

Racing the Beam

Platform Studies
Ian Bogost and Nick Montfort, editors

Racing the Beam: The Atari Video Computer System, Nick Montfort
and Ian Bogost, 2009

Racing the Beam

The Atari Video Computer System

Nick Montfort and Ian Bogost

The MIT Press Cambridge, Massachusetts London, England

© 2009 Nick Montfort and Ian Bogost

All rights reserved. No part of this book may be reproduced in any
form by any electronic or mechanical means (including photocopying,
recording, or information storage and retrieval) without permission in
writing from the publisher.

For information about special quantity discounts, please email
special_sales@mitpress.mit.edu

This book was set in Filosofia and Helvetica Neue by SNP Best-set
Typesetter Ltd., Hong Kong.

Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Montfort, Nick.

 Racing the beam : the Atari video computer system / Nick Montfort
and Ian Bogost.

p. cm —(Platform studies)
 Includes bibliographical references and index.
 ISBN 978-0-262-01257-7 (hardcover : alk. paper) 1. Video games—
Equipment and supplies.
2. Atari 2600 (Video game console) 3. Computer games—
Programming. 4. Video games—United States—History. I. Bogost,
Ian. II. Title.
 TK6681.M65 2009
 794.8—dc22 2008029410

10 9 8 7 6 5 4 3 2 1

mailto:special_sales@mitpress.mit.edu

d_r0

Contents

Series Foreword
 vii

Acknowledgment
s ix

Timeline xi
1 Stella 1

2 Combat 19

3 Adventure 43

4 Pac-Man 65

5 Yars’ Revenge
 81

6 Pitfall! 99

7 Star Wars: The
Empire

 Strikes Back
 119

8 After the Crash
 137

Afterword on
Platform Studies 145

Notes 151

Bibliography 159

Index 169

Series Foreword

How can someone create a breakthrough game for a mobile phone
or a compelling work of art for an immersive 3D environment without
under-standing that the mobile phone and the 3D environment are
different sorts of computing platforms? The best artists, writers,
programmers, and designers are well aware of how certain platforms
facilitate certain types of computational expression and innovation.
Likewise, computer science and engineering has long considered
how underlying computing systems can be analyzed and improved.
As important as scientific and engineering approaches are, and as
significant as work by creative artists has been, there is also much to
be learned from the sustained, intensive, humanistic study of digital
media. We believe it is time for those of us in the humanities to
seriously consider the lowest level of computing systems and to
understand how these systems relate to culture and creativity.

The Platform Studies book series has been established to promote
the investigation of underlying computing systems and how they
enable, constrain, shape, and support the creative work that is done
on them. The series investigates the foundations of digital media: the
computing systems, both hardware and software, that developers
and users depend upon for artistic, literary, gaming, and other
creative development. Books in the series certainly vary in their
approaches, but they all also share certain features:

1. a focus on a single platform or a closely related family of
platforms

2. technical rigor and in-depth investigation of how computing
technologies work.

3. an awareness of and discussion of how computing platforms
exist in a context of culture and society, being developed based
on cultural concepts and then contributing to culture in a variety
of ways—for instance, by affecting how people perceive
computing

Acknowledgments

We are very grateful for all of the work that was done by the original
developers of the Atari VCS and by the programmers of cartridges for
that system. We also thank those who replied to our questions about
game development on the system and emulation of the system: Bill
Bracy, Rex Bradford, David Crane, Jeff Vavasour, and Howard Scott
Warshaw.

Thanks to those who helped us to formulate these ideas about the
Atari VCS and about platform studies, including Kyle Buza, Chris
Crawford, Mark Guzdial, D. Fox Harrell, Steven E. Jones, Matthew G.
Kirschenbaum, Jane McGonigal, Jill Walker Rettberg, and Jim
Whitehead.

We greatly appreciate the work that Roger Bellin and Dexter
Palmer did in organizing the Form, Culture, and Video Game
Criticism conference at Princeton University on 6 March 2004. This
conference prompted the first scholarship leading to this book.
Thanks also to students in Ian Bogost’s Videogame Design and
Analysis class on the Atari VCS (Georgia Tech, Spring 2007): Michael
Biggs, Sarah Clark, Rob Fitzpatrick, Mark Nelson, Nirmal Patel, Wes
St. John, and Josh Teitelbaum. Thanks as well to Peter Stallybrass
and the participants in his History of Material Texts Workshop at the
University of Pennsylvania.

We greatly appreciate the work of modern-day Atari VCS
programmers and analysts, which has made our study of the system
easier and has allowed us to continue to enjoy the console in new

ways. Particular thanks go to the moderators and contributors to the
AtariAge forums.

A shout-out goes to the bloggers and readers of Grand Text Auto,
where much useful discussion of the Atari VCS has transpired.

We also want to thank those at the MIT Press who helped make
this book possible—particularly Doug Sery. Our thanks also go to the
anonymous reviewers who provided valuable comments at the
request of the MIT Press.

Timeline

1972 Atari’s arcade Pong by Al Alcorn
1975 Kee Games’s arcade Tank by Steve Bristow and Lyle Rains
1975 Atari’s Home Pong by Al Alcorn, Bob Brown, and Harold
Lee
1977 Atari VCS released
1977 Atari’s VCS Combat by Larry Wagner and Joe Decuir
1978 Atari’s VCS Slot Racers by Warren Robinett
1978 Atari’s VCS Adventure by Warren Robinett
1978 Namco’s arcade Space Invaders by Tomohiro Nishikado
1979 Activision founded
1979 Intellivision released by Mattel
1980 Cinematronics’s arcade Star Castle by Tim Skelly
1980 Namco’s arcade Pac-Man by Toru Iwatani
1980 Atari’s VCS Space Invaders by Rick Maurer
1981 Atari’s VCS Pac-Man by Tod Frye
1981 Atari’s VCS Asteroids by Brad Stewart
1981 Atari’s VCS Yars’ Revenge by Howard Scott Warshaw
1981 Imagic founded

1982 Atari 5200 introduced; Atari VCS renamed "Atari 2600"
1982 Activision’s VCS Pitfall! by David Crane
1982 Atari’s VCS Raiders of the Lost Ark by Howard Scott
Warshaw
1982 Atari’s VCS E.T.: The Extra-Terrestrial by Howard Scott
Warshaw
1982 Parker Brothers’ VCS Star Wars: The Empire Strikes Back
by Rex Bradford

Stella [1]

When someone creates a computer artifact like a video game, a
digital artwork, or a work of electronic literature, what type of process
is this? Here’s one idea: it is a creative act that is similar in many
ways to writing a poem or taking a photograph, except that in this
case, the creator doesn’t use words one after another on paper or
light bent through an aperture. This type of inscription or exposure
doesn’t happen—so what exactly does happen?

The creator of a computer work might design circuits and solder
chips. Or, this author might write instructions for the integrated
circuits and microprocessors of a particular computer, or write
software in a highlevel programming language, or create 3D models
to be added to a virtual world, or edit digital video for embedding in a
Web site.

The same question could be asked of the critic who interacts with
such a work. What does a creator, historian, researcher, student, or
other user do when experiencing a creative computer artifact? An
encounter with such a work could involve trying to understand the
social and cultural contexts in which it came to exist. It might also
involve interpreting its representational qualities—what it means and
how it produces that meaning. Alternatively, a study might involve
looking at the methods of this work’s construction, or the code itself,
or even the hardware and physical form of the machines on which it
is used.

All of these levels of computational creativity are connected.
Fortunately for those of us who are interested in such uses of the

computer, there have already been many studies of digital media
dealing with the reception and operation of computer programs, with
their interfaces, and with their forms and functions. But studies have
seldom delved into the code of these programs, and they have almost
never investigated the platforms that are the basis of creative
computing.1 Serious and in-depth consideration of circuits, chips,
peripherals, and how they are integrated and used is a largely
unexplored territory for both critic and creator.
Platforms have been around for decades, though, right underneath

our video games, digital art, electronic literature, and other forms of
expressive computing. Digital media researchers are starting to see
that code is a way to learn more about how computers are used in
culture, but there have been few attempts to go even deeper, to
investigate the basic hardware and software systems upon which
programming takes place, the ones that are the foundation for
computational expression. This book begins to do this—to develop a
critical approach to computational platforms.

We hope this will be one of several considerations of this low level
of digital media, part of a family of approaches called "platform
studies." Studies in this field will, we hope, investigate the
relationships between platforms—the hardware and software design
of standardized computing systems—and influential creative works
that have been produced on those platforms.

Types of Platforms

The Atari Video Computer System (or VCS, a system also known by
its product number, 2600) is a well-defined example of a platform. A
platform in its purest form is an abstraction, a particular standard or
specification before any particular implementation of it. To be used by
people and to take part in our culture directly, a platform must take
material form, as the Atari VCS certainly did. This can be done by
means of the chips, boards, peripherals, controllers, and other
components that make up the hardware of a physical computer

system. The platforms that are most clearly encapsulated are those
that are sold as a complete hardware system in a packaged form,
ready to accept media such as cartridges. The Atari VCS is a very
simple, elegant, and influential platform of this sort.
In other cases, a platform includes an operating system. It is often

useful to think of a programming language or environment on top of
an operating system as a platform, too. Whatever the programmer
takes for granted when developing, and whatever, from another side,
the user is required to have working in order to use particular
software, is the platform. In general, platforms are layered—from
hardware through operating system and into other software layers—
and they relate to modular components, such as optional controllers
and cards. Studies in computer science and engineering have
addressed the question of how platforms are best developed and
what is best encapsulated in the platform. Studies in digital media
have addressed the cultural relevance of particular software that runs
on platforms. But little work has been done on how the hardware and
software of platforms influences, facilitates, or constrains particular
forms of computational expression.

When digital media creators choose a platform, they simplify
development and delivery in many ways. For example, such authors
need not construct an entirely new computer system before starting
on a particular creative project. Likewise, users need not fashion or
acquire completely new pieces of hardware before interacting with
such a work. That said, work that is built for a platform is supported
and constrained by what the chosen platform can do. Sometimes the
influence is obvious: a monochrome platform can’t display color, for
instance, and a videogame console without a keyboard can’t accept
typed input. But there are more subtle ways that platforms influence
creative production, due to the idioms of programming that a
language supports or due to transistor-level decisions made in video
and audio hardware. In addition to allowing certain developments and
precluding others, platforms also function in more subtle ways to
encourage and discourage different sorts of computer expression. In
drawing raster graphics, there is a considerable difference between

setting up one television scan line at a time as the Atari VCS
demands, having a buffered display with support for tiles and sprites,
or having some more elaborate system that includes a native 3D
renderer. Such a difference can end up being much more important
than simple statistics of screen resolution or color depth that are used
as shorthand by fans and marketers.

