what we would expect by chance.

In the NSFG data, there are more boys than girls, so the baseline strategy is to guess
“boy” every time. The accuracy of this strategy is just the fraction of boys:

    actual = endog['boy']
    baseline = actual.mean()

Since actual is encoded in binary integers, the mean is the fraction of boys, which is
0.507.

Here’s how we compute the accuracy of the model:
    predict = (results.predict() >= 0.5)
    true_pos = predict * actual
    true_neg = (1 - predict) * (1 - actual)

results.predict returns a NumPy array of probabilities, which we round off to 0 or
1. Multiplying by actual yields 1 if we predict a boy and get it right, 0 otherwise. So,
true_pos indicates “true positives”.

Similarly, true_neg indicates the cases where we guess “girl” and get it right. Accuracy
is the fraction of correct guesses:

    acc = (sum(true_pos) + sum(true_neg)) / len(actual)

The result is 0.512, slightly better than the baseline, 0.507. But, you should not take this
result too seriously. We used the same data to build and test the model, so the model
may not have predictive power on new data.
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Nevertheless, let’s use the model to make a prediction for the office pool. Suppose your
friend is 35 years old and white, her husband is 39, and they are expecting their third
child:

    columns = ['agepreg', 'hpagelb', 'birthord', 'race']
    new = pandas.DataFrame([[35, 39, 3, 2]], columns=columns)
    y = results.predict(new)

To invoke results.predict for a new case, you have to construct a DataFrame with a
column for each variable in the model. The result in this case is 0.52, so you should
guess “boy.” But if the model improves your chances of winning, the difference is very 
small.

Exercises
My solution to these exercises is in chap11soln.ipynb.

Exercise 11-1.
Suppose one of your co-workers is expecting a baby and you are participating in an
office pool to predict the date of birth. Assuming that bets are placed during the 30th
week of pregnancy, what variables could you use to make the best prediction? You should
limit yourself to variables that are known before the birth, and likely to be available to
the people in the pool.

Exercise 11-2.
The Trivers-Willard hypothesis suggests that for many mammals the sex ratio depends
on “maternal condition”; that is, factors like the mother’s age, size, health, and social
status.

Some studies have shown this effect among humans, but results are mixed. In this
chapter we tested some variables related to these factors, but didn’t find any with a
statistically significant effect on sex ratio.

As an exercise, use a data mining approach to test the other variables in the pregnancy
and respondent files. Can you find any factors with a substantial effect?

Exercise 11-3.
If the quantity you want to predict is a count, you can use Poisson regression, which is
implemented in StatsModels with a function called poisson. It works the same way as
ols and logit. As an exercise, let’s use it to predict how many children a woman has
born; in the NSFG dataset, this variable is called numbabes.

Suppose you meet a woman who is 35 years old, black, and a college graduate whose
annual household income exceeds $75,000. How many children would you predict she
has born?
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Exercise 11-4.
If the quantity you want to predict is categorical, you can use multinomial logistic re‐
gression, which is implemented in StatsModels with a function called mnlogit. As an
exercise, let’s use it to guess whether a woman is married, cohabitating, widowed, di‐
vorced, separated, or never married; in the NSFG dataset, marital status is encoded in
a variable called rmarital.

Suppose you meet a woman who is 25 years old, white, and a high school graduate whose
annual household income is about $45,000. What is the probability that she is married,
cohabitating, etc?

Glossary
regression

One of several related processes for estimating parameters that fit a model to data.

dependent variables
The variables in a regression model we would like to predict. Also known as en‐
dogenous variables.

explanatory variables
The variables used to predict or explain the dependent variables. Also known as
independent, or exogenous, variables.

simple regression
A regression with only one dependent and one explanatory variable.

multiple regression
A regression with multiple explanatory variables, but only one dependent variable.

linear regression
A regression based on a linear model.

ordinary least squares
A linear regression that estimates parameters by minimizing the squared error of
the residuals.

spurious relationship
A relationship between two variables that is caused by a statistical artifact or a factor,
not included in the model, that is related to both variables.

control variable
A variable included in a regression to eliminate or “control for” a spurious rela‐
tionship.
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proxy variable
A variable that contributes information to a regression model indirectly because of
a relationship with another factor, so it acts as a proxy for that factor.

categorical variable
A variable that can have one of a discrete set of unordered values.

join
An operation that combines data from two DataFrames using a key to match up
rows in the two frames.

data mining
An approach to finding relationships between variables by testing a large number
of models.

logistic regression
A form of regression used when the dependent variable is boolean.

Poisson regression
A form of regression used when the dependent variable is a non-negative integer,
usually a count.

odds
An alternative way of representing a probability, p, as the ratio of the probability
and its complement, p / (1 - p).
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CHAPTER 12

Time Series Analysis

A time series is a sequence of measurements from a system that varies in time. One
famous example is the “hockey stick graph” that shows global average temperature over
time.

The example I work with in this chapter comes from Zachary M. Jones, a researcher in
political science who studies the black market for cannabis in the US. He collected data
from a website called Price of Weed that crowdsources market information by asking
participants to report the price, quantity, quality, and location of cannabis transactions.
The goal of his project is to investigate the effect of policy decisions, like legalization,
on markets. I find this project appealing because it is an example that uses data to address
important political questions, like drug policy.

I hope you will find this chapter interesting, but I’ll take this opportunity to reiterate
the importance of maintaining a professional attitude to data analysis. Whether and
which drugs should be illegal are important and difficult public policy questions; our
decisions should be informed by accurate data reported honestly.

The code for this chapter is in timeseries.py. For information about downloading and
working with this code, see “Using the Code” on page xi.

Importing and Cleaning
The data I downloaded from Mr. Jones’s site is in the repository for this book. The
following code reads it into a pandas DataFrame:

    transactions = pandas.read_csv('mj-clean.csv', parse_dates=[5])

parse_dates tells read_csv to interpret values in column 5 as dates and convert them
to NumPy datetime64 objects.
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The DataFrame has a row for each reported transaction and the following columns:
city

String city name

state
Two-letter state abbreviation

price
Price paid in dollars

amount
Quantity purchased in grams

quality
High, medium, or low quality, as reported by the purchaser

date
Date of report, presumed to be shortly after date of purchase

ppg
Price per gram in dollars

state.name
String state name

lat
Approximate latitude of the transaction, based on city name

lon
Approximate longitude of the transaction

Each transaction is an event in time, so we could treat this dataset as a time series. But
the events are not equally spaced in time; the number of transactions reported each day
varies from 0 to several hundred. Many methods used to analyze time series require the
measurements to be equally spaced, or at least things are simpler if they are.

In order to demonstrate these methods, I divide the dataset into groups by reported
quality, and then transform each group into an equally spaced series by computing the
mean daily price per gram.

def GroupByQualityAndDay(transactions):
    groups = transactions.groupby('quality')
    dailies = {}
    for name, group in groups:
        dailies[name] = GroupByDay(group)        

    return dailies
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groupby is a DataFrame method that returns a GroupBy object, groups; used in a for
loop, it iterates the names of the groups and the DataFrames that represent them. Since
the values of quality are low, medium, and high, we get three groups with those names.

The loop iterates through the groups and calls GroupByDay, which computes the daily
average price and returns a new DataFrame:

def GroupByDay(transactions, func=np.mean):
    grouped = transactions[['date', 'ppg']].groupby('date')
    daily = grouped.aggregate(func)

    daily['date'] = daily.index
    start = daily.date[0]
    one_year = np.timedelta64(1, 'Y')
    daily['years'] = (daily.date - start) / one_year

    return daily

The parameter, transactions, is a DataFrame that contains columns date and ppg. We
select these two columns, then group by date.

The result, grouped, is a map from each date to a DataFrame that contains prices re‐
ported on that date. aggregate is a GroupBy method that iterates through the groups
and applies a function to each column of the group; in this case there is only one column,
ppg. So the result of aggregate is a DataFrame with one row for each date and one
column, ppg.

Dates in these DataFrames are stored as NumPy datetime64 objects, which are repre‐
sented as 64-bit integers in nanoseconds. For some of the analyses coming up, it will be
convenient to work with time in more human-friendly units, like years. So GroupByDay
adds a column named date by copying the index, then adds years, which contains the
number of years since the first transaction as a floating-point number.

The resulting DataFrame has columns ppg, date, and years.

Plotting
The result from GroupByQualityAndDay is a map from each quality to a DataFrame of
daily prices. Here’s the code I use to plot the three time series:

    thinkplot.PrePlot(rows=3)
    for i, (name, daily) in enumerate(dailies.items()):
        thinkplot.SubPlot(i+1)
        title = 'price per gram ($)' if i==0 else ''
        thinkplot.Config(ylim=[0, 20], title=title)
        thinkplot.Scatter(daily.index, daily.ppg, s=10, label=name)
        if i == 2: 
            pyplot.xticks(rotation=30)
        else:
            thinkplot.Config(xticks=[])

Plotting | 147



PrePlot with rows=3 means that we are planning to make three subplots laid out in
three rows. The loop iterates through the DataFrames and creates a scatter plot for each.
It is common to plot time series with line segments between the points, but in this case
there are many data points and prices are highly variable, so adding lines would not
help.

Since the labels on the x-axis are dates, I use pyplot.xticks to rotate the “ticks” 30
degrees, making them more readable.

Figure 12-1 shows the result. One apparent feature in these plots is a gap around No‐
vember 2013. It’s possible that data collection was not active during this time, or the
data might not be available. We will consider ways to deal with this missing data later.

Visually, it looks like the price of high quality cannabis is declining during this period,
and the price of medium quality is increasing. The price of low quality might also be
increasing, but it is harder to tell, since it seems to be more volatile. Keep in mind that
quality data is reported by volunteers, so trends over time might reflect changes in how
participants apply these labels.

Linear Regression
Although there are methods specific to time series analysis, for many problems a simple
way to get started is by applying general-purpose tools like linear regression. The fol‐
lowing function takes a DataFrame of daily prices and computes a least squares fit,
returning the model and results objects from StatsModels:

def RunLinearModel(daily):
    model = smf.ols('ppg ~ years', data=daily)
    results = model.fit()
    return model, results

Then we can iterate through the qualities and fit a model to each:
    for name, daily in dailies.items():
        model, results = RunLinearModel(daily)
        print(name)
        regression.SummarizeResults(results)

Here are the results:

Quality Intercept Slope R2

High 13.450 -0.708 0.444

Medium 8.879 0.283 0.050

Low 5.362 0.568 0.030

The estimated slopes indicate that the price of high quality cannabis dropped by about
71 cents per year during the observed interval; for medium quality it increased by 28
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cents per year, and for low quality it increased by 57 cents per year. These estimates are
all statistically significant with very small p-values.

Figure 12-1. Time series of daily price per gram for high, medium, and low quality
cannabis

The R2 value for high quality cannabis is 0.44, which means that time as an explanatory
variable accounts for 44% of the observed variability in price. For the other qualities,
the change in price is smaller, and variability in prices is higher, so the values of R2 are
smaller (but still statistically significant).
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The following code plots the observed prices and the fitted values:
def PlotFittedValues(model, results, label=''):
    years = model.exog[:,1]
    values = model.endog
    thinkplot.Scatter(years, values, s=15, label=label)
    thinkplot.Plot(years, results.fittedvalues, label='model')

As we saw in “Implementation” on page 140, model contains exog and endog, NumPy
arrays with the exogenous (explanatory) and endogenous (dependent) variables.

PlotFittedValues makes a scatter plot of the data points and a line plot of the fitted
values. Figure 12-2 shows the results for high quality cannabis.

Figure 12-2. Time series of daily price per gram for high quality cannabis, and a linear
least squares fit

The model seems like a good linear fit for the data; nevertheless, linear regression is not
the most appropriate choice for this data:

• First, there is no reason to expect the long-term trend to be a line or any other simple
function. In general, prices are determined by supply and demand, both of which
vary over time in unpredictable ways.

• Second, the linear regression model gives equal weight to all data, recent and past.
For purposes of prediction, we should probably give more weight to recent data.
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• Finally, one of the assumptions of linear regression is that the residuals are uncor‐
related noise. With time series data, this assumption is often false because successive
values are correlated.

The next section presents an alternative that is more appropriate for time series data.

Moving Averages
Most time series analysis is based on the modeling assumption that the observed series
is the sum of three components:
Trend

A smooth function that captures persistent changes

Seasonality
Periodic variation, possibly including daily, weekly, monthly, or yearly cycles

Noise
Random variation around the longterm trend

Regression is one way to extract the trend from a series, as we saw in the previous section.
But if the trend is not a simple function, a good alternative is a moving average. A
moving average divides the series into overlapping regions, called windows, and com‐
putes the average of the values in each window.

One of the simplest moving averages is the rolling mean, which computes the mean of
the values in each window. For example, if the window size is 3, the rolling mean com‐
putes the mean of values 0 through 2, 1 through 3, 2 through 4, etc.

pandas provides rolling_mean, which takes a Series and a window size and returns a
new Series.

>>> series = np.arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

>>> pandas.rolling_mean(series, 3)
array([ nan,  nan,   1,   2,   3,   4,   5,   6,   7,   8])

The first two values are nan; the next value is the mean of the first three elements, 0, 1,
and 2. The next value is the mean of 1, 2, and 3. And so on.

Before we can apply rolling_mean to the cannabis data, we have to deal with missing
values. There are a few days in the observed interval with no reported transactions for
one or more quality categories, and a period in 2013 when data collection was not active.

In the DataFrames we have used so far, these dates are absent; the index skips days with
no data. For the analysis that follows, we need to represent this missing data explicitly.
We can do that by “reindexing” the DataFrame:
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    dates = pandas.date_range(daily.index.min(), daily.index.max())
    reindexed = daily.reindex(dates)

The first line computes a date range that includes every day from the beginning to the
end of the observed interval. The second line creates a new DataFrame with all of the
data from daily, but including rows for all dates, filled with nan.

Now we can plot the rolling mean like this:
    roll_mean = pandas.rolling_mean(reindexed.ppg, 30)
    thinkplot.Plot(roll_mean.index, roll_mean)

The window size is 30, so each value in roll_mean is the mean of 30 values from
reindexed.ppg.

Figure 12-3 (left) shows the result. The rolling mean seems to do a good job of smoothing
out the noise and extracting the trend. The first 29 values are nan, and wherever there’s
a missing value, it’s followed by another 29 nans. There are ways to fill in these gaps, but
they are a minor nuisance.

Figure 12-3. Daily price and a rolling mean (left) and exponentially-weighted moving
average (right)

An alternative is the exponentially-weighted moving average (EWMA), which has two
advantages. First, as the name suggests, it computes a weighted average where the most
recent value has the highest weight and the weights for previous values drop off expo‐
nentially. Second, the pandas implementation of EWMA handles missing values better.

    ewma = pandas.ewma(reindexed.ppg, span=30)
    thinkplot.Plot(ewma.index, ewma)
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The span parameter corresponds roughly to the window size of a moving average; it
controls how fast the weights drop off, so it determines the number of points that make
a non-negligible contribution to each average.

Figure 12-3 (right) shows the EWMA for the same data. It is similar to the rolling mean,
where they are both defined, but it has no missing values, which makes it easier to work
with. The values are noisy at the beginning of the time series, because they are based on
fewer data points.

Missing Values
Now that we have characterized the trend of the time series, the next step is to investigate
seasonality, which is periodic behavior. Time series data based on human behavior often
exhibits daily, weekly, monthly, or yearly cycles. In the next section I present methods
to test for seasonality, but they don’t work well with missing data, so we have to solve
that problem first.

A simple and common way to fill missing data is to use a moving average. The Series
method fillna does just what we want:

    reindexed.ppg.fillna(ewma, inplace=True)

Wherever reindexed.ppg is nan, fillna replaces it with the corresponding value from
ewma. The inplace flag tells fillna to modify the existing Series rather than create a
new one.

A drawback of this method is that it understates the noise in the series. We can solve
that problem by adding in resampled residuals:

    resid = (reindexed.ppg - ewma).dropna()
    fake_data = ewma + thinkstats2.Resample(resid, len(reindexed))
    reindexed.ppg.fillna(fake_data, inplace=True)

resid contains the residual values, not including days when ppg is nan. fake_data
contains the sum of the moving average and a random sample of residuals. Finally,
fillna replaces nan with values from fake_data.

Figure 12-4 shows the result. The filled data is visually similar to the actual values. Since
the resampled residuals are random, the results are different every time; later we’ll see
how to characterize the error created by missing values.

Serial Correlation
As prices vary from day to day, you might expect to see patterns. If the price is high on
Monday, you might expect it to be high for a few more days; and if it’s low, you might
expect it to stay low. A pattern like this is called serial correlation, because each value
is correlated with the next one in the series.
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Figure 12-4. Daily price with filled data

To compute serial correlation, we can shift the time series by an interval called a lag,
and then compute the correlation of the shifted series with the original:

def SerialCorr(series, lag=1):
    xs = series[lag:]
    ys = series.shift(lag)[lag:]
    corr = thinkstats2.Corr(xs, ys)
    return corr

After the shift, the first lag values are nan, so I use a slice to remove them before 
computing Corr.

If we apply SerialCorr to the raw price data with lag 1, we find serial correlation 0.48
for the high quality category, 0.16 for medium and 0.10 for low. In any time series with
a long-term trend, we expect to see strong serial correlations; for example, if prices are
falling, we expect to see values above the mean in the first half of the series and values
below the mean in the second half.

It is more interesting to see if the correlation persists if you subtract away the trend. For
example, we can compute the residual of the EWMA and then compute its serial cor‐
relation:

    ewma = pandas.ewma(reindexed.ppg, span=30)
    resid = reindexed.ppg - ewma
    corr = SerialCorr(resid, 1)
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With lag=1, the serial correlations for the de-trended data are -0.022 for high quality,
-0.015 for medium, and 0.036 for low. These values are small, indicating that there is
little or no one-day serial correlation in this series.

To check for weekly, monthly, and yearly seasonality, I ran the analysis again with dif‐
ferent lags. Here are the results:

Lag High Medium Low

1 -0.029 -0.014 0.034

7 0.02 -0.042 -0.0097

30 0.014 -0.0064 -0.013

365 0.045 0.015 0.033

In the next section, we’ll test whether these correlations are statistically significant (they
are not), but at this point we can tentatively conclude that there are no substantial
seasonal patterns in these series, at least not with these lags.

Autocorrelation
If you think a series might have some serial correlation, but you don’t know which lags
to test, you can test them all! The autocorrelation function is a function that maps from
lag to the serial correlation with the given lag. “Autocorrelation” is another name for
serial correlation, used more often when the lag is not 1.

StatsModels, which we used for linear regression in “StatsModels” on page 130, also
provides functions for time series analysis, including acf, which computes the auto‐
correlation function:

    import statsmodels.tsa.stattools as smtsa
    acf = smtsa.acf(filled.resid, nlags=365, unbiased=True)

acf computes serial correlations with lags from 0 through nlags. The unbiased flag
tells acf to correct the estimates for the sample size. The result is an array of correlations.
If we select daily prices for high quality, and extract correlations for lags 1, 7, 30, and
365, we can confirm that acf and SerialCorr yield approximately the same results:

>>> acf[0], acf[1], acf[7], acf[30], acf[365]
1.000, -0.029, 0.020, 0.014, 0.044

With lag=0, acf computes the correlation of the series with itself, which is always 1.