We offer here such a platform study, one that considers an
influential videogame system that helped introduce computing to a
popular audience and to the home. Our approach is mainly informed
by the history of material texts, programming, and computing
systems. Other sorts of platform studies may emphasize different
technical or cultural aspects, and may draw on different critical and
theoretical approaches. To deal deeply with platforms and digital
media, however, any study of this sort must be technically rigorous.
The detailed analysis of hardware and code connects to the
experience of developers who created software for a platform and
users who interacted with and will interact with programs on that
platform. Only the serious investigation of computing systems as
specific machines can reveal the relationships between these
systems and creativity, design, expression, and culture.

Although it was not the first home videogame console, the Atari
VCS was the first wildly popular one. It was affordable at the time,
and it offered the flexibility of interchangeable cartridges. The
popularity of the Atari VCS—which was the dominant system for
years and remained widely used for more than a decade—supported
the creation of nearly one thousand games, many of which
established techniques, mechanics, or entire genres that continue to
thrive today on much more technologically advanced platforms.
Although several companies fielded consoles, by 1981 the Atari VCS
accounted for 75 percent of home videogame system sales.2 Indeed,
the generic term for a videogame system in the early 1980s was "an
Atari." Yet, despite its undisputed place in the annals of popular
culture, and despite having been the standard system for home video
gaming for so many years, Atari’s first cartridge-based system is an
extremely curious computer.

Cost concerns led to a remarkable hardware design, which
influenced how software was written for the Atari VCS, which in turn
influenced the video games created during and after the system’s
reign. Given that it used a version of the very typical 6502 processor,
which drove many computers and consoles, one might not guess that
the Atari VCS was so atypical. But this processor interfaced with the
display by means of a truly unique component, the Television
Interface Adaptor, or TIA. A television picture is composed of many
horizontal lines, illuminated by an electron beam that traces each one
by moving across and down a picture tube. Some programmers
worry about having each frame of the picture ready to be displayed
on time; VCS programmers must make sure that each individual line
of each frame is ready as the electron gun starts to light it up, "racing
the beam" as it travels down the screen.

The Roots of Video Gaming

In World of Warcraft, you start off, as a human, in Northshire Abbey.
You can move your character around using the W, A, S, and D keys,
an interface popularized by the first-person shooter Quake. As you do
this, the terrain that you’re standing on moves off the screen and new
terrain appears as if from off screen. You are in a virtual space that is
larger than the screen. This shouldn’t be at all surprising. It seems
that every 3D game, from Grand Theft Auto: San Andreas and Super
Mario 64 to Tomb Raider, offers virtual spaces that are larger than the
screen. Quake and other first-person shooters have them as well, as
do 2D games. In the original Legend of Zelda, for instance, when you
have Link walk off one side of the screen, he appears on the other
side of a new screen in another part of the large virtual space.

Video games weren’t born with these extra-large virtual spaces,
though. pong, Spacewar, Space Invaders, and Asteroids are a few of
the many games that have a single screen as their playing field. The
idea of a game with a virtual space bigger than the screen had to be
developed and implemented for the first time at some point.3 This
was done by Warren Robinett, as he designed and programmed

Adventure, the first graphical adventure game, for the Atari VCS in
1978.

Engage with Half-Life 2 and you could find your avatar, Gordon
Freeman, surrounded by attacking enemies who provide supporting
fire for each other, dodge, and hide behind cover, powered as they
are by what the game industry calls artificial intelligence, or AI. The
pleasure of many solo games, whether they are real-time strategy
games such as Warcraft III: Reign of Chaos or first-person shooters,
comes from the worthy but surmountable challenge that computer
opponents are able to provide.

The computer’s ability to play against a person and to play
somewhat like a person, rather than just serving as the playing field
and referee, wasn’t a given in the early days of gaming. Early on,
most games were either two-player, like pong and Spacewar, or else
offered an asymmetric challenge, like that of Space Invaders. But
there were other developments that helped the industry move toward
today’s crafty computer-controlled enemies. One early example was
Alan Miller’s Atari cartridge Basketball, which, in its 2K of code and
graphics, managed to provide a computer controlled opponent for a
one-on-one game. But even before then, one of the VCS launch titles,
Video Olympics, offered a one-player "Robot pong" mode that
provided an opponent who, although not anthropomorphic, managed
to be challenging without being impossible to defeat.
It’s obvious to any gamer today, and certainly also to those who

produce games, that there are well-established videogame genres:
first-person shooters, real-time strategy games, sports games, driving
games, platformers, adventure games, and survival horror games, for
instance. Video gaming wasn’t always stratified in this way. From the
very early days, in which two-player head-to-head challenges
predominated, video games began to branch out as games employed
many types of hardware and software interfaces, display
technologies, game forms, and representations. Gradually,
conventions of different sorts began to emerge and various genres
became evident.

Some of the development of today’s videogame genres arose
thanks to computer games and arcade games, but games for the
Atari VCS made important contributions as well. Certain genres the
Atari VCS helped develop (such as the vertical scroller, which was
fostered by Activision’s River Raid) do not define important sectors of
today’s videogame market. Others remain influential, such as the
graphical adventure game, the prototype of which was Atari’s
Adventure, and the platformer, pioneered in Activision’s Pitfall! One
game critic even traces the origin of survival horror to the 1982 VCS
cartridge Haunted House.4 Regardless of whether the case for this
lineage is persuasive, it is obvious that the Atari VCS was at least a
seedbed for videogame genres, if not the forge in which many were
formed.

The Atari VCS is certainly a retro fetish object and a focus of
nostalgia, but it is also much more than this. The system is essential
to the history of video games, and in niches it remains a living part of
the modern videogame ecology.

Cartridge Games for the Home

The Atari Video Computer System was the first successful cartridge-
based videogame console. (In 1982, when the Atari 5200 was
introduced, the system was renamed the Atari 2600, the new name
being taken from the system’s original product number. Because our
focus in this book is on the period 1977-1983, we have decided to call
the console "the Atari VCS" throughout the book.) The system
appeared at a time when the vast majority of video games were
played in bars, lounges, and arcades. The arcade cabinet has
become a rare sight in the United States, but in their best year, coin-
operated games collected quarters that, adjusting for inflation, sum to
more than twice the 2006 sales of U.S. computer and videogame
software.5

Arcade games derive directly from tavern and lounge games such
as pinball. They are indirectly descended from games of chance,

including midway games and slot machines. Among his many trades,
Atari founder Nolan Bushnell worked the midway as a barker before
founding Atari.6 His contributions to video games owe much to the
principles he learned from his experiences at the carnival.
Midway games rely on partial reinforcement—a type of operant

conditioning that explains how people become attached (and possibly
addicted) to experiences. Partial reinforcement provides rewards at
scheduled intervals. Psychologists Geoffrey R. Loftus and Elizabeth
F. Loftus make the argument that video games offer superlative
examples of partial reinforcement, presenting incentives at just the
right moments to encourage players to continue or try again when
they fail.7

The classic midway games, which involve things like throwing a ball
into a basket or knocking down bottles, appear to be contests of skill.
But the barker can subtly alter the games to tip the odds in or out of
his favor. For example, by slightly, imperceptibly turning the angle of
the basket, the basketball game operator can almost ensure failure,
or make success very easy, for a particular throw.

Midway games are illusions more than tests of skill, designed to
offer the player just enough positive feedback to give the impression
that winning is easy, or at least possible. The midway barker must
occasionally allow players to win, persuading onlookers and
passersby that the game is a sure thing. Bushnell was a natural
barker; he had an uncanny ability to read people and play to their
weaknesses. He knew that the big, brutish fellow would be willing to
drop a small fortune trying to beat a game that he’d just seen a
weakling master.
It was as if Bushnell had all of this in mind already when he first

started working with video games. As an electrical engineer educated
at the University of Utah, he discovered Spacewar at school in 1962.
That game ran on the PDP-1 minicomputer and displayed simple
graphics on an oscilloscope. Steve Russell, an MIT student, had
created Spacewar earlier that year. The game quickly spread to the
few institutions fortunate enough to have a PDP-1. Given the price

tag of more than $100,000, these were usually universities and
laboratories.

Bushnell spent the next decade trying to make a version of
Spacewar simple enough to run on more common, less expensive
hardware. The result was Computer Space, which arcade game
manufacturer Nutting Associates released in 1971 to very limited
commercial success. Complexity of play was part of the problem—
the general public wasn’t accustomed to arcade games. Parlor and
midway games inspire play based partly on familiarity and partly on
external rewards. To make a breakthrough, Bushnell needed to
merge his experience as an electrical engineer and as a midway
barker.
Slot machines certainly implement the midway barker’s technique,

providing scheduled payouts of varying amounts based on complex
odds tables. These tables were originally encoded mechanically and
are now represented electronically. But pinball machines and video
games give the player partial control over an experience, and in that
respect they have more in common with midway games than with slot
machines. In the taverns that first hosted Bushnell and Al Alcorn’s
coin-operated pong (1972), the game became a social hub, serving a
function that darts, pinball, and related tavern sports had fulfilled in
that space. In pong and its siblings, partial reinforcement operates on
two registers. First, the game encourages continued play and
rematches—it promotes "coin drop," a measure of the rate at which a
machine takes in cash.8 Second, the game encourages players to
remain in the bar, ordering more food and drink. It is important to the
history of video games that they bring their persuasive powers to
bear within specific architectural spaces, enticing players to enter and
remain within certain places.

As tavern culture gave way to the video arcade of the late 1970s
and early 1980s, secondary pursuits like eating food surrendered to
the primary pursuit of playing games. Arcades had more in common
with casinos than with taverns. Bushnell, ever the entrepreneur,
recognized this as a market opportunity and decided to create an

arcade space with the additional social and gastronomical goals of a
tavern, one that would also appeal to a broader audience. While still
at Atari, he hatched the idea for Chuck E. Cheese’s Pizza Time
Theatres, a place for kids and families to eat pizza and play games.9

Here, Bushnell combined all of his prior influences. Chuck E.
Cheese’s was an arcade: its games encouraged continued play and
cross-cabinet play. It was also a restaurant: food and drink drew
players to the locale and kept them there longer. Finally, it was a
midway: players collected tickets from games of skill and chance like
skeeball in the hopes of exchanging them for prizes.