Figure 12-5 (left) shows autocorrelation functions for the three quality categories, with
nlags=40. The gray region shows the normal variability we would expect if there is no
actual autocorrelation; anything that falls outside this range is statistically significant,
with a p-value less than 5%. Since the false positive rate is 5%, and we are computing
120 correlations (40 lags for each of 3 times series), we expect to see about 6 points
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outside this region. In fact, there are 7. We conclude that there are no autocorrelations
in these series that could not be explained by chance.

Figure 12-5. Autocorrelation function for daily prices (left), and daily prices with a si‐
mulated weekly seasonality (right)

I computed the gray regions by resampling the residuals. You can see my code in
timeseries.py; the function is called SimulateAutocorrelation.

To see what the autocorrelation function looks like when there is a seasonal component,
I generated simulated data by adding a weekly cycle. Assuming that demand for cannabis
is higher on weekends, we might expect the price to be higher. To simulate this effect, I
select dates that fall on Friday or Saturday and add a random amount to the price, chosen
from a uniform distribution from $0 to $2.

def AddWeeklySeasonality(daily):
    frisat = (daily.index.dayofweek==4) | (daily.index.dayofweek==5)
    fake = daily.copy()
    fake.ppg[frisat] += np.random.uniform(0, 2, frisat.sum())
    return fake

frisat is a boolean Series, True if the day of the week is Friday or Saturday. fake is a
new DataFrame, initially a copy of daily, which we modify by adding random values
to ppg. frisat.sum() is the total number of Fridays and Saturdays, which is the number
of random values we have to generate.

Figure 12-5 (right) shows autocorrelation functions for prices with this simulated sea‐
sonality. As expected, the correlations are highest when the lag is a multiple of 7. For
high and medium quality, the new correlations are statistically significant. For low
quality they are not, because residuals in this category are large; the effect would have
to be bigger to be visible through the noise.

156 | Chapter 12: Time Series Analysis



Prediction
Time series analysis can be used to investigate, and sometimes explain, the behavior of
systems that vary in time. It can also make predictions.

The linear regressions we used in “Linear Regression” on page 148 can be used for
prediction. The RegressionResults class provides predict, which takes a DataFrame
containing the explanatory variables and returns a sequence of predictions. Here’s the
code:

def GenerateSimplePrediction(results, years):
    n = len(years)
    inter = np.ones(n)
    d = dict(Intercept=inter, years=years)
    predict_df = pandas.DataFrame(d)
    predict = results.predict(predict_df)
    return predict

results is a RegressionResults object; years is the sequence of time values we want
predictions for. The function constructs a DataFrame, passes it to predict, and returns
the result.

If all we want is a single, best-guess prediction, we’re done. But for most purposes it is
important to quantify error. In other words, we want to know how accurate the pre‐
diction is likely to be.

There are three sources of error we should take into account:
Sampling error

The prediction is based on estimated parameters, which depend on random var‐
iation in the sample. If we run the experiment again, we expect the estimates to vary.

Random variation
Even if the estimated parameters are perfect, the observed data varies randomly
around the long-term trend, and we expect this variation to continue in the future.

Modeling error
We have already seen evidence that the long-term trend is not linear, so predictions
based on a linear model will eventually fail.

Another source of error to consider is unexpected future events. Agricultural prices are
affected by weather, and all prices are affected by politics and law. As I write this, cannabis
is legal in two states and legal for medical purposes in 20 more. If more states legalize
it, the price is likely to go down. But if the federal government cracks down, the price
might go up.

Modeling errors and unexpected future events are hard to quantify. Sampling error and
random variation are easier to deal with, so we’ll do that first.
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To quantify sampling error, I use resampling, as we did in “Estimation” on page 120. As
always, the goal is to use the actual observations to simulate what would happen if we
ran the experiment again. The simulations are based on the assumption that the esti‐
mated parameters are correct, but the random residuals could have been different. Here
is a function that runs the simulations:

def SimulateResults(daily, iters=101):
    model, results = RunLinearModel(daily)
    fake = daily.copy()
    
    result_seq = []
    for i in range(iters):
        fake.ppg = results.fittedvalues + Resample(results.resid)
        _, fake_results = RunLinearModel(fake)
        result_seq.append(fake_results)

    return result_seq

daily is a DataFrame containing the observed prices; iters is the number of simula‐
tions to run.

SimulateResults uses RunLinearModel, from “Linear Regression” on page 148, to es‐
timate the slope and intercept of the observed values.

Each time through the loop, it generates a “fake” dataset by resampling the residuals and
adding them to the fitted values. Then it runs a linear model on the fake data and stores
the RegressionResults object.

The next step is to use the simulated results to generate predictions:
def GeneratePredictions(result_seq, years, add_resid=False):
    n = len(years)
    d = dict(Intercept=np.ones(n), years=years, years2=years**2)
    predict_df = pandas.DataFrame(d)
    
    predict_seq = []
    for fake_results in result_seq:
        predict = fake_results.predict(predict_df)
        if add_resid:
            predict += thinkstats2.Resample(fake_results.resid, n)
        predict_seq.append(predict)

    return predict_seq

GeneratePredictions takes the sequence of results from the previous step, as well as
years, which is a sequence of floats that specifies the interval to generate predictions
for, and add_resid, which indicates whether it should add resampled residuals to the
straight-line prediction. GeneratePredictions iterates through the sequence of Re‐
gressionResults and generates a sequence of predictions.

Finally, here’s the code that plots a 90% confidence interval for the predictions:
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def PlotPredictions(daily, years, iters=101, percent=90):
    result_seq = SimulateResults(daily, iters=iters)
    p = (100 - percent) / 2
    percents = p, 100-p

    predict_seq = GeneratePredictions(result_seq, years, True)
    low, high = thinkstats2.PercentileRows(predict_seq, percents)
    thinkplot.FillBetween(years, low, high, alpha=0.3, color='gray')

    predict_seq = GeneratePredictions(result_seq, years, False)
    low, high = thinkstats2.PercentileRows(predict_seq, percents)
    thinkplot.FillBetween(years, low, high, alpha=0.5, color='gray')

PlotPredictions calls GeneratePredictions twice: once with add_resid=True and
again with add_resid=False. It uses PercentileRows to select the 5th and 95th per‐
centiles for each year, then plots a gray region between these bounds.

Figure 12-6 shows the result. The dark gray region represents a 90% confidence interval
for the sampling error; that is, uncertainty about the estimated slope and intercept due
to sampling.

Figure 12-6. Predictions based on linear fits, showing variation due to sampling error
and prediction error

The lighter region shows a 90% confidence interval for prediction error, which is the
sum of sampling error and random variation.
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These regions quantify sampling error and random variation, but not modeling error.
In general modeling error is hard to quantify, but in this case we can address at least
one source of error, unpredictable external events.

The regression model is based on the assumption that the system is stationary; that is,
that the parameters of the model don’t change over time. Specifically, it assumes that
the slope and intercept are constant, as well as the distribution of residuals.

But looking at the moving averages in Figure 12-3, it seems like the slope changes at
least once during the observed interval, and the variance of the residuals seems bigger
in the first half than the second.

As a result, the parameters we get depend on the interval we observe. To see how much
effect this has on the predictions, we can extend SimulateResults to use intervals of
observation with different start and end dates. My implementation is in
timeseries.py.

Figure 12-7 shows the result for the medium quality category. The lightest gray area
shows a confidence interval that includes uncertainty due to sampling error, random
variation, and variation in the interval of observation.

Figure 12-7. Predictions based on linear fits, showing variation due to the interval of
observation

The model based on the entire interval has positive slope, indicating that prices were
increasing. But the most recent interval shows signs of decreasing prices, so models
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based on the most recent data have negative slope. As a result, the widest predictive
interval includes the possibility of decreasing prices over the next year.

Further Reading
Time series analysis is a big topic; this chapter has only scratched the surface. An im‐
portant tool for working with time series data is autoregression, which I did not cover
here, mostly because it turns out not to be useful for the example data I worked with.

But once you have learned the material in this chapter, you are well prepared to learn
about autoregression. One resource I recommend is Philipp Janert’s book, Data Analysis
with Open Source Tools, O’Reilly Media, 2011. His chapter on time series analysis picks
up where this one leaves off.

Exercises
My solution to these exercises is in chap12soln.py.

Exercise 12-1.
The linear model I used in this chapter has the obvious drawback that it is linear, and
there is no reason to expect prices to change linearly over time. We can add flexibility
to the model by adding a quadratic term, as we did in “Nonlinear Relationships” on
page 133.

Use a quadratic model to fit the time series of daily prices, and use the model to generate
predictions. You will have to write a version of RunLinearModel that runs that quadratic
model, but after that you should be able to reuse code in timeseries.py to generate
predictions.

Exercise 12-2.
Write a definition for a class named SerialCorrelationTest that extends
HypothesisTest from “HypothesisTest” on page 102. It should take a series and a lag
as data, compute the serial correlation of the series with the given lag, and then compute
the p-value of the observed correlation.

Use this class to test whether the serial correlation in raw price data is statistically sig‐
nificant. Also test the residuals of the linear model and (if you did the previous exercise),
the quadratic model.

Exercise 12-3.
There are several ways to extend the EWMA model to generate predictions. One of the
simplest is something like this:
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1. Compute the EWMA of the time series and use the last point as an intercept,
inter.

2. Compute the EWMA of differences between successive elements in the time series
and use the last point as a slope, slope.

3. To predict values at future times, compute inter + slope * dt, where dt is the
difference between the time of the prediction and the time of the last observation.

Use this method to generate predictions for a year after the last observation. A few hints:

• Use timeseries.FillMissing to fill in missing values before running this analysis.
That way the time between consecutive elements is consistent.

• Use Series.diff to compute differences between successive elements.
• Use reindex to extend the DataFrame index into the future.
• Use fillna to put your predicted values into the DataFrame.