Yet despite Bushnell’s very relevant background, pong was not
simply and directly the result of one man’s midway job. In 1958, Willy
Higinbotham created a playable version of tennis that ran on an
analog computer, with display output to an oscilloscope, just as
Spacewar would do half a decade later. Higinbotham worked at the
Brookhaven National Laboratory, a federal nuclear physics research
facility on Long Island. His game, dubbed Tennis for Two, was
created as a demo for the lab’s annual visitors’ day. Higinbotham
intended it both as a distraction from the rather mundane operation of
the facility and, purportedly, as evidence of the future potential for
nuclear power.
While adaptation of Space war, Ralph Baer commenced work on

his television gaming device, the "Brown Box." Like Bushnell, Baer
saw the potential for computer games among a broader market, but
his great equalizer of choice was the television, not the tavern. The
Brown Box was eventually commercialized in 1972 as the Magnavox
Odyssey, the first home videogame console. Baer, a fervent
supporter of patents and intellectual property protection for software
and electronics, worked with Magnavox to battle successor
technologies in court throughout the 1970s and 1980s in many
lawsuits, some of which named Bushnell and Atari as defendants.
Some of the claims against Atari rested on the similarity of pong to
the Odyssey’s tennis game, which Bushnell had seen before pong
was built. Magnavox prevailed. Baer’s opposition to similar-looking
work seems somewhat ironic, though, given the similarity between

the Brown Box’s television tennis game and Higinbotham’s Tennis for
Two.10

Legal disputes aside, Baer and Bushnell were alike in focusing on
one important component in their efforts to create consumer-
affordable video games: the television. The Odyssey very obviously
relied on the tube in a user’s own den or living room, but the arcade
game pong was television-based as well, even though most of the TV
was hidden away. Al Alcorn, the engineer who built pong, purchased
an ordinary consumer grade black-and-white television for the
cabinet, paying much less than he would have for the equivalent
industrial monitor.11

The first pong unit was installed in Andy Capp’s Tavern, a bar in
Sunnyvale, California. Increasingly apocryphal stories of the game’s
installation report lines out the door but almost never mention the
precedent for coin-operated video games in Andy Capp’s. When
Alcorn installed pong in the summer of 1972, Computer Space was
sitting there in the bar already.12

Pong solved the problem that plagued Computer Space—ease of
use—partly by being based on the familiar game table tennis and
partly thanks to the simplicity of its gameplay instructions. "Avoid
missing ball for high score" was a single sentence clear enough to
encourage pick-up play, but vague enough to create the partial
reinforcement of the slot machine and the midway; after failing,
players wanted to try again. One other important sentence appeared
on the machine: "Insert coin."
Pong’s start in a Silicon Valley tavern rather than a corner

convenience store or shopping mall is an important detail of the
medium’s evolution. Bars are social spaces, and the context for
multiplayer games had already been set by the long tradition of darts,
pool, and other games common to the tavern. pong was launched in
1972; volume production of the machine started the next year; and, by
1974, there were 100,000 pong-style machines that, as Martin
Campbell-Kelly explained, "largely displaced pinball machines,
diverting the flow of coins from an old technology to a newer one

https://calibre-pdf-anchor.a/#a312
https://calibre-pdf-anchor.a/#a313
https://calibre-pdf-anchor.a/#a314

without much increasing the overall take."13 But taverns are also adult
spaces that are fewer in kind and number than the millions of living
rooms and dens that had access to video games thanks to Baer and
Magnavox. At a time when coin-ops ruled the market, part of the
appeal of the home console system was its promise to tap into a new
market of kids and families.

In 1973, just a year after pong’s coin-op release, Atari started eyeing
the home market for video games. The company’s home version of
pong

1.1 To play Atari’s Home pong, the two players each use one of the
knobs to control a paddle that appears on the TV screen.

(figure 1.1) boasted considerable technical advances over the
Odyssey, including an integrated circuit that contained most of the
game’s logic on a single chip, on-screen scoring, and digital sound.
The device connected to the television directly, but was small enough
to store out of the way when not in use. Atari agreed to let Sears sell
it exclusively, and the department store initially ordered 150,000
units.14 Atari’s triumph was shortlived, however. In 1976, General
Instrument released its $5 AY-3-8500, a "pong-on-a-chip" that also
contained simple shooting games. This component allowed even

https://calibre-pdf-anchor.a/#a315
https://calibre-pdf-anchor.a/#a316

companies without much electronics experience to bring pong-like
games to market, and many did just that. CampbellKelly writes that
there were seventy-five pong-like products available by the end of
1976, "being produced in the millions for a few dollars apiece."15

Even if Atari had cornered the market for home pong, owning the
system wouldn’t have done anything to directly influence future
purchases. Try as Atari did to enhance their product, offering new
features and more controllers for multiplayer action in later versions,
how many pong units could one house have needed? Those at Atari
therefore sought to imitate some features of the nascent personal
computer with a home console that used interchangeable cartridges,
allowing the system to play many games. There would be an
important difference from home computing, though: all of the
cartridges for the system would be made by one company.

The tremendous success of pong and the home pong units
suggested that Atari should produce a machine capable of playing
many games that were similar to pong. The additional success of
Tank by Kee Games (a pseudo-competitor that Atari CEO Bushnell
created to work around the exclusivity that distributors demanded)
suggested another similar game that the cartridge-based system
should be capable of playing. Tank featured two player objects, each
controllable by a separate human player, along with projectiles that
bounced off walls. The computational model and basic game form
were almost identical to those of pong, and became the essence of
Combat, the title that was included with the original VCS package.
The simple elements present in these early games would be the
basis for the console’s capabilities from that point on.

Previous attempts at home machines that used interchangeable
cartridges, such as the Magnavox Odyssey and the Fairchild Video
Entertainment System (VES)/Channel F, brought to light some
potential benefits and risks for such a system. Baer’s Odyssey,
released in 1972, played twelve games, but the players of these
games had to attach plastic overlays to the screen to provide the sort
of background that would later be accomplished with computer

https://calibre-pdf-anchor.a/#a317

graphics. The machine had no memory or processor. Although the
experience of playing the Odyssey was certainly that of a video
game, and was important in fostering the market for home video
games, the system was perhaps too simplified, even for the time.
Playing it may have seemed closer to board game play with a
television supplement than to later video gaming. (The inclusion of
play money and dice with the system couldn’t have helped in this
regard.) From the release of the Odyssey in 1972 until it was
discontinued in 1975, it seems that between 200,000 and 350,000 units
were sold.16 The machine introduced home videogame systems to
the world, but not on the scale that the Atari VCS would, beginning in
the late 1970s.

Fairchild’s VES, released in 1976, was the first programmable,
interchangeable cartridge system. It sported an onboard processor
and random-access memory (RAM). The system had a rapid name
change when Atari’s VCS was released, and is better known today as
the Fairchild Channel F. Even before Fairchild’s system was market-
tested, though, Warner Communications purchased Atari. The
purchase was motivated primarily by the commercial promise of an
extensible home console.17 This 1976 acquisition provided the capital
that Atari needed to bring the Atari VCS to market.

Design of the Atari VCS

The engineers developing the Atari VCS needed to account for two
goals—the ability to imitate existing successful games and some
amount of versatility—as they designed the circuitry for a special-
purpose microcomputer for video games. Material factors certainly
influenced the design. At one extreme was the high cost of hardware
components. The Channel F was manufactured by Fairchild
Semiconductor, and unsurprisingly the system used that company’s
Fairchild F8 CPU, a specialty processor created by future Intel
founder Robert Noyce. At the other extreme was a lack of flexibility.
The Odyssey’s games were implemented directly in diode-transfer
logic (DTL) on the console’s circuit board. The cartridges for the

https://calibre-pdf-anchor.a/#a318
https://calibre-pdf-anchor.a/#a319

Odyssey, unlike those for the Fairchild system, simply selected a
game from a set of hard options.18 The Atari VCS would need to
navigate between the Scylla of powerful but expensive processors
and the Charybdis of a cut-rate but inflexible set of hardwired games.

It could be done. In 1975, MOS Technology had released a new
processor—the 6502. At the time, the chip was the cheapest CPU on
the market by far, and it was also faster than competing chips like the
Motorola 6800 and the Intel 8080.19 The 6502’s low cost and high
performance made it an immensely popular processor for more than
a decade. The chip drove the Apple I and Apple][, the Commodore
PET and Commodore 64, the Atari 400 and 800 home computers, and
the Nintendo Entertainment System (NES). It is still used today in
some embedded systems.

This chip seemed attractive, as cost was the primary consideration
in the design of the Atari VCS. The system needed to be much more
affordable than a personal computer, which was still a very rare and
expensive commodity. When Apple Computer released the popular
Apple][in 1977, it cost $1,298, even after Steve Wozniak’s many cost-
and component saving engineering tricks. The same year, Atari
released the VCS for $199.20 The price was just above the console’s
manufacturing cost, a common strategy today but an unusual one in
the 1970s. Atari was betting heavily on profiting from cartridge sales,
as it indeed would do.

In 1975 Atari acquired Cyan Engineering, a consulting firm.21 Cyan’s
chiefs, Steve Mayer and Ron Milner, were the ones who selected the
MOS 6507 for the VCS project. This chip was a stripped-down version
of the already inexpensive 6502. From a programmer’s perspective,
the 6507 behaves more or less identically to a 6502, but it cannot
address as much memory, a limitation that ended up affecting the
maximum capacity of videogame cartridges for the system.