Glossary
time series

A dataset where each value is associated with a timestamp, often a series of meas‐
urements and the times they were collected.

window
A sequence of consecutive values in a time series, often used to compute a moving
average.

moving average
One of several statistics intended to estimate the underlying trend in a time series
by computing averages (of some kind) for a series of overlapping windows.

rolling mean
A moving average based on the mean value in each window.

exponentially-weighted moving average (EWMA)
A moving average based on a weighted mean that gives the highest weight to the
most recent values, and exponentially decreasing weights to earlier values.

span
A parameter of EWMA that determines how quickly the weights decrease.

serial correlation
Correlation between a time series and a shifted or lagged version of itself.

lag
The size of the shift in a serial correlation or autocorrelation.
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autocorrelation
A more general term for a serial correlation with any amount of lag.

autocorrelation function
A function that maps from lag to serial correlation.

stationary
A model is stationary if the parameters and the distribution of residuals does not
change over time.
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CHAPTER 13

Survival Analysis

Survival analysis is a way to describe how long things last. It is often used to study
human lifetimes, but it also applies to “survival” of mechanical and electronic compo‐
nents, or more generally to intervals in time before an event.

If someone you know has been diagnosed with a life-threatening disease, you might
have seen a “5-year survival rate,” which is the probability of surviving five years after
diagnosis. That estimate and related statistics are the result of survival analysis.

The code in this chapter is in survival.py. For information about downloading and
working with this code, see “Using the Code” on page xi.

Survival Curves
The fundamental concept in survival analysis is the survival curve, S(t), which is a
function that maps from a duration, t, to the probability of surviving longer than t. If
you know the distribution of durations, or “lifetimes”, finding the survival curve is easy;
it’s just the complement of the CDF:

S(t) = 1 - CDF(t)

where CDF (t) is the probability of a lifetime less than or equal to t.

For example, in the NSFG dataset, we know the duration of 11189 complete pregnancies.
We can read this data and compute the CDF:

    preg = nsfg.ReadFemPreg()
    complete = preg.query('outcome in [1, 3, 4]').prglngth
    cdf = thinkstats2.Cdf(complete, label='cdf')

The outcome codes 1, 3, 4 indicate live birth, stillbirth, and miscarriage. For this
analysis I am excluding induced abortions, ectopic pregnancies, and pregnancies that
were in progress when the respondent was interviewed.
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The DataFrame method query takes a boolean expression and evaluates it for each row,
selecting the rows that yield True.

Figure 13-1 (top) shows the CDF of pregnancy length and its complement, the survival
function. To represent the survival function, I define an object that wraps a Cdf and
adapts the interface:

class SurvivalFunction(object):
    def __init__(self, cdf, label=''):
        self.cdf = cdf
        self.label = label or cdf.label

    @property
    def ts(self):
        return self.cdf.xs

    @property
    def ss(self):
        return 1 - self.cdf.ps

Figure 13-1. Cdf and survival function for pregnancy length (top), hazard function
(bottom)
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SurvivalFunction provides two properties: ts, which is the sequence of lifetimes, and
ss, which is the survival function. In Python, a “property” is a method that can be
invoked as if it were a variable.

We can instantiate a SurvivalFunction by passing the CDF of lifetimes:
    sf = SurvivalFunction(cdf)

SurvivalFunction also provides __getitem__ and Prob, which evaluate the survival
function:

# class SurvivalFunction

    def __getitem__(self, t):
        return self.Prob(t)

    def Prob(self, t):
        return 1 - self.cdf.Prob(t)

For example, sf[13] is the fraction of pregnancies that proceed past the first trimester:
>>> sf[13]
0.86022
>>> cdf[13]
0.13978

About 86% of pregnancies proceed past the first trimester; about 14% do not.

SurvivalFunction provides Render, so we can plot sf using the functions in
thinkplot:

    thinkplot.Plot(sf)

Figure 13-1 (top) shows the result. The curve is nearly flat between 13 and 26 weeks,
which shows that few pregnancies end in the second trimester. And the curve is steepest
around 39 weeks, which is the most common pregnancy length.

Hazard Function
From the survival function we can derive the hazard function; for pregnancy lengths,
the hazard function maps from a time, t, to the fraction of pregnancies that continue
until t and then end at t. To be more precise:

λ(t) =
S(t) - S(t + 1)

S(t)

The numerator is the fraction of lifetimes that end at t, which is also PMF(t).
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SurvivalFunction provides MakeHazard, which calculates the hazard function:
# class SurvivalFunction

    def MakeHazard(self, label=''):
        ss = self.ss
        lams = {}
        for i, t in enumerate(self.ts[:-1]):
            hazard = (ss[i] - ss[i+1]) / ss[i]
            lams[t] = hazard

        return HazardFunction(lams, label=label)

The HazardFunction object is a wrapper for a pandas Series:
class HazardFunction(object):

    def __init__(self, d, label=''):
        self.series = pandas.Series(d)
        self.label = label

d can be a dictionary or any other type that can initialize a Series, including another
Series. label is a string used to identify the HazardFunction when plotted.

HazardFunction provides __getitem__, so we can evaluate it like this:
>>> hf = sf.MakeHazard()
>>> hf[39]
0.49689

So of all pregnancies that proceed until week 39, about 50% end in week 39.

Figure 13-1 (bottom) shows the hazard function for pregnancy lengths. For times after
week 42, the hazard function is erratic because it is based on a small number of cases.
Other than that the shape of the curve is as expected: it is highest around 39 weeks, and
a little higher in the first trimester than in the second.

The hazard function is useful in its own right, but it is also an important tool for esti‐
mating survival curves, as we’ll see in the next section.

Estimating Survival Curves
If someone gives you the CDF of lifetimes, it is easy to compute the survival and hazard
functions. But in many real-world scenarios, we can’t measure the distribution of life‐
times directly. We have to infer it.

For example, suppose you are following a group of patients to see how long they survive
after diagnosis. Not all patients are diagnosed on the same day, so at any point in time,
some patients have survived longer than others. If some patients have died, we know
their survival times. For patients who are still alive, we don’t know survival times, but
we have a lower bound.
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If we wait until all patients are dead, we can compute the survival curve, but if we are
evaluating the effectiveness of a new treatment, we can’t wait that long! We need a way
to estimate survival curves using incomplete information.

As a more cheerful example, I will use NSFG data to quantify how long respondents
“survive” until they get married for the first time. The range of respondents’ ages is 14
to 44 years, so the dataset provides a snapshot of women at different stages in their lives.

For women who have been married, the dataset includes the date of their first marriage
and their age at the time. For women who have not been married, we know their age
when interviewed, but have no way of knowing when or if they will get married.

Since we know the age at first marriage for some women, it might be tempting to exclude
the rest and compute the CDF of the known data. That is a bad idea. The result would
be doubly misleading: (1) older women would be overrepresented, because they are
more likely to be married when interviewed, and (2) married women would be over‐
represented! In fact, this analysis would lead to the conclusion that all women get mar‐
ried, which is obviously incorrect.

Kaplan-Meier Estimation
In this example it is not only desirable but necessary to include observations of unmar‐
ried women, which brings us to one of the central algorithms in survival analysis,
Kaplan-Meier estimation.

The general idea is that we can use the data to estimate the hazard function, then convert
the hazard function to a survival function. To estimate the hazard function, we consider,
for each age, (1) the number of women who got married at that age and (2) the number
of women “at risk” of getting married, which includes all women who were not married
at an earlier age.

Here’s the code:
def EstimateHazardFunction(complete, ongoing, label=''):

    n = len(complete)
    hist_complete = thinkstats2.Hist(complete)
    sf_complete = SurvivalFunction(thinkstats2.Cdf(—complete))

    m = len(ongoing)
    sf_ongoing = SurvivalFunction(thinkstats2.Cdf(ongoing))

    lams = {}
    for t, ended in sorted(hist_complete.Items()):
        at_risk = ended + n * sf_complete[t] + m * sf_ongoing[t]
        lams[t] = ended / at_risk

    return HazardFunction(lams, label=label)
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complete is the set of complete observations; in this case, the ages when respondents
got married. ongoing is the set of incomplete observations; that is, the ages of unmarried
women when they were interviewed.

First, we precompute hist_complete, which is the Hist of ages when women were
married, sf_complete, the survival function for married women, and sf_ongoing, the
survival function for unmarried women.

The loop iterates through the ages when respondents got married. For each value of t,
we have ended, which is the number of women who got married at age t. Then we
compute the number of women “at risk”, which is the sum of:

• ended, the number of respondents married at age t,
• n * sf_complete[t], the number of respondents married after age t.
• m * sf_ongoing[t], the number of unmarried respondents interviewed after t,

and therefore known not to have been married at or before t.

The estimated value of the hazard function at t is the ratio of ended to at_risk.

lams is a dictionary that maps from t to λ(t). The result is a HazardFunction object.

The Marriage Curve
To test this function, we have to do some data cleaning and transformation. The NSFG
variables we need are:
cmbirth

The respondent’s date of birth, known for all respondents.

cmintvw

The date the respondent was interviewed, known for all respondents.

cmmarrhx

The date the respondent was first married, if applicable and known.

evrmarry

This is 1 if the respondent had been married prior to the date of interview; otherwise,
0.

The first three variables are encoded in “century-months”; that is, the integer number
of months since December 1899. So century-month 1 is January 1900.

First, we read the respondent file and replace invalid values of cmmarrhx:
    resp = chap01soln.ReadFemResp()
    resp.cmmarrhx.replace([9997, 9998, 9999], np.nan, inplace=True)

Then we compute each respondent’s age when married and age when interviewed:
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    resp['agemarry'] = (resp.cmmarrhx - resp.cmbirth) / 12.0
    resp['age'] = (resp.cmintvw - resp.cmbirth) / 12.0

Next we extract complete, which is the age at marriage for women who have been
married, and ongoing, which is the age at interview for women who have not:

    complete = resp[resp.evrmarry==1].agemarry
    ongoing = resp[resp.evrmarry==0].age

Finally we compute the hazard function.
    hf = EstimateHazardFunction(complete, ongoing)

Figure 13-2 (top) shows the estimated hazard function; it is low in the teens, higher in
the 20s, and declining in the 30s. It increases again in the 40s, but that is an artifact of
the estimation process; as the number of respondents “at risk” decreases, a small number
of women getting married yields a large estimated hazard. The survival function will
smooth out this noise.

Estimating the Survival Function
Once we have the hazard function, we can estimate the survival function. The chance
of surviving past time t is the chance of surviving all times up through t, which is the
cumulative product of the complementary hazard function:

1 - λ(0) 1 - λ(1) ... 1 - λ(t)
The HazardFunction class provides MakeSurvival, which computes this product:

# class HazardFunction:

    def MakeSurvival(self):
        ts = self.series.index
        ss = (1 - self.series).cumprod()
        cdf = thinkstats2.Cdf(ts, 1-ss)
        sf = SurvivalFunction(cdf)
        return sf

ts is the sequence of times where the hazard function is estimated. ss is the cumulative
product of the complementary hazard function, so it is the survival function.

Because of the way SurvivalFunction is implemented, we have to compute the com‐
plement of ss, make a Cdf, and then instantiate a SurvivalFunction object.

Figure 13-2 (bottom) shows the result. The survival curve is steepest between 25 and
35, when most women get married. Between 35 and 45, the curve is nearly flat, indicating
that women who do not marry before age 35 are unlikely to get married.
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Figure 13-2. Hazard function for age at first marriage (top) and survival function
(bottom)

A curve like this was the basis of a famous magazine article in 1986; Newsweek reported
that a 40-year old unmarried woman was “more likely to be killed by a terrorist” than
get married. These statistics were widely reported and became part of popular culture,
but they were wrong then (because they were based on faulty analysis) and turned out
to be even more wrong (because of cultural changes that were already in progress and
continued). In 2006, Newsweek ran an another article admitting that they were wrong.

I encourage you to read more about this article, the statistics it was based on, and the
reaction. It should remind you of the ethical obligation to perform statistical analysis
with care, interpret the results with appropriate skepticism, and present them to the
public accurately and honestly.

Confidence Intervals
Kaplan-Meier analysis yields a single estimate of the survival curve, but it is also im‐
portant to quantify the uncertainty of the estimate. As usual, there are three possible
sources of error: measurement error, sampling error, and modeling error.
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In this example, measurement error is probably small. People generally know when they
were born, whether they’ve been married, and when. And they can be expected to report
this information accurately.

We can quantify sampling error by resampling. Here’s the code:
def ResampleSurvival(resp, iters=101):
    low, high = resp.agemarry.min(), resp.agemarry.max()
    ts = np.arange(low, high, 1/12.0)

    ss_seq = []
    for i in range(iters):
        sample = thinkstats2.ResampleRowsWeighted(resp)
        hf, sf = EstimateSurvival(sample)
        ss_seq.append(sf.Probs(ts))

    low, high = thinkstats2.PercentileRows(ss_seq, [5, 95])
    thinkplot.FillBetween(ts, low, high)

ResampleSurvival takes resp, a DataFrame of respondents, and iters, the number of
times to resample. It computes ts, which is the sequence of ages where we will evaluate
the survival functions.

Inside the loop, ResampleSurvival:

• Resamples the respondents using ResampleRowsWeighted, which we saw in
“Weighted Resampling” on page 126.

• Calls EstimateSurvival, which uses the process in the previous sections to estimate
the hazard and survival curves, and

• Evaluates the survival curve at each age in ts.

ss_seq is a sequence of evaluated survival curves. PercentileRows takes this sequence
and computes the 5th and 95th percentiles, returning a 90% confidence interval for the
survival curve.

Figure 13-3 shows the result along with the survival function we estimated in the pre‐
vious section. The confidence interval takes into account the sampling weights, unlike
the estimated curve. The discrepancy between them indicates that the sampling weights
have a substantial effect on the estimate—we will have to keep that in mind.

Cohort Effects
One of the challenges of survival analysis is that different parts of the estimated curve
are based on different groups of respondents. The part of the curve at time t is based
on respondents whose age was at least t when they were interviewed. So the leftmost
part of the curve includes data from all respondents, but the rightmost part includes
only the oldest respondents.
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Figure 13-3. Survival function for age at first marriage and a 90% confidence interval
based on weighted resampling.

If the relevant characteristics of the respondents are not changing over time, that’s fine,
but in this case it seems likely that marriage patterns are different for women born in
different generations. We can investigate this effect by grouping respondents according
to their decade of birth. Groups like this, defined by date of birth or similar events, are
called cohorts, and differences between the groups are called cohort effects.

To investigate cohort effects in the NSFG marriage data, I gathered the Cycle 6 data from
2002 used throughout this book; the Cycle 7 data from 2006–2010 used in “Replica‐
tion” on page 113; and the Cycle 5 data from 1995. In total these datasets include 30,769
respondents.

    resp5 = ReadFemResp1995()
    resp6 = ReadFemResp2002()
    resp7 = ReadFemResp2010()
    resps = [resp5, resp6, resp7]

For each DataFrame, resp, I use cmbirth to compute the decade of birth for each re‐
spondent:

    month0 = pandas.to_datetime('1899-12-15')
    dates = [month0 + pandas.DateOffset(months=cm) 
             for cm in resp.cmbirth]
    resp['decade'] = (pandas.DatetimeIndex(dates).year - 1900) // 10

cmbirth is encoded as the integer number of months since December 1899; month0
represents that date as a Timestamp object. For each birth date, we instantiate a
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DateOffset that contains the century-month and add it to month0; the result is a se‐
quence of Timestamps, which is converted to a DateTimeIndex. Finally, we extract year
and compute decades.

To take into account the sampling weights, and also to show variability due to sampling
error, I resample the data, group respondents by decade, and plot survival curves:

    for i in range(iters):
        samples = [thinkstats2.ResampleRowsWeighted(resp) 
                   for resp in resps]
        sample = pandas.concat(samples, ignore_index=True)
        groups = sample.groupby('decade')

        EstimateSurvivalByDecade(groups, alpha=0.2)

Data from the three NSFG cycles use different sampling weights, so I resample them
separately and then use concat to merge them into a single DataFrame. The parameter
ignore_index tells concat not to match up respondents by index; instead it creates a
new index from 0 to 30768.

EstimateSurvivalByDecade plots survival curves for each cohort:
def EstimateSurvivalByDecade(resp):
    for name, group in groups:
        hf, sf = EstimateSurvival(group)
        thinkplot.Plot(sf)

Figure 13-4 shows the results.

Figure 13-4. Survival functions for respondents born during different decades.
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Several patterns are visible:

• Women born in the 1950s married earliest, with successive cohorts marrying later
and later, at least until age 30 or so.

• Women born in the 1960s follow a surprising pattern. Prior to age 25, they were
marrying at slower rates than their predecessors. After age 25, they were marrying
faster. By age 32, they had overtaken the 50s cohort, and at age 44 they are sub‐
stantially more likely to have married.
Women born in the 60s turned 25 between 1985 and 1995. Remembering that the
Newsweek article I mentioned was published in 1986, it is tempting to imagine that
the article triggered a marriage boom. That explanation would be too pat, but it is
possible that the article and the reaction to it were indicative of a mood that affected
the behavior of this cohort.

• The pattern of the 1970s cohort is similar. They are less likely than their predecessors
to be married before age 25, but at age 35 they have caught up with both of the
previous cohorts.

• Women born in the 1980s are even less likely to marry before age 25. What happens
after that is not clear; for more data, we have to wait for the next cycle of the NSFG.

In the meantime we can make some predictions.

Extrapolation
The survival curve for the ’70s cohort ends at about age 38; for the ’80s cohort it ends
at age 28, and for the ’90s cohort we hardly have any data at all.

We can extrapolate these curves by “borrowing” data from the previous cohort. Haz‐
ardFunction provides a method, Extend, that copies the tail from another longer Haz‐
ardFunction:

# class HazardFunction

    def Extend(self, other):
        last = self.series.index[-1]
        more = other.series[other.series.index > last]
        self.series = pandas.concat([self.series, more])

As we saw in “Hazard Function” on page 167, the HazardFunction contains a Series that
maps from t to λ(t). Extend finds last, which is the last index in self.series, selects
values from other that come later than last, and appends them onto self.series.

Now we can extend the HazardFunction for each cohort, using values from the prede‐
cessor:
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def PlotPredictionsByDecade(groups):
    hfs = []
    for name, group in groups:
        hf, sf = EstimateSurvival(group)
        hfs.append(hf)

    thinkplot.PrePlot(len(hfs))
    for i, hf in enumerate(hfs):
        if i > 0:
            hf.Extend(hfs[i-1])
        sf = hf.MakeSurvival()
        thinkplot.Plot(sf)

groups is a GroupBy object with respondents grouped by decade of birth. The first loop
computes the HazardFunction for each group.

The second loop extends each HazardFunction with values from its predecessor, which
might contain values from the previous group, and so on. Then it converts each Haz‐
ardFunction to a SurvivalFunction and plots it.

Figure 13-5 shows the results; I’ve removed the 50s cohort to make the predictions more
visible. These results suggest that by age 40, the most recent cohorts will converge with
the 60s cohort, with fewer than 20% never married.

Figure 13-5. Survival functions for respondents born during different decades, with pre‐
dictions for the later cohorts.
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Expected Remaining Lifetime
Given a survival curve, we can compute the expected remaining lifetime as a function
of current age. For example, given the survival function of pregnancy length from
“Survival Curves” on page 165, we can compute the expected time until delivery.