The 6507 was available for less than $25; similarly capable Intel and
Motorola chips went for $200.22 But the 6507 CPU was only one
component—the Atari VCS still needed additional silicon for memory,
input, graphics, and sound. The CPU does the essential arithmetic at

https://calibre-pdf-anchor.a/#a320
https://calibre-pdf-anchor.a/#a321
https://calibre-pdf-anchor.a/#a322
https://calibre-pdf-anchor.a/#a323
https://calibre-pdf-anchor.a/#a324

the core of computation, but a videogame system also needs to carry
out other functions; among them, the important job of producing
sound and graphics. At the time, computer graphics were mostly
managed in read-only memory (ROM). Character sets and video
memory for a grid of rows and lines of text were reserved in a special
space in ROM chips on the motherboard. Such was the case for the
Tandy TRS-80 and Commodore PET, both also released in 1977. The
Apple][‘s graphics and sound system was implemented in a similar
but more sophisticated way, thanks in part to Steve Wozniak’s
experience designing an Atari arcade game. As Wozniak explained:

A lot of features of the Apple][went in because I
had designed Breakout for Atari. I had designed it
in hardware. I wanted to write it in software now.
So that was the reason that color was added in
first—so that games could be programmed. I sat
down one night and tried to put it into BASIC.
Fortunately I had written the BASIC myself, so I
just burned some new ROMs with line drawing
commands, color changing commands, and
various BASIC commands that would plot in color.
I got this ball bouncing around, and I said, "Well it
needs sound," and I had to add a speaker to the
Apple][. It wasn’t planned, it was just accidental.23

Wozniak engineered capabilities into ROM, burning what he needed
onto chips that went onto the motherboard. Each additional chip
meant more cost—exactly the luxury that the ultra-low-cost Atari VCS
couldn’t afford.

The Atari VCS needed a system for graphics and sound similar in
principle to Wozniak’s flexible Apple][, but simpler in its design and
having less of an impact on hardware costs. For this purpose, the

https://calibre-pdf-anchor.a/#a325

Atari VCS used a custom chip, the Television Interface Adaptor (TIA).
Joe Decuir and Jay Miner designed the TIA, which was code-named
"Stella"—a name also used for the machine as a whole, and one
which came from the brand of Decuir’s bicycle.24 Of course, the two
sought to simplify the hardware design as much as possible, reducing
its complexity and cost. For this reason, a custom graphics chip was
the only real option. The cost of TIA research and development must
have far outweighed any other development cost for the system, and
yet it was a wise investment, given that graphics and sound are so
essential to video games.

RAM, the memory programs use to store temporary information
while they are running, was very expensive at the time, so an
important cost-saving measure was limiting its use. In 1977, the Apple
][shipped with 4K of RAM. The TRS-80 and PET, both shipped in that
same year, also sported 4K. In 1982, the Commodore 64 shipped with
64K, the maximum amount addressable by the 6502. By contrast, the
Atari VCS has only 128 bytes of RAM. That amount is 1∕ 32 of that in
general-purpose microcomputers of the late 1970s and not enough to
store this ASCII-encoded sentence. RAM remained a costly prospect
through the 1980s, and many home game consoles scrimped on it to
reduce costs. The 128 byte memory of the VCS was twice as large as
the standard RAM of the Channel F. The significantly more advanced
NES had sixteen times as much RAM at 2K.

In addition to the processor, the graphics system, and memory, the
fourth major component of the system, a chip called the Peripheral
Interface Adaptor (PIA) or RAM/Input/ Output/Timer (RIOT), handles
input from the two player controls and the console switches. Unlike
the Odyssey, the Channel F, and a competitor that was to arrive in
1979 (the Intellivision), the VCS let players plug in different controllers
right out of the box. Two different kinds were included with the
system, and several different styles were marketed by Atari and third
parties during the console’s long commercial life. Most notably,
though, the Atari VCS introduced the joystick to the home videogame
player as the standard control.

https://calibre-pdf-anchor.a/#a326

In studying the Atari VCS from the perspective of the platform,
several things stand out about the system and its influence on the
future of video games. One is the strong relationship between the
console and the television. Baer correctly predicted that the TV would
be central to video games. (Games driven by computer power had
previously been designed for less common displays, such as
oscilloscopes, or crafted for use on print or video terminals.) The Atari
VCS—particularly its graphics and sound chip, the TIA—is designed
to interface solely (and weirdly) with a standard CRT television, the
sort common in living rooms and dens of the 1970s. Its controllers and
peripherals were fashioned for use on the floor or the couch. The
games made for the platform are likewise oriented toward home use
—either for enjoying the arcade experience at home or for playing in
different ways with friends and family. The focus on the production of
images for display on the TV helps explain why games running on
circuits and later computers became known as "video games."
Another strong current in the work on the Atari VCS is the powerful

influence of earlier games. Many—perhaps most—VCS cartridges
are to a greater or lesser extent ports of arcade games. The system’s
architecture was designed with the popular coin-op games pong and
Tank in mind. Many early VCS titles were directly ported from coin-op
games. Even very innovative titles like Adventure were directly
inspired by games on other computer systems. After 1980, licensed
arcade and film adaptations became popular as well, especially at
Warner-owned Atari. But beyond ports of coin-op games and
adaptations from other entertainment media, the 1977-1983 era was
one of uncertainty and experimentation in video games. Nobody
really knew what would make a good subject for a game, and many
relied on previous successes. Atari’s liberal use of the term “video" in
game titles underscores the company’s reliance on transforming
familiar subjects into games for play on a television: Video Olympics,
Video Checkers, Video Cube.

A final observation is the tremendous representational flexibility of
the machine and the less-than-obvious reason for this flexibility. The
games created for the platform during its long life cover innumerable

subjects and situations: dogfighting, bridge, hockey, treasure hunting,
lassoing, slot car racing, dental care, and even sex acts. The breadth
of the system’s software library becomes even more striking when
one considers that two simple arcade games were the major
inspirations for its hardware design—and that no one fathomed how
successful and long-lived the console would be.

So much was possible on the Atari VCS, and not because it was a
powerful computer. It wasn’t powerful at all. Rather, so much was
possible because the machine was so simple. The very few things it
could do well—drawing a few movable objects on the screen one line
at a time while uttering sounds using square waves and noise—could
be put together in a wide variety of ways to achieve surprising results.

Plan of the Book

In this book we concentrate on six VCS cartridges while also
discussing many others along the way.25 We selected these six
cartridges from the many hundreds that have been developed
because they particularly enlighten the discussion of the VCS
platform and creative production upon it. We discuss them in
chronological order, so that the development of programming
practices and the changes in home and arcade video gaming can be
tracked more easily through time. The cartridges that are central to
our discussion are as follows:

• Combat, the cartridge that was originally bundled with the Atari
VCS. This set of two-player Tank and plane games demonstrates
almost all of the basic hardware capabilities of the system in a
straightforward way. It also reveals a great deal about the relationship
of home video gaming to arcade games, showing how even the first
home games based on arcade games would use them as a starting
point and often transform them.

• Adventure, which established the action-adventure genre. This
game represents a virtual space that is larger than the screen,
showing how some of the affordances of the VCS platform can be

https://calibre-pdf-anchor.a/#a327

used for purposes that were different than those originally intended.
Adventure was also a radically different adaptation of an all-text
computer game, one that again helps to reveal the influence of
platforms in creative production.

• Pac-Man, a more direct take on a successful arcade game—one
that spawned a massive craze, or, one might say, a fever. The
cartridge was widely derided as being a poor, inauthentic port of the
arcade game, yet it nevertheless became the overall best-selling
cartridge for the Atari VCS. The mismatch between the arcade Pac-
Man and the capabilities of the VCS hardware is particularly
revealing.

• Yars’ Revenge, Atari’s best-selling original VCS game. Even this
"original" started as a conversion of an arcade title. The conversion
was jettisoned and a highly complex game took shape, one with
unique graphics that was well-suited to home play. This cartridge
shows another important way in which some arcade platforms (those
using a fundamentally different display technology, vector or XY
graphics) differed from the Atari VCS. It also reveals how a
programmer used his knowledge of the VCS hardware to fashion a
novel and effective game rather than implementing a partial and
ineffective re-creation. The cartridge Asteroids, a contemporary of
Yars’ Revenge, is discussed in some detail as another case of a
vector graphics game being adapted to the Atari VCS.

• Pitfall!, another innovative original that was developed at
Activision, the first third-party videogame company. This game helps
to show the difference between cartridges produced by Activision and
those produced by Atari for the same platform, and it also provides a
way to look at the rise of third-party videogame companies and the
platform-related challenges they faced. Pitfall! was also a critical step
in the development of the action-adventure genre and an important
step toward the side scroller.

• Star Wars: The Empire Strikes Back, probably the most unusual
choice of these six. Obviously, it is a game that was produced under
license and was meant to exploit the success of a popular film.

Although not the most famous VCS game of this sort, Star Wars: The
Empire Strikes Back shows how a compelling cinematic situation can
be translated effectively into a videogame challenge. The cartridge
also provides a good opportunity to discuss the explosion of third-
party titles and the interaction between media properties and video
games, along with the collapse of the Atari VCS market that ensued
in 1983. Finally, it reveals how much the use of the VCS platform had
escaped from the proprietary hold of Atari and how much it had
advanced during the time period we are considering.

The book concludes with a short chapter. Although our platform
study focuses on the Atari VCS during 1977-1983, this final chapter
briefly considers some of the high points of the life of the Atari VCS
from 1983 to the present, discussing what else has been learned
about the platform and how this platform has interacted with culture
during this span of time. Finally, in an afterword, we look ahead to see
what other platforms, and what other issues, can be addressed by
future platform studies, and to consider what insights this approach
can offer as we continue to think about creative digital media.

Combat [2]

The Atari VCS console was given the model number CX2600 and
was sold with two joystick controllers, two paddle controllers, a
TV/game radio frequency switch box, and a cartridge bearing the
product number that came next in sequence, CX2601. This cartridge
was Combat, a "game program" with twenty-seven games, according
to the included manual: variants of Tank, Tank-Pong, Invisible Tank,
Invisible Tank-Pong, Biplane, and Jet. The button fires a missile in all
of the games. In the tank games, moving a joystick left or right turns
an iconic tank; moving a joystick up causes the tank that it is
controlling to go forward. Obstacles are present in some of the tank
games, and there are other variations in play, such as rebounding
shots and invisibility. The two plane games are similar to the tank
ones, but there are no obstacles in any of them—only blocky,
obscuring clouds in some variants—and the planes always move
forward. The way the planes are controlled is different, too. The
player whose tank or plane has been hit fewer times at the end of a
game, which lasts two minutes and sixteen seconds, is the winner.
Combat was programmed while the Atari VCS hardware was being

developed, growing from a tank game that was part of the concept
prototype for the system. In many ways, the cartridge and the system
were designed for one another. Combat is practically a pure
demonstration of the capabilities of the Atari VCS, showing how they
were intended to be used: the VCS stripped bare by its bachelors.
The joysticks control the two player sprites, while each player fires a
missile represented by one of two built-in missile sprites. The more
blocky background part of the image—actually a foreground of cloud

cover in the plane games and a maze structure in the tank games—is
both horizontally and vertically symmetrical in all of the games. This
lower-resolution part of the screen is called the "playfield." The
horizontal symmetry is accomplished in a very straightforward way,
by setting a particular bit. One of the few facilities not used is the ball
sprite, an element provided for Pong-like games, in which a single
ball is bounced back and forth between players. Although it did not
use the ball, Combat did use Pong-like logic to allow the missiles to
rebound in the Tank-Pong games.