The first step is to extract the PMF of lifetimes. SurvivalFunction provides a method
that does that:

# class SurvivalFunction

    def MakePmf(self, filler=None):
        pmf = thinkstats2.Pmf()
        for val, prob in self.cdf.Items():
            pmf.Set(val, prob)

        cutoff = self.cdf.ps[-1]
        if filler is not None:
            pmf[filler] = 1-cutoff

        return pmf

Remember that the SurvivalFunction contains the Cdf of lifetimes. The loop copies the
values and probabilities from the Cdf into a Pmf.

cutoff is the highest probability in the Cdf, which is 1 if the Cdf is complete, and
otherwise less than 1. If the Cdf is incomplete, we plug in the provided value, filler,
to cap it off.

The Cdf of pregnancy lengths is complete, so we don’t have to worry about this detail
yet.

The next step is to compute the expected remaining lifetime, where “expected” means
average. SurvivalFunction provides a method that does that, too:

# class SurvivalFunction

    def RemainingLifetime(self, filler=None, func=thinkstats2.Pmf.Mean):
        pmf = self.MakePmf(filler=filler)
        d = {}
        for t in sorted(pmf.Values())[:-1]:
            pmf[t] = 0
            pmf.Normalize()
            d[t] = func(pmf) - t

        return pandas.Series(d)

RemainingLifetime takes filler, which is passed along to MakePmf, and func which
is the function used to summarize the distribution of remaining lifetimes.
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pmf is the Pmf of lifetimes extracted from the SurvivalFunction. d is a dictionary that
contains the results, a map from current age, t, to expected remaining lifetime.

The loop iterates through the values in the Pmf. For each value of t it computes the
conditional distribution of lifetimes, given that the lifetime exceeds t. It does that by
removing values from the Pmf one at a time and renormalizing the remaining values.

Then it uses func to summarize the conditional distribution. In this example the result
is the mean pregnancy length, given that the length exceeds t. By subtracting t we get
the mean remaining pregnancy length.

Figure 13-6 (left) shows the expected remaining pregnancy length as a function of the
current duration. For example, during Week 0, the expected remaining duration is about
34 weeks. That’s less than full term (39 weeks) because terminations of pregnancy in the
first trimester bring the average down.

Figure 13-6. Expected remaining lifetime for pregnancy length (left) and years until
first marriage (right)

The curve drops slowly during the first trimester. After 13 weeks, the expected remain‐
ing lifetime has dropped by only 9 weeks, to 25. After that the curve drops faster, by
about a week per week.

Between Week 37 and 42, the curve levels off between 1 and 2 weeks. At any time during
this period, the expected remaining lifetime is the same; with each week that passes, the
destination gets no closer. Processes with this property are called memoryless because
the past has no effect on the predictions. This behavior is the mathematical basis of the
infuriating mantra of obstetrics nurses: “any day now.”
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Figure 13-6 (right) shows the median remaining time until first marriage, as a function
of age. For an 11 year-old girl, the median time until first marriage is about 14 years.
The curve decreases until age 22 when the median remaining time is about 7 years. After
that it increases again: by age 30 it is back where it started, at 14 years.

Based on this data, young women have decreasing remaining “lifetimes”. Mechanical
components with this property are called NBUE for “new better than used in expecta‐
tion,” meaning that a new part is expected to last longer.

Women older than 22 have increasing remaining time until first marriage. Components
with this property are called UBNE for “used better than new in expectation.” That is,
the older the part, the longer it is expected to last. Newborns and cancer patients are
also UBNE; their life expectancy increases the longer they live.

For this example I computed median, rather than mean, because the Cdf is incomplete;
the survival curve projects that about 20% of respondents will not marry before age 44.
The age of first marriage for these women is unknown, and might be non-existent, so
we can’t compute a mean.

I deal with these unknown values by replacing them with np.inf, a special value that
represents infinity. That makes the mean infinity for all ages, but the median is well-
defined as long as more than 50% of the remaining lifetimes are finite, which is true
until age 30. After that it is hard to define a meaningful expected remaining lifetime.

Here’s the code that computes and plots these functions:
    rem_life1 = sf1.RemainingLifetime()
    thinkplot.Plot(rem_life1)

    func = lambda pmf: pmf.Percentile(50)
    rem_life2 = sf2.RemainingLifetime(filler=np.inf, func=func)
    thinkplot.Plot(rem_life2)

sf1 is the survival function for pregnancy length; in this case we can use the default
values for RemainingLifetime.

sf2 is the survival function for age at first marriage; func is a function that takes a Pmf
and computes its median (50th percentile).

Exercises
My solution to this exercise is in chap13soln.py.

Exercise 13-1.
In NSFG Cycles 6 and 7, the variable cmdivorcx contains the date of divorce for the
respondent’s first marriage, if applicable, encoded in century-months.
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Compute the duration of marriages that have ended in divorce, and the duration, so far,
of marriages that are ongoing. Estimate the hazard and survival function for the dura‐
tion of marriage.

Use resampling to take into account sampling weights, and plot data from several re‐
samples to visualize sampling error.

Consider dividing the respondents into groups by decade of birth, and possibly by age
at first marriage.

Glossary
survival analysis

A set of methods for describing and predicting lifetimes, or more generally time
until an event occurs.

survival curve
A function that maps from a time, t, to the probability of surviving past t.

hazard function
A function that maps from t to the fraction of people alive until t who die at t.

Kaplan-Meier estimation
An algorithm for estimating hazard and survival functions.

cohort
a group of subjects defined by an event, like date of birth, in a particular interval of
time.

cohort effect
a difference between cohorts.

NBUE
A property of expected remaining lifetime, “New better than used in expectation.”

UBNE
A property of expected remaining lifetime, “Used better than new in expectation.”
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CHAPTER 14

Analytic Methods

This book has focused on computational methods like simulation and resampling, but
some of the problems we solved have analytic solutions that can be much faster.

I present some of these methods in this chapter, and explain how they work. At the end
of the chapter, I make suggestions for integrating computational and analytic methods
for exploratory data analysis.

The code in this chapter is in normal.py. For information about downloading and
working with this code, see “Using the Code” on page xi.

Normal Distributions
As a motivating example, let’s review the problem from “Sampling Distributions” on
page 94:

Suppose you are a scientist studying gorillas in a wildlife preserve. Having weighed 9
gorillas, you find sample mean x̄ = 90 kg and sample standard deviation, S = 7.5 kg. If
you use x̄ to estimate the population mean, what is the standard error of the estimate?

To answer that question, we need the sampling distribution of x̄. In “Sampling Distri‐
butions” on page 94 we approximated this distribution by simulating the experiment
(weighing 9 gorillas), computing x̄ for each simulated experiment, and accumulating
the distribution of estimates.

The result is an approximation of the sampling distribution. Then we use the sampling
distribution to compute standard errors and confidence intervals:

• The standard deviation of the sampling distribution is the standard error of the
estimate; in the example, it is about 2.5 kg.

• The interval between the 5th and 95th percentile of the sampling distribution is a
90% confidence interval. If we run the experiment many times, we expect the esti‐
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mate to fall in this interval 90% of the time. In the example, the 90% CI is (86, 94)
kg.

Now we’ll do the same calculation analytically. We take advantage of the fact that the
weights of adult female gorillas are roughly normally distributed. Normal distributions
have two properties that make them amenable for analysis: they are “closed” under linear
transformation and addition. To explain what that means, I need some notation.

If the distribution of a quantity, X, is normal with parameters μ and σ, you can write

X ∼ � (μ, σ 2)
where the symbol ∼ means “is distributed” and the script letter � stands for “normal.”

A linear transformation of X is something like X ' = aX + b, where a and b are real
numbers.A family of distributions is closed under linear transformation if X ' is in the
same family as X. The normal distribution has this property; if X ∼ � (μ, σ 2),

X ' ∼ � (aμ + b, a 2σ 2) (1)

Normal distributions are also closed under addition. If Z = X + Y  and
X ∼ � (μX , σX

2 ) and Y ∼ � (μY , σY
2) then

Z ∼ � (μX + μY , σX
2 + σY

2) (2)

In the special case Z = X + X , we have

Z ∼ � (2μX , 2σX
2)

and in general if we draw n values of X and add them up, we have

Z ∼ � (nμX , nσX
2) (3)

Sampling Distributions
Now we have everything we need to compute the sampling distribution of x̄. Remember
that we compute x̄ by weighing n gorillas, adding up the total weight, and dividing by n.

Assume that the distribution of gorilla weights, X, is approximately normal:

X ∼ � (μ, σ 2)
If we weigh n gorillas, the total weight, Y, is distributed

Y ∼ � (nμ, nσ 2)
using Equation 3. And if we divide by n, the sample mean, Z, is distributed

Z ∼ � (μ, σ 2 / n)
using Equation 1 with a = 1 / n.
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The distribution of Z is the sampling distribution of x̄. The mean of Z is μ, which shows
that x̄ is an unbiased estimate of μ. The variance of the sampling distribution is σ 2 / n.

So the standard deviation of the sampling distribution, which is the standard error of
the estimate, is σ / n. In the example, σ is 7.5 kg and n is 9, so the standard error is 2.5
kg. That result is consistent with what we estimated by simulation, but much faster to
compute!

We can also use the sampling distribution to compute confidence intervals. A 90%
confidence interval for x̄ is the interval between the 5th and 95th percentiles of Z. Since
Z is normally distributed, we can compute percentiles by evaluating the inverse CDF.

There is no closed form for the CDF of the normal distribution or its inverse, but there
are fast numerical methods and they are implemented in SciPy, as we saw in “The Nor‐
mal Distribution” on page 52. thinkstats2 provides a wrapper function that makes the
SciPy function a little easier to use:

def EvalNormalCdfInverse(p, mu=0, sigma=1):
    return scipy.stats.norm.ppf(p, loc=mu, scale=sigma)

Given a probability, p, it returns the corresponding percentile from a normal distribu‐
tion with parameters mu and sigma. For the 90% confidence interval of x̄, we compute
the 5th and 95th percentiles like this:

>>> thinkstats2.EvalNormalCdfInverse(0.05, mu=90, sigma=2.5)
85.888

>>> thinkstats2.EvalNormalCdfInverse(0.95, mu=90, sigma=2.5)
94.112

So if we run the experiment many times, we expect the estimate, x̄, to fall in the range
(85.9, 94.1) about 90% of the time. Again, this is consistent with the result we got by
simulation.

Representing Normal Distributions
To make these calculations easier, I have defined a class called Normal that represents a
normal distribution and encodes the equations in the previous sections. Here’s what it
looks like:

class Normal(object):

    def __init__(self, mu, sigma2):
        self.mu = mu
        self.sigma2 = sigma2

    def __str__(self):
        return 'N(%g, %g)' % (self.mu, self.sigma2)

So we can instantiate a Normal that represents the distribution of gorilla weights:

Representing Normal Distributions | 185



>>> dist = Normal(90, 7.5**2)
>>> dist
N(90, 56.25)

Normal provides Sum, which takes a sample size, n, and returns the distribution of the
sum of n values, using Equation 3:

    def Sum(self, n):
        return Normal(n * self.mu, n * self.sigma2)

Normal also knows how to multiply and divide using Equation 1:
    def __mul__(self, factor):
        return Normal(factor * self.mu, factor**2 * self.sigma2)

    def __div__(self, divisor):
        return 1 / divisor * self

So we can compute the sampling distribution of the mean with sample size 9:
>>> dist_xbar = dist.Sum(9) / 9
>>> dist_xbar.sigma
2.5

The standard deviation of the sampling distribution is 2.5 kg, as we saw in the previous
section. Finally, Normal provides Percentile, which we can use to compute a confi‐
dence interval:

>>> dist_xbar.Percentile(5), dist_xbar.Percentile(95)
85.888 94.113

And that’s the same answer we got before. We’ll use the Normal class again later, but
before we go on, we need one more bit of analysis.

Central Limit Theorem
As we saw in the previous sections, if we add values drawn from normal distributions,
the distribution of the sum is normal. Most other distributions don’t have this property;
if we add values drawn from other distributions, the sum does not generally have an
analytic distribution.

But if we add up n values from almost any distribution, the distribution of the sum
converges to normal as n increases.

More specifically, if the distribution of the values has mean and standard deviation μ
and σ, the distribution of the sum is approximately �(nμ, nσ 2).

This result is the Central Limit Theorem (CLT). It is one of the most useful tools for
statistical analysis, but it comes with caveats:

• The values have to be drawn independently. If they are correlated, the CLT doesn’t
apply (although this is seldom a problem in practice).
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• The values have to come from the same distribution (although this requirement
can be relaxed).

• The values have to be drawn from a distribution with finite mean and variance. So
most Pareto distributions are out.

• The rate of convergence depends on the skewness of the distribution. Sums from
an exponential distribution converge for small n. Sums from a lognormal distri‐
bution require larger sizes.

The Central Limit Theorem explains the prevalence of normal distributions in the nat‐
ural world. Many characteristics of living things are affected by genetic and environ‐
mental factors whose effect is additive. The characteristics we measure are the sum of
a large number of small effects, so their distribution tends to be normal.

Testing the CLT
To see how the Central Limit Theorem works, and when it doesn’t, let’s try some ex‐
periments. First, we’ll try an exponential distribution:

def MakeExpoSamples(beta=2.0, iters=1000):
    samples = []
    for n in [1, 10, 100]:
        sample = [np.sum(np.random.exponential(beta, n))
                  for _ in range(iters)]
        samples.append((n, sample))
    return samples

MakeExpoSamples generates samples of sums of exponential values (I use “exponential
values” as shorthand for “values from an exponential distribution”). beta is the param‐
eter of the distribution; iters is the number of sums to generate.

To explain this function, I’ll start from the inside and work my way out. Each time we
call np.random.exponential, we get a sequence of n exponential values and compute
its sum. sample is a list of these sums, with length iters.

It is easy to get n and iters confused: n is the number of terms in each sum; iters is
the number of sums we compute in order to characterize the distribution of sums.

The return value is a list of (n, sample) pairs. For each pair, we make a normal prob‐
ability plot:

def NormalPlotSamples(samples, plot=1, ylabel=''):
    for n, sample in samples:
        thinkplot.SubPlot(plot)
        thinkstats2.NormalProbabilityPlot(sample)

        thinkplot.Config(title='n=%d' % n, ylabel=ylabel)
        plot += 1
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NormalPlotSamples takes the list of pairs from MakeExpoSamples and generates a row
of normal probability plots.

Figure 14-1 (top row) shows the results. With n=1, the distribution of the sum is still
exponential, so the normal probability plot is not a straight line. But with n=10 the
distribution of the sum is approximately normal, and with n=100 it is all but indistin‐
guishable from normal.

Figure 14-1 (bottom row) shows similar results for a lognormal distribution. Lognormal
distributions are generally more skewed than exponential distributions, so the distri‐
bution of sums takes longer to converge. With n=10 the normal probability plot is no‐
where near straight, but with n=100 it is approximately normal.

Figure 14-1. Distributions of sums of exponential values (top row) and lognormal val‐
ues (bottom row)

Pareto distributions are even more skewed than lognormal. Depending on the param‐
eters, many Pareto distributions do not have finite mean and variance. As a result, the
Central Limit Theorem does not apply. Figure 14-2 (top row) shows distributions of
sums of Pareto values. Even with n=100 the normal probability plot is far from straight.

I also mentioned that CLT does not apply if the values are correlated. To test that, I
generate correlated values from an exponential distribution. The algorithm for gener‐
ating correlated values is (1) generate correlated normal values, (2) use the normal CDF
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Figure 14-2. Distributions of sums of Pareto values (top row) and correlated exponen‐
tial values (bottom row)

to transform the values to uniform, and (3) use the inverse exponential CDF to trans‐
form the uniform values to exponential.

GenerateCorrelated returns an iterator of n normal values with serial correlation
rho:

def GenerateCorrelated(rho, n):
    x = random.gauss(0, 1)
    yield x

    sigma = math.sqrt(1 - rho**2)
    for _ in range(n-1):
        x = random.gauss(x*rho, sigma)
        yield x

The first value is a standard normal value. Each subsequent value depends on its pred‐
ecessor: if the previous value is x, the mean of the next value is x*rho, with variance
1-rho**2. Note that random.gauss takes the standard deviation as the second argument,
not variance.

GenerateExpoCorrelated takes the resulting sequence and transforms it to exponen‐
tial:
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def GenerateExpoCorrelated(rho, n):
    normal = list(GenerateCorrelated(rho, n))
    uniform = scipy.stats.norm.cdf(normal)
    expo = scipy.stats.expon.ppf(uniform)
    return expo

normal is a list of correlated normal values. uniform is a sequence of uniform values
between 0 and 1. expo is a correlated sequence of exponential values. ppf stands for
“percent point function,” which is another name for the inverse CDF.

Figure 14-2 (bottom row) shows distributions of sums of correlated exponential values
with rho=0.9. The correlation slows the rate of convergence; nevertheless, with n=100
the normal probability plot is nearly straight. So even though CLT does not strictly apply
when the values are correlated, moderate correlations are seldom a problem in practice.

These experiments are meant to show how the Central Limit Theorem works, and what
happens when it doesn’t. Now let’s see how we can use it.

Applying the CLT
To see why the Central Limit Theorem is useful, let’s get back to the example in “Testing
a Difference in Means” on page 104: testing the apparent difference in mean pregnancy
length for first babies and others. As we’ve seen, the apparent difference is about 0.078
weeks:

>>> live, firsts, others = first.MakeFrames()
>>> delta = firsts.prglngth.mean() - others.prglngth.mean()
0.078

Remember the logic of hypothesis testing: we compute a p-value, which is the probability
of the observed difference under the null hypothesis; if it is small, we conclude that the
observed difference is unlikely to be due to chance.

In this example, the null hypothesis is that the distribution of pregnancy lengths is the
same for first babies and others. So we can compute the sampling distribution of the
mean like this:

    dist1 = SamplingDistMean(live.prglngth, len(firsts))
    dist2 = SamplingDistMean(live.prglngth, len(others))

Both sampling distributions are based on the same population, which is the pool of all
live births. SamplingDistMean takes this sequence of values and the sample size, and
returns a Normal object representing the sampling distribution:

def SamplingDistMean(data, n):
    mean, var = data.mean(), data.var()
    dist = Normal(mean, var)
    return dist.Sum(n) / n
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mean and var are the mean and variance of data. We approximate the distribution of
the data with a normal distribution, dist.

In this example, the data are not normally distributed, so this approximation is not very
good. But then we compute dist.Sum(n) / n, which is the sampling distribution of
the mean of n values. Even if the data are not normally distributed, the sampling dis‐
tribution of the mean is, by the Central Limit Theorem.

Next, we compute the sampling distribution of the difference in the means. The Normal
class knows how to perform subtraction using Equation 2:

    def __sub__(self, other):
        return Normal(self.mu - other.mu,
                      self.sigma2 + other.sigma2)

So we can compute the sampling distribution of the difference like this:
>>> dist = dist1 - dist2
N(0, 0.0032)

The mean is 0, which makes sense because we expect two samples from the same dis‐
tribution to have the same mean, on average. The variance of the sampling distribution
is 0.0032.

Normal provides Prob, which evaluates the normal CDF. We can use Prob to compute
the probability of a difference as large as delta under the null hypothesis:

>>> 1 - dist.Prob(delta)
0.084

Which means that the p-value for a one-sided test is 0.84. For a two-sided test we would
also compute

>>> dist.Prob(-delta)
0.084

Which is the same because the normal distribution is symmetric. The sum of the tails
is 0.168, which is consistent with the estimate in “Testing a Difference in Means” on
page 104, which was 0.17.