Although the Atari VCS was not sold until October 1977, something
like Combat existed in an early form by late 1975. Steve Mayer had
written a tank game for an early version of the VCS hardware, a
prototype that was designed by Ron Milner. Joe Decuir joined the
VCS team that December and helped debug this proto-Combat. In
March of the next year, he moved to a different office to apprentice for
Jay Miner. Decuir rewrote the tank game while working with Miner to
design the VCS chipset. The core of the program had been finished
by that point, but the cartridge was made into its final form by Larry
Wagner, who was the lead cartridge programmer for Combat.
Wagner refined the tank games and added both sorts of plane
games.

Although it was the first cartridge for the Atari VCS, Combat—like
so many video games on this system and other platforms—was not
truly original. The basis for Combat’s tank games was the successful
arcade game Tank, released in November 1974. Tank was marketed
by Kee Games, a purported competitor to Atari that was actually
wholly owned by the company and run by Joe Keenan, Nolan
Bushnell’s friend and next-door neighbor. Kee Games was
established to make the videogame industry look bigger—to make it
seem that Atari was not the only company involved with arcade video
games, and also to skirt certain regulatory hurdles of the coin-op
business.1 After the ruse was discovered, Atari offered Keenan a job
as president. He accepted and became an effective leader of the
rapidly growing company.

Tank was remarkable both as the biggest hit from Kee Games and
because it pioneered the use of ROM chips in video games. The
nature of ROM was important to the Atari VCS, and ROM is a
reasonable starting point for technical discussion, so it is worthwhile
to look into the technology and its use in video gaming in some depth.

The Use of ROM in Video Games

"ROM" is a generic term for any memory that can be easily read, but
cannot be written to, or can be rewritten only with difficulty. There are
ROM technologies that are not truly "read-only." Programmable
readonly memory (PROM) can be burned in the field rather than in
the factory, for instance, and Flash ROM, commonly used in today’s
consumer electronics, including cameras and routers, can be
rewritten—although not rapidly. In the broadest sense, though, ROM
is still much more difficult to write than to read. Unlike random-access
memory (RAM), all types of ROM are also nonvolatile, so ROM does
not have to remain powered to keep its contents.

Atari’s driving game Gran Trak 10 was the very first to have a store
of ROM, but it did not use a chip to implement this memory. It stored
sprite graphics in a matrix of diodes, each of which was placed
individually on the printed circuit board. This was a costly way to store
data, and required more space on the board than a single chip would.
It was groundbreaking to use ROM of any sort, but this particular
technique was not the way forward for arcade or home video games.
The important ROM technology for gaming and other computing
applications was mask ROM, in which the whole memory was stored
on a single chip. This was the technology introduced in Tank. It was
also the technology used to create the ROM chips that were the
central components of Combat cartridges and of every other
standard VCS cartridge.

A mask ROM, the classic type of ROM and one that is still in use
today, is a memory that is hardwired at the time of manufacture and
cannot be reflashed repeatedly or even programmed once in the

field. This sort of ROM is produced like any other integrated circuit, in
a lithographic process that uses a set of photomasks to etch a wafer.
Mask ROMs have high setup costs, and there is no way to make a

change, however small, without incurring these costs again. The lead
time is also long, with manufacturing taking several weeks. However,
mask ROMs have the advantage of being very cheap to manufacture
in quantity. Although they were not as flexible as other types of data
storage technologies in use at the time, such as the cassette tapes
that were used in home computing, mask ROMs were also more
durable. A cartridge with one mask ROM on it was also cheaper to
manufacture than a game board with many components on it—the
alternative that the Magnavox Odyssey had previously used on that
console’s main board, and the way that early arcade games were put
together. Generally, reusing the console’s microprocessor in
combination with a variety of different programs, each stored on a
mask ROM, was very cost-effective, in addition to being very flexible.
However difficult programming the Atari VCS was—and it was not
easy—it certainly made economic sense when compared to putting
together a new set of integrated circuits for each game.

In the arcade setting of the 1970s, it was not very important to be
able to play multiple games with the hardware in a single cabinet. So,
ROM first made its way into Gran Trak 10, Tank, and other coin-op
games as a way of storing graphics data rather than programs for
microprocessors. ROM was used differently on the Atari VCS: to
store whole game programs, code as well as data. The system was
designed to be modular and to accept different cartridges, with
different programs stored in cartridge ROM. The ports that allowed
the use of different controllers—either of the two types that shipped
with the system as well as additional ones from Atari and other
companies—were another versatile feature that offered an additional
sort of modularity.

Joysticks and Other Controllers

The Atari VCS was the first cartridge-based system to come with a
joystick controller. Although joysticks were already in use in arcades
by 1977, the introduction of the VCS joystick into the context of the
home undoubtedly did much to popularize the controller. The
system’s rubber-coated black controller with its one red button has
become emblematic of the Atari VCS and of retro gaming, if not of
video games in general. More generally, the joystick became the
standard controller for home video gaming and for computer gaming.
Joysticks are still important to modern console systems, although
now they are thumb-scale, allow more precise movement, and find
their place alongside directional pads, buttons, and triggers on the
contemporary game controller.
Combat was based on an arcade game that used joystick

controllers, a game that influenced another home unit. Coleco
introduced the dedicated Telstar Combat! system in 1977, before the
VCS hit the market that year. Like Tank, it lacked anything resembling
the Biplane and Jet games that Combat had. But it was certainly a
close cousin of the cartridge.

Telstar Combat! uses the General Instrument AY-3-8700 Tank chip,
a follow-up to that company’s AY-3-8500 Pong chip. It has four two-
way joysticks—two for each player—just like Tank. The most
successful arcade tank game, the one-player game Battlezone, also
used a two-joystick control scheme. The two joysticks controlled the
speed of the tank’s two treads in Battlezone, however; the two
joysticks per player in Tank determined rotation and velocity.

The Atari VCS running Combat, in contrast, used two four-
directional joysticks, one for each player. Even in the first VCS
cartridge, designed as it was along with the Atari VCS itself, there
arose the issue of the difference between the controller scheme of
the inspirational arcade game and the available VCS controllers. The
VCS controllers were simpler than those in many contemporary
arcade games. Although it was possible to develop new controllers,
the cost and difficulty of doing so precluded it in almost every case. It
also wasn’t tenable to produce arcade-style controls of greater

durability, higher quality, and higher cost for the home market. For
these reasons, VCS ports of arcade games would not, generally, be
able to use exactly the same control scheme as their arcade
counterparts, just as Combat could not use controllers that were
exactly like those in Tank.

Along with the lack of true originality in most VCS games—that is,
the basis of many VCS games in arcade games or licensed
properties—another closely related theme runs throughout the
history of the Atari VCS, that of the transformative port or adaptation.
When an earlier game is the basis for a VCS game, it can almost
never be reproduced on the VCS platform with perfect fidelity. The
platforms are not the same computationally, for one thing, which is
particularly important. The contexts of home play are not the same,
either. The gap extends to matters of business and to the two
different economic contexts. The mismatch in interface—the identical
controllers are not available and input cannot be provided as it was in
the earlier game—is simply one of the most visible ways in which
these underlying distinctions appear.
In the tank games of Combat, the problem was solved by loading

the rotation function and velocity function onto the same joystick, so
that left and right motion rotates a tank and up causes it to move in
the direction it is pointing. The button is, of course, used to fire. The
plane games are generally similar, but moving the joystick up or down
increases or decreases the velocity of the planes, which are never
stationary.

The chip on the VCS board that handles most of the input from
controllers is a standard one, a MOS Technology 6532. The 6532
provides several facilities. In addition to offering two eight-bit
indentllel I/O ports for controllers, it also has a programmable interval
timer, a low-level programming convenience that helps to
synchronize program execution with the operation of the graphics
system. Finally, the 6532 contains the machine’s 128 bytes of RAM.
Because of these three functions, the chip is called the RIOT
(RAM/Input/ Output/Timer); in the Stella Programmer’s Guide, it is

referred to as the Peripheral Interface Adaptor (PIA). The 6532’s 128
bytes constitute the entire store of RAM for the Atari VCS and have to
be used to hold both variables, representing things like the game
state and score, and the stack, which holds the program state when
routines are called. The Atari VCS, like other cartridge-based
systems, ran programs directly from ROM without loading them into
RAM, so RAM did not have to hold programs, as it does now and as it
did on contemporary home computers.

In addition to the joysticks, the Atari VCS shipped with two paddle
controllers. These are smaller than the joysticks and each features a
large, round wheel that rotates through a fixed arc of roughly 330
degrees, with a stop at either end. Each paddle also includes a red
button on one side. Paddle controllers (figure 2.1) are typically used
to control a game object that needs to move along only one axis,
such as the bat in Pong and Breakout. The positions of the paddle
controllers, determined with the potentiometers inside, are read using
a different and very important chip, the TIA (Television Interface
Adaptor), which is discussed in much more detail later in this chapter.
The paddle triggers, along with other controller data, are read using
the PIA. The settings of the console switches (select, reset,
color/black-and-white, and left and right difficulty) are also read from
the same component.
VCS controllers function in a very straightforward way. A particular

byte in memory represents the state of both joysticks. The left
player’s joystick state updates bits 4, 5, 6, 7, corresponding to up,
down, left, and right. Bits 0, 1, 2, and 3 map to the state of the right
player’s joystick. This allows for bits 4 (left player, up) and 7 (left
player, right) to both be 1, so that diagonal positions can be read and
movement in a total of eight directions is possible.

2.1 The Atari VCS paddle controllers work by measuring output from
an internal potentiometer. Atari also released a driving controller for
use with Indy 500. It has almost the same appearance, but its knob
rotates freely, rather than stopping at the extreme left and right.

A few additional aspects of Combat’s controls are worth noting.
Unlike the controls in dedicated home games such as the home
version of Pong and Coleco’s Telstar Combat!, the game’s joysticks
are connected by cords to the console, where they are plugged in.
This means that they can be unplugged and different controllers can
be swapped in for different games; it also means that players can sit
back away from the main videogame unit as they play. In this regard,
the Atari VCS followed the lead of the Magnavox Odyssey and the
Fairchild Channel F. The availability of the joystick controller was
something new, however. It can be used to rotate a simulated vehicle
and to control its velocity, as in Combat, but its additional degree of
freedom also allows for a player sprite to be intuitively moved in two
dimensions, with up moving the player sprite up, right moving it right,
and so on. This is the type of immediate control that helped inspire
the "direct manipulation" concept of computer interfaces in the 1980s.

How the System Computes

Steve Mayer and Ron Milner began the work on the VCS project.
They were chiefs at Cyan Engineering, a consulting firm that Atari
purchased in 1975. An important early decision that they made
involved selecting the processor that would go into the machine.
They chose the ultra-low-cost MOS Technology 6507. This chip’s
silicon is identical to that of the more popular 6502; the package was
what made it cheaper. (The package, which holds the etched section
of silicon wafer and allows wires to connect to it, accounts for a
significant portion of the cost of a processor.) The 6507’s reduced
package has fewer pins than the one for the 6502, offering only
thirteen address lines. These lines are used to designate which byte
in memory will be read or written. In the VCS, these lines are used to
address the mask ROM in the cartridges. The thirteen lines of the
6507—compared to the 6502’s sixteen address lines, which allowed
that chip to address 216 = 64K, an ability that home computers such as
the Commodore 64 fully used—meant that the 6507 was capable of
addressing only 213 = 8K.

The processor selection thus constrained the system to using no
more than 8K of memory at once. Given the tremendous cost of 8K
mask ROMs at the time, and perhaps with the idea that many
interesting games could fit in as little as 2K as Combat did, the
designers of the Atari VCS made another choice that further
constrained the system. They selected a cartridge interface that was
inexpensive, and that had one fewer address line than what was
provided by the processor’s package. This interface left the system
with the ability to address only 4K of cartridge ROM at once. Bill
Gates may have thought that 640K should be enough for anybody;
Mayer and Milner figured that 4K would do. This was actually a
reasonable choice: a wide variety of 2K and 4K games were
developed. Thanks to a technique called "bank switching" (discussed
in chapters 4 and 6), larger ROMs were eventually used in VCS
games.

Though central to the Atari VCS, the 6507 was only one component
of several. The 6532, with its RAM, controller facilities, and timer, was
another necessary part of the system. Controllers—initially, joysticks
and paddles—were another. And cartridges with ROM were
essential, too. These are some of the elements indicated on the block
diagram of the Atari VCS architecture (figure 2.2). Another very
important element appears there, but has yet to be discussed in
detail: the chip that powered VCS sound and graphics.

2.2 This high-level sketch of the components of the Atari VCS and
how they are put together, called a "block diagram," is based on a
hand-drawn one shown by Decuir in his presentation "Three
Generations of Game Machine Architecture."

Where VCS Meets TV

The processor is always called the "brain" of a computer, and,
indeed, the MOS Technology 6507 is the Atari VCS’s brain. But the

custom Television Interface Adapter (TIA) is its heart.
For sound and graphics, functions essential to a videogame

system, the Atari VCS used this chip, code-named Stella and
designed from scratch by Joe Decuir and Jay Miner. The TIA makes
programming a challenge, but also allows programmers to achieve a
wide variety of effects with a relatively small number of individual
features.

The bare-bones nature of the TIA makes seemingly basic tasks
(such as drawing the game’s screen) complex. An ordinary television
picture of the late 1970s and early 1980s was displayed on a cathode
ray tube (CRT). In a CRT, patterns of electrons are fired at glass that
is coated on the inside with phosphors. These glow to create the
visible picture. The screen image is not drawn all at once, but in
individual scan lines, each of which is created as the electron gun
slews from side to side across the screen. After each line, the beam
is turned off and the gun resets its position at the start of the next line.
It continues this process for as many scan lines as the TV image
requires. Then it turns off again and resets to its initial position at the
start of the screen. As Marshall McLuhan mused, "The scanning
finger of the TV screen is at once the transcending of mechanism and
a throw-back to the world of the scribe."2

Modern computer systems offer a facility for transcending the TV’s
electronic finger. They have a frame buffer, a space in memory to
which the programmer can write graphics information for one entire
screen draw. This facility was even provided by many systems of the
late 1970s, including the Fairchild VES/Channel F, a system that
made it to market before the Atari VCS. In a frame-buffered graphics
system, the computer’s video hardware automates the process of
translating the information in memory for display on the screen, and it
also manages graphical administrivia such as screen
synchronization.

The VCS does not provide such services for graphics rendering.
The machine is not equipped with enough memory to store an entire
screen’s worth of data in a frame buffer. The 128 bytes of RAM in the

system are not even enough to store one eight-bit color value for
every line of the 192-line visible display. There is certainly no general
way to store multiple elements per line such as individual pixels, or, at
a higher level, numerous moving objects, obstacles, and
backgrounds. The interface between the processor and the television
is also not automated, as it is in a frame-buffered graphics system.

Instead, the VCS programmer must draw each frame of a
program’s display manually to the screen, synchronizing the 6507
processor instructions to the television’s electron gun via the TIA. The
program has a small amount of time to change the TIA settings via its
numerous addressable registers. This can happen when the electron
beam resets to draw a new line (this period is called "horizontal
blank"), or when it moves back up to the top to draw a new screen (a
period called "vertical blank"). The program must also explicitly
instruct the TIA to wait for the horizontal blank or to initiate the vertical
blank, which involves keeping track of how much time the instructions
take to execute on a single line, between lines, and between frames.
Programming the Atari VCS means drawing every line of the
television display individually, making decisions about how to change
the display on a line-by-line basis rather than setting up a screenful of
pixels all at once. This task requires that the programmer write
carefully timed code that fits the motion of the television’s electron
beam. Some graphical effects demand changes to the TIA’s registers
in the middle of a single scan line. In these cases, the programmer
must carefully "cycle count" processor instructions so they execute at
the right time. While "racing the beam" is a catchier name, "pacing the
beam" is more apt, since the program might have to be sped up or
slowed down.

From the player’s perspective, the Atari VCS displays its games on
the two-dimensional surface of a television display. But from the
machine’s—and the programmer’s—perspective, the television
picture is a comb of horizontal lines, each section rendered on CRT
phosphor with the color set at the last alteration of the TIA’s registers.
Consequently, there is really no such thing as a "pixel" on the Atari
VCS. A pixel represents a fixed segment of a Cartesian grid, having

both width and height. On the vertical axis, the smallest segment of a
VCS picture is a scan line. There are 192 visible scan lines per frame
on an NTSC television.3 On the horizontal axis, the closest VCS
analogue to a pixel is the smallest amount of time that can pass
between changes to the electron beam’s intensity as adjusted by the
TIA. This is a measure of time, not of space. In the Stella
Programmer’s Guide it is referred to as a "color clock cycle" or a
"color clock," a reference to the internal clock of the TIA itself.4 The
highest resolution graphics the TIA can draw are sprites, which can
be as small as eight color clock cycles across (figure 2.3).

To facilitate the cycle counting mentioned earlier, the TIA is
synchronized to the 6507 clock so that three TIA clock counts elapse
for every machine cycle on the processor. Most 6502 instructions take
three or four cycles to execute, effectively limiting the horizontal
resolution possible without the use of sprite graphics. For example,
simply changing the background color so that a part of the scan line
is drawn first in one color and then in another involves storing a new
value in the TIA register that holds the screen background color. A
store requires three of the 6502’s processor cycles to complete.
(Practically, more computation has to be done to get the new color
value ready. This might involve loading an eight-bit number or
performing some mathematical operation that yields a new value.)
Because each machine cycle corresponds to three color clock cycles,
and because the instruction to store a new value in the appropriate
TIA register is essential in every case, a strip of background color
cannot be less than 3 processor cycles × 3 color clocks per processor
cycle = 9 color clocks wide—just a bit more than the width of a sprite.

2.3 The smallest vertical unit in the VCS graphics system is a single
scan line. The smallest unit of horizontal space is a color clock. The
detailed view of Pitfall Harry’s head and neck on the left clearly shows
that the "pixel" defined by these is rectangular, not square. This
shape became a design feature; for example, the rectangular blocks
help Pitfall Harry’s legs appear longer than they would with square
pixels. The Combat biplane sprite on the right appears to be
comprised of square pixels because that program u a two-line kernel,
which updates the sprite graphics only every two scan lines.

Figure 2.4 depicts a typical VCS frame, this one from Pitfall!,
including both the visible parts of the picture and those during which
the electron beam repositions itself. The first three lines are called
"vertical sync." During this time, the VCS signals to the television that
a new frame needs to start. The television responds by beginning to
reposition the electron gun.

Next comes the "vertical blank" period, which, as mentioned earlier,
represents the time it takes for the television to actually reposition the
beam for the next frame. This takes as long as it does to draw 37
scan lines. During this time, the VCS program can handle game
inputs and run any logic needed to set up the new frame of image
and sound.

Next comes the main television picture. Each scan line of television
picture is composed of a horizontal blanking period of 68 color counts,
or a little more than 22 machine cycles, and a visible picture period of
160 color counts, or a little more than 53 machine cycles. The
numbers at the top show the clock counts and those at the bottom
show the machine cycles. The short horizontal blank period is used to
set up the next line of the display, for example, changing sprite and
playfield graphics. If the programmer needs to make a change mid-
scan line—for example, changing playfield graphics for an
asymmetrical playfield—it is necessary to cycle count to insure the
TIA registers change at exactly the right position in the scan line. The
relative size of both a color clock and a scan line are marked in
relation to the screen in figure 2.4.

2.4 The Atari VCS television image is broken down and key regions
and measures are indicated. This television protocol image is based
on the one in Wright, Stella Programmer’s Guide.

Next comes the overscan period. At the time the Atari VCS was
designed, the position of the CRT in the television casing varied
considerably. The overscan period is a "safe zone" to account for this,
and it provides the programmer with another thirty scan lines of time
to run program logic.