Correlation Test
In “Testing a Correlation” on page 107 we used a permutation test for the correlation
between birth weight and mother’s age, and found that it is statistically significant, with
p-value less than 0.001.

Now we can do the same thing analytically. The method is based on this mathematical
result: given two variables that are normally distributed and uncorrelated, if we generate
a sample with size n, compute Pearson’s correlation, r, and then compute the trans‐
formed correlation:
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t = r
n - 2
1 - r 2

the distribution of t is Student’s t-distribution with parameter n - 2. The t-distribution
is an analytic distribution; the CDF can be computed efficiently using gamma functions.

We can use this result to compute the sampling distribution of correlation under the
null hypothesis; that is, if we generate uncorrelated sequences of normal values, what is
the distribution of their correlation? StudentCdf takes the sample size, n, and returns
the sampling distribution of correlation:

def StudentCdf(n):
    ts = np.linspace(-3, 3, 101)
    ps = scipy.stats.t.cdf(ts, df=n-2)
    rs = ts / np.sqrt(n - 2 + ts**2)
    return thinkstats2.Cdf(rs, ps)

ts is a NumPy array of values for t, the transformed correlation. ps contains the corre‐
sponding probabilities, computed using the CDF of the Student’s t-distribution imple‐
mented in SciPy. The parameter of the t-distribution, df, stands for “degrees of freedom.”
I won’t explain that term, but you can read about it at this Wikipedia page.

To get from ts to the correlation coefficients, rs, we apply the inverse transform,

r = t / n - 2 + t 2

The result is the sampling distribution of r under the null hypothesis. Figure 14-3 shows
this distribution along with the distribution we generated in “Testing a Correlation” on
page 107 by resampling. They are nearly identical. Although the actual distributions are
not normal, Pearson’s coefficient of correlation is based on sample means and variances.
By the Central Limit Theorem, these moment-based statistics are normally distributed
even if the data are not.

From Figure 14-3, we can see that the observed correlation, 0.07, is unlikely to occur if
the variables are actually uncorrelated. Using the analytic distribution, we can compute
just how unlikely:

    t = r * math.sqrt((n-2) / (1-r))
    p_value = 1 - scipy.stats.t.cdf(t, df=n-2)

We compute the value of t that corresponds to r=0.07, and then evaluate the t-
distribution at t. The result is 6.4e-12. This example demonstrates an advantage of the
analytic method: we can compute very small p-values. But in practice it usually doesn’t
matter.
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1. Not really.

Figure 14-3. Sampling distribution of correlations for uncorrelated normal variables

Chi-Squared Test
In “Chi-Squared Tests” on page 109 we used the chi-squared statistic to test whether a
die is crooked. The chi-squared statistic measures the total normalized deviation from
the expected values in a table:

χ 2 = ∑
i

(Oi - Ei)2

Ei

One reason the chi-squared statistic is widely used is that its sampling distribution under
the null hypothesis is analytic; by a remarkable coincidence,1 it is called the chi-squared
distribution. Like the t-distribution, the chi-squared CDF can be computed efficiently
using gamma functions.

SciPy provides an implementation of the chi-squared distribution, which we use to
compute the sampling distribution of the chi-squared statistic:

def ChiSquaredCdf(n):
    xs = np.linspace(0, 25, 101)
    ps = scipy.stats.chi2.cdf(xs, df=n-1)
    return thinkstats2.Cdf(xs, ps)

Figure 14-4 shows the analytic result along with the distribution we got by resampling.
They are very similar, especially in the tail, which is the part we usually care most about.
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Figure 14-4. Sampling distribution of chi-squared statistics for a fair six-sided die.

We can use this distribution to compute the p-value of the observed test statistic,
chi2:

    p_value = 1 - scipy.stats.chi2.cdf(chi2, df=n-1)

The result is 0.041, which is consistent with the result from “Chi-Squared Tests” on page
109.

The parameter of the chi-squared distribution is “degrees of freedom” again. In this case
the correct parameter is n-1, where n is the size of the table, 6. Choosing this parameter
can be tricky; to be honest, I am never confident that I have it right until I generate
something like Figure 14-4 to compare the analytic results to the resampling results.

Discussion
This book focuses on computational methods like resampling and permutation. These
methods have several advantages over analysis:

• They are easier to explain and understand. For example, one of the most difficult
topics in an introductory statistics class is hypothesis testing. Many students don’t
really understand what p-values are. I think the approach I presented in Chapter 9
—simulating the null hypothesis and computing test statistics—makes the funda‐
mental idea clearer.
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• They are robust and versatile. Analytic methods are often based on assumptions
that might not hold in practice. Computational methods require fewer assumptions,
and can be adapted and extended more easily.

• They are debuggable. Analytic methods are often like a black box: you plug in
numbers and they spit out results. But it’s easy to make subtle errors, hard to be
confident that the results are right, and hard to find the problem if they are not.
Computational methods lend themselves to incremental development and testing,
which fosters confidence in the results.

But there is one drawback: computational methods can be slow. Taking into account
these pros and cons, I recommend the following process:

1. Use computational methods during exploration. If you find a satisfactory answer
and the runtime is acceptable, you can stop.

2. If run time is not acceptable, look for opportunities to optimize. Using analytic
methods is one of several methods of optimization.

3. If replacing a computational method with an analytic method is appropriate, use
the computational method as a basis of comparison, providing mutual validation
between the computational and analytic results.

For the vast majority of problems I have worked on, I didn’t have to go past Step 1.

Exercises
A solution to these exercises is in chap14soln.py

Exercise 14-1.
In “The lognormal Distribution” on page 55, we saw that the distribution of adult
weights is approximately lognormal. One possible explanation is that the weight a
person gains each year is proportional to their current weight. In that case, adult weight
is the product of a large number of multiplicative factors:

w = w0 f 1 f 2... f n

where w is adult weight, w0 is birth weight, and fi is the weight gain factor for year i.

The log of a product is the sum of the logs of the factors:

log w = log w0 + log f 1 + log f 2 + ... + log f n

So by the Central Limit Theorem, the distribution of log w is approximately normal
for large n, which implies that the distribution of w is lognormal.

To model this phenomenon, choose a distribution for f that seems reasonable, then
generate a sample of adult weights by choosing a random value from the distribution
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2. “Evidence for the persistent effects of an intervention to mitigate gender-sterotypical task allocation within
student engineering teams,” Proceedings of the IEEE Frontiers in Education Conference, 2014.

of birth weights, choosing a sequence of factors from the distribution of f, and com‐
puting the product. What value of n is needed to converge to a lognormal distribution?

Exercise 14-2.
In “Applying the CLT” on page 190 we used the Central Limit Theorem to find the
sampling distribution of the difference in means, δ, under the null hypothesis that both
samples are drawn from the same population.

We can also use this distribution to find the standard error of the estimate and confi‐
dence intervals, but that would only be approximately correct. To be more precise, we
should compute the sampling distribution of δ under the alternate hypothesis that the
samples are drawn from different populations.

Compute this distribution and use it to calculate the standard error and a 90% confi‐
dence interval for the difference in means.

Exercise 14-3.
In a recent paper2, Stein et al. investigate the effects of an intervention intended to
mitigate gender-stereotypical task allocation within student engineering teams.

Before and after the intervention, students responded to a survey that asked them to
rate their contribution to each aspect of class projects on a 7-point scale.

Before the intervention, male students reported higher scores for the programming
aspect of the project than female students; on average men reported a score of 3.57 with
standard error 0.28. Women reported 1.91, on average, with standard error 0.32.

Compute the sampling distribution of the gender gap (the difference in means), and
test whether it is statistically significant. Because you are given standard errors for the
estimated means, you don’t need to know the sample size to figure out the sampling
distributions.

After the intervention, the gender gap was smaller: the average score for men was 3.44
(SE 0.16); the average score for women was 3.18 (SE 0.16). Again, compute the sampling
distribution of the gender gap and test it.

Finally, estimate the change in gender gap; what is the sampling distribution of this
change, and is it statistically significant?
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NumPy package
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covariance and, 84
exploratory data analysis, 5, 10
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Weibull distribution, 62
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gorilla, 184
pumpkin, 23
sampling, 126–128

weighted resampling, 126–127, 173
windows, 151–153, 162
wrappers, 70, 168, 185

X
xticks command, 148

206 | Index



About the Author
Allen Downey is an Associate Professor of Computer Science at the Olin College of
Engineering. He has taught computer science at Wellesley College, Colby College, and
U.C. Berkeley. He has a PhD in Computer Science from U.C. Berkeley and Master’s and
Bachelor’s degrees from MIT.

Colophon
The animal on the cover of Think Stats, second edition is an archerfish, or spinner fish
(Toxotidae). This family of fish preys on land-based insects and small animals, using
their specialized mouths to shoot them down with water droplets. This family consists
of seven species, which can be found from India to the Philippines, Australia, and Pol‐
ynesia.

The archerfish has a deep body; the space between the dorsal fin and mouth forms a
straight line. The protractile mouth has a lower jaw that juts out. The shape of its mouth
lends itself directly to feeding: the narrow groove in the roof of its mouth allows it to
squirt a jet of water at its victim by pressing its tongue against the groove and contracting
its gills to force the powerful jet of water out, which can travel up to five meters. Arch‐
erfish learn how to shoot when they reach 2.5 cm long. Often they are innaccurate at
first and hunt in small schools, eventually learning from experience.

The archerfish’s eyes are also valuable tools for feeding. It has particularly good eyesight
and is able to compensate for light refraction as it passes through the air-water interface
when aiming at prey. Once it spots its prey, the archerfish rotates its eye so the image of
the prey falls on a particular portion of the eye. Often, the archerfish will leap out of the
water to grab the insect in its mouth, if within reach.
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