For Two Players

Combat imitated the coin-op games Pong and Tank, and the home
versions of these games, in an important way: it was a game for two
players, as the cartridge label clearly stated. Instead of providing
simulated opponents of some sort, as many later games would do,

Combat offered a playing field and a means by which two players,
sitting side by side, could compete against one another.
It was common for an arcade machine to provide a one-player

challenge. Pinball and skeeball games did this, pitting the player
against difficult terrain. Later arcade games like Lunar Lander and
Space Invaders would offer a similar challenge for a single player.
But another concept involved something like a table tennis setup.
With this scheme, instead of having a challenging landscape to
traverse or a simulated opponent with artificial intelligence, human
players provide the skill and intelligence that make the game
enjoyable. Very early computer and video games, such as Tennis for
Two, Spacewar, the games of the Magnavox Odyssey, and Pong,
were designed along these lines.

Of course, a single player can toy with a two-player game. A
common experience among many young VCS players was that of
"one-player" Combat, in which a single person takes one of the
joysticks, goes after an inert tank or cruising plane, and pummels the
unconscious enemy with repeated fire. Although such a practice does
not represent the height of videogame experience, this mode of
interaction does allow players to explore the different variations and
learn something about how tanks and planes function in each. It also
offers something to do with the title when a second human player isn’t
around.

A player using the left joystick and progressing through the
twentyseven games included in the Combat cartridge, alone or with
an opponent, finds that the games vary in several significant ways.
There are six game categories. Tank, the first category, has tanks
firing either a straight or guided missile in one of three types of
terrain. Shots do not rebound off the walls in the tank games, but they
do in games in the next category, Tank-Pong. In some of these
games, a "billiard hit" (a shot that rebounds at least once) is required
for a kill. There are also Invisible Tank and Invisible Tank-Pong
games, in which one’s tank can only be seen when it fires or is hit.

The remaining categories of game are the two plane games,
Biplane and Jet, which can be played with or without obscuring
clouds. The biplanes, which appear in profile, climb when the joystick
is pressed down and dive when the joystick is pressed up. Moving the
joystick to the right causes them to gain speed (up to a point) and
moving the joystick left slows them down. In addition to the straight
and guided missile options, Biplane games 17 and 18 offer a different
armament—machine guns. In the final category of games, the Jet
games, the jets are seen from above. Up and down increases and
decreases the speed of the plane, and right and left turn the plane
clockwise and counterclockwise. In some Biplane and Jet games—
19, 20, 25, 26, and 27—the players control multiple planes that fly in
formation. There are even two asymmetrical games in which the left
player has one plane (that is harder to hit) while the right player has
three (that together fire more shots).

Lopsided play was supported in other ways. Although the basic
framework of the videogame system was one of equality, evenness,
and fairness—identical joysticks or paddles for each of the two
players, symmetrical playing fields, similar-looking sprites with similar
controls—the VCS designers allowed for this symmetry to be broken.
The left and right difficulty switches can each be set independently to
"A" (harder) or "B" (easier). In Combat, setting a switch to "A"
decreases the range of one’s fire and, if a plane game is being
played, causes one’s plane to fly at a slower rate. This was also in
keeping with cultural norms, which require that game equipment and
courts be evenhanded but allow for difficulty adjustment by
"handicapping" the more advanced player—removing a pawn before
play starts in a chess game, for instance, or burdening a horse with
an impost that must be carried in a race. By featuring difficulty
switches, the Atari VCS offered itself for use by pairs of players who
might be older and younger siblings, children and parents, novice and
expert.
It was sensible, given the 2K ROM size of Combat and the other

limitations of the Atari VCS, for developers to provide a cartridge with
several closely related games. The different variants use much of the

same code, and the logic that is specific to each variant lets different
players excel at different games. This allows people to each prefer
their own favorite variants, to beat their friends at some while being
much weaker at others, and to generally have more fun with the
cartridge. To understand how these variants were realized in Combat,
it is necessary to look at the code itself in more detail.

Combat’s Code

Although VCS programming is an arcane practice, people today—
even those with limited programming experience—can read and
understand VCS programs. Even when the machine code that is
stored in a ROM is the only thing that is available, it is possible to
make some sense of a VCS program through disassembly.

An assembler takes the instructions in an assembly language
program—the source code—and converts them into the correct
references for processor execution. Assembler code is nearly
identical to machine code, and corresponds directly. The only
difference is that the former provides convenient mnemonics and
reference names for processor instructions, memory locations,
registers, and so forth.

Assembler: LDA #2

Machine: A9 02

Compilers for languages like C and Java take higher-level
commands and convert them into sets of machine instructions.
Assemblers simply reformat processor instructions. For this reason, a
VCS ROM is essentially just a copy of its source code, obfuscated by
the process of assembly. A disassembler can be used to convert
ROM instructions and data back into readable assembly language
code. Code obtained in this manner does not include any natural
language information labeling memory locations, or lines, or
subroutines, but someone familiar with the platform, given some time,
can often usefully reconstruct a program’s source code using this
technique.

When a program has been carefully disassembled and commented,
as has been done with Combat, understanding the program becomes
much more tractable. A thorough disassembly of the Combat code by
Harry Dodgson, Nick Bensema, and Roger Williams—in combination
with resources that are available online such as the Stella
Programmer’s Guide and Atari 2600 Programming for Newbies—
makes it possible for the serious student of the Atari VCS to trace
through the program and understand how it was put together.
Rather than trying to repeat the line-by-line analysis of code that

has already been done in the Combat disassembly, we will outline the
high-level structure of the program and zoom in on only a few telling
details. In later chapters, consideration of other sections of cartridge
code will continue to inform our analysis of the relationship between
the VCS platform and the creative works programmed for it.
The basic flow of Combat follows the progress of the TV’s electron

beam, busily preparing each line that is to be drawn while the current
one is appearing on the screen. During the vertical blanking interval,
as the beam moves from the bottom of the screen to the top, the VCS
running Combat does the computation necessary to process input,
deal with game logic, and update the score if necessary.

The first routine in Combat’s main loop checks the position of the
VCS console switches. A game can be reset at any time, so it is
necessary to check these controls each frame. This routine allows
different game variations to be selected—if a game is not already in
progress—and, if a game is in progress, it also checks to see whether
time is almost up and the score should be blinking. This routine also
underscores the fact that the programmer is responsible for handling
every interaction on the machine. The Atari VCS has no operating
system to intercept inputs and respond to common ones. Thus, even
though the reset switch is clearly labeled "reset" on the console
cabinet, it is up to each cartridge programmer to write a program that
responds to the switch being pressed. The programmer can choose
to have a cartridge do something other than reset the game when the
reset switch is closed, just as different games might use the joystick

button for different actions. Although this was rare, there are
examples of games that override the function of the console switches
as printed on the console. One is Space Shuttle: A Journey into
Space, discussed in chapter 6.

The next routine sets the VCS number-size registers and, if a game
isn’t under way, ignores joystick input and cycles the screen’s colors
in a simple sort of attract mode. The attract loop also serves as a
screensaver, insuring that a game left unattended will not burn its
image irreversibly into the phosphors of the CRT. In the routine after
this, the joystick positions are checked for both tanks or planes
unless one has been temporarily immobilized by being hit. After this,
a lengthy routine checks for collisions between the missiles and the
tanks or planes, between tank and wall, and between tank and tank.
With this information determined, the position of tanks or planes can
be updated in the next routine. While that routine handles the
translation in space that needs to be done, another one is needed to
deal with rotation. So the next routine updates the orientation of the
tanks or planes and selects the correct sprite image from sixteen
bytes of RAM. A complex calculation must then be done to convert
the score from its internal representation as a binary-coded decimal
to an offset that can be used to look up the correct ROM data to
depict a numeral. Finally, after all of this is done, a routine called the
"kernel" is called to draw the display by setting up the scan lines one
at a time. The kernel is the last routine in Combat’s main loop.

Game Variations

The game’s variations are stored entirely in a small lookup table of
set tings which the main program reads and writes to appropriate
RAM locations at the start of a game. To allow for variations in sprite
graphics, the TIA offers two number-size registers that enforce
automatic modifications to the sprites when drawn on-screen, named
NUSIZ0 and NUSIZ1. In particular, the programmer can change the
number of sprites drawn on a single line as well as the size of the
sprites. A missile graphic, which is always the same color as its

parent player sprite, can also have its size adjusted. Adjustments to
the sprites are made by setting one or more of the lowest three bits
on the number-size register. The following table offers a summary of
the size and number adjustments afforded by this register:
D2 D1 D0 Description
0 0 0 one copy

0 0 1 two copies—close
spacing

0 1 0 two copies—medium
spacing

0 1 1 three copies—close
spacing

1 0 0 two copies—wide
spacing

1 0 1 one copy—double sized
player

1 1 0 three copies—medium
spacing

1 1 1 one copy—quad sized
player

The number-size register offers an easy way to modify the
appearance and behavior of player sprites. Combat offers the most
transparent use of this technique, using the number-size settings as
the basis for many of its twenty-seven game variations. The biplane
and jet plane variations that double, triple, or stretch one or both
sprites use the number-size register to accomplish what would
otherwise have had to be done through complex on-the-fly graphics
processing or by storing additional sprites in precious ROM—only 2K
of which was allotted for Combat. For example, variation 19 is "2 vs. 2
Bi-Plane," in which each player controls two planes that fly in
formation. This variation does nothing more than set both NUSIZ0
and NUSIZ1 to the binary value %00000001, which corresponds to
"two copies—close" in the numbersize register table provided earlier.
Variation 20 is "1 vs. 3 Bi-Plane," in which player one controls a large
plane and player two controls three small ones in formation. This

variation sets NUSIZ0 to %00100111 (quad-sized player) and NUSIZ1
to %00000110 (three copies—close). These number-size registers
alter the timing and frequency with which the TIA adjusts the color
value to draw each sprite. For example, when doubled (%00000001),
the TIA draws each bit of a sprite for two color clocks instead of one.

Variation 20 demonstrates the opportunities and limitations of the
number-size registers for gameplay modification. Player 1 is at a
disadvantage, because that player’s plane is larger and therefore
more vulnerable to fire. To counterbalance, this variation increases
the size of the missile so that player 1 does not have to be as
accurate: the third flipped bit in %00100111 increases the size of
player 1’s missile to 4 TIA clock cycles, or four times the size of player
2’s missiles. However, when player 2’s sprites triple, the TIA
automatically triples its missiles as well, making things easier again
for player 2. A more appropriate orthogonal design approach for this
variation might have been to speed up the larger player and/or the
missile, thereby offsetting player 1’s increased target footprint.
However, to do so would have required changes in the game’s logic,
not just in the data settings that map variation to sprite appearance.
The trade-offs involved in such a decision are typical of those faced in
VCS game programming.

Interestingly, the game variation matrix is duplicated almost exactly
as it appears in code in the Combat manual (figure 2.5). The grid of
options in the manual is expanded beyond the compact
representation it has in ROM, but the manual’s table is more or less
just implemented in code as a place where the program looks up the
features of a particular game.

Paddles, Video Olympics, and AI

Video Olympics was another of the original launch titles for the Atari
VCS, hitting the shelves before the Amateur Sports Act of 1978
restricted the use of the term "Olympics." The cartridge was coded by
Joe Decuir, a programmer of Combat and a developer of the VCS

chipset. Initially, Decuir wrote a version of Video Olympics as test
code for the VCS hardware; he later developed that into the finished
product.
As Combat was the VCS Tank, so Video Olympics was the

system’s Pong. The first set of game variations is in fact called
"Pong," and the Sears version of the cartridge is Pong Sports. The
cartridge includes fifty variations and allows the use of one or two
pairs of paddles—each pair plugs into one of the VCS’s two ports—to
support up to four players at once. The difficulty switches can be
used to adjust the size of the bats, and different variants allow special
moves such as "whammy" (change the angle of deflection as the ball
is hit) and "catch" (grab the ball).

2.5 The game variation reference from the Combat manual next to a
section of data in the game’s program ROM (obtained by
disassembling the cartridge’s machine code). The tables differ
visually because two columns have been switched. The high bit (the

leftmost one) is used in the code to indicate whether the variant is a
tank game or a jet game.

Four-player Pong was provided by certain other dedicated Atari
systems from 1977, including Ultra Pong Doubles, which Sears
labeled Pong Sports IV. This product offered sixteen game variations
in four categories: Pong, Hockey, Street Tennis, and Street Hockey.
There was also a basketball Pong-like game available for the home,
in Atari’s 1977 Video Pinball. But no system offered the array of
choices that Video Olympics did: Pong, Super Pong, Pong Doubles,
Quadrapong, Soccer, Foozpong, Handball, Ice Hockey, Basketball,
and Volleyball. True, some of the available game variations seem to
be particularly strange, unplayable caricatures of sports, but perhaps
this feature of Video Olympics was prescient. In the years after its
release, the Atari VCS would serve as a platform for a huge variety of
games. Some of these would prove to be great fun, while some would
be inscrutable flops.

From the standpoint of the system’s launch in 1977, the really
interesting game variations in Video Olympics may have been not the
four-player ones but the two one-player "Robot Pong" variants that
were offered—the first ones on the cartridge. In the austere 2K
cartridge, amid the fifty variations in numerous different categories,
there was this particular spark of something that would later, with
reference to other simulated computer game opponents, come to be
called "artificial intelligence."
Video Olympics, along with Larry Kaplan’s Video Chess the

following year, were early examples of AI in games on any platform—
but they were not the first by any means. Way back in 1956, Edmund
Berkeley created a tic-tac-toe computer called "Relay Moe."5
Constructed of relays and using a cam to alter a display, Relay Moe
could play a perfect game of tic-tac-toe, winning or drawing every
time. Berkeley’s effort was not the first game-playing AI; Christopher
Strachey had created a checkers-playing program on the Manchester
Mark I some five years earlier.6 But Relay Moe offered something
special. It could be tuned to play an imperfect game.

Relay Moe was designed for a single purpose, and its unusual
design reflects choices that are suited to the game of tic-tac-toe. As a
general-purpose computer and videogame system, the constraints of
the Atari VCS made AI programming fairly difficult, mainly because
the limited number of processor cycles available between screen
draws made complex computer behavior difficult to implement. Video
Chess managed to offer a complex AI opponent, though, one capable
of playing a convincing game of chess. Chess is obviously much
more complicated in many ways than is Pong. To deal with this
complexity, Video Chess was also able to take advantage of the slow
pace of a typical chess game to increase the number of processor
cycles used in making a move. Chess is played asynchronously—
one player moves and then waits for the other. For this reason,
Kaplan was able to split up the computational work of the chess-
playing AI across multiple frames of the television picture. From the
player’s perspective, the computer appears to be "thinking" about its
move during a game of Video Chess. The AI provided on the
cartridge left some people impatient, but it did work remarkably well.
A similar technique couldn’t have driven the AI in the Robot Pong

variants of Video Olympics. Pong may be a significantly simpler game
than chess, but it also much faster-paced. Rapid screen updates and
twitchy response times are hallmarks of the game, and are features
also found in many other early and contemporary video games.
Furthermore, Video Olympics was a 2K cartridge that already
boasted fifty game variations. Storing a large set of instructions or
lookup tables wasn’t an option for its Robot Pong games.

Relay Moe’s capability for perfect and imperfect play offers an
interesting example of an adaptable opponent—an early AI within a
game. Playing against a perfect tic-tac-toe competitor, and playing
well, can only ever result in a draw. This may be computationally
impressive the first time, but it isn’t very fun. Opponents, computer or
human, become interesting when they make mistakes—or more
accurately, when it becomes clear that they might make mistakes
under certain circumstances. Such mistakes highlight weaknesses,
which players can exploit as part of a strategy.

Edmund Berkeley realized this fact and made it possible to adjust
Relay Moe to play less than perfectly. In the case of tic-tac-toe, an
occasional mistake is the only way to avoid a draw against a good
player. Once the player knows the machine has the capacity to make
mistakes, playing multiple matches with the computer becomes much
more interesting. The same is true of playing tic-tac-toe against a
human player subject to distraction or to an occasional flub.

Effective game AI needs to simulate good, "intelligent" human
behavior. But as Relay Moe demonstrates, convincing AI also needs
to simulate certain types of unintelligent human behavior, in the form
of mistakes that make play more fun. The AI in the Robot Pong
games does this by simulating both the correct placement of the
paddle and the occasional imperfection inherent to a real human
opponent.
The AI moves the paddle to match the vertical position of the ball at

any given time, appearing to follow it across the playfield. Such an
algorithm probably does not match most human players’ technique
when playing Pong, but it is not entirely far-fetched, either. Following
the puck with the paddle is a common strategy in tabletop air hockey.
If the computer simply did this and matched the AI player’s paddle
position to that of the ball at all times, the result would be even worse
than the perfect tic-tac-toe machine. The game wouldn’t just be a
draw—it would be one in which the human player could never score a
single point. To avoid this blunder, Robot Pong’s AI slows itself down,
never quite following the ball exactly while still appearing to do so.

The effect is accomplished very simply. When the ball is first
served, the computer positions the AI paddle so that its top edge is
vertically aligned with the ball. To move the ball, the program adjusts
its vertical position by an offset value each frame of up to ±2 scan
lines. This value corresponds with the direction in which the ball is
moving (up or down), as well as with its speed. Each time the kernel
adjusts the vertical position of the ball, it also adjusts the paddle.

To help simulate the human error inherent in precise paddle
positioning, the AI paddle skips its vertical adjustment every eight

frames. The resulting behavior is visibly unnoticeable, but it allows
the computer player’s aim to drift enough that it occasionally misses
the ball. It is also technically trivial to implement, requiring only a
simple mask using the binary AND operation, for which there exists a
corresponding 6502 instruction. The programmer can test to see
whether the result is zero with another single opcode, branching if
needed to skip the instructions that move the paddle.

Even this behavior must be modified slightly for the game to work at
all. If the AI player simply stopped tracking the ball every eight
frames, it would be hopelessly out of sync within a few seconds. To
prevent this, the AI follows a secondary ball-tracking plan near the top
and bottom of the playfield. If the ball collides with one of these walls
when the paddle is also aligned with it, the paddle readjusts,
recovering from any drift that had accumulated since the ball last
struck the wall. The result is a stochastic misalignment and
realignment of computer paddle and ball.
Together, these two techniques produce a convincing robot player

of Pong—one that makes mistakes, but not too frequently. One way
for the human player to take advantage of the AI’s behavior is to
depress the paddle controller’s single, red button; this speeds up the
ball when it strikes the player’s on-screen paddle. However, if the
computer opponent successfully returns the ball, it will be going just
as fast, making the less precise, more fallible human player more
likely to miss the shot. Another technique—one that takes into
account the AI behavior more directly—is to attempt to bank the ball
off a wall on the human player’s side of the screen. Because the AI
readjusts itself only when it meets the ball at the top or bottom of the
playfield, a fast-moving banked ball at a large angle has a higher
chance of gliding past the computer’s paddle. A slice can increase
the angle of the ball, causing it to move ±3 scan lines compared to the
computer paddle’s ±2, and thus increasing the player’s likelihood of
getting a shot past the computer.
The Robot Pong games were coded to animate a computer

opponent so that a human player would find playing against it

challenging and fun, and they were coded about as well as any one-
player Pong-like game has been. In fact, the Robot Pong variants
were convincing enough to serve as the basis for a new one-player
mode in the version of Pong that shipped in the 1999 Windows PC
collection Atari Arcade Hits: Volume 1. As developer Jeff Vavasour
explained, "The original Pong could only be played by two human
players, as it had no AI. To maintain the sense of authenticity, our
computer AI with the default settings plays by the exact same rules
as the AI found in Atari 2600 Video Olympics."7 It is interesting that by
1999, the very idea of a game that required two players (rather than
serving as an optional addition to a single-player game) was unusual
enough to give the creators of the Atari Arcade Hits collection pause.
The addition of a oneplayer mode to the emulated coin-op Pong
attempts to balance authenticity and marketability in the adaptation.
The Video Olympics AI works in a fairly simple way, but it is effective
enough to be fun, and was effective enough to contribute to the
development of computerized opponents in late-1970s video games.

Though there were several other successful paddle games for the
Atari VCS, including the arcade ports Breakout and Warlords, the
potentiometer of Pong gave way quickly to the joystick, the controller
that became emblematic of the system. Later releases of VCS-
compatible systems such as the Atari 2600 Jr. and Atari Flashback 2
included only the joystick controller.

Revisiting Combat

At the gaming retailers’ expo E3 in May 2000, Harmon Leon of the
nowdefunct gaming site DailyRadar.com set up a booth that featured
an aluminum-foil-wrapped Atari VCS with a Combat cartridge
plugged into it. Leon announced through his megaphone and using a
hand-lettered sign that this system was actually a new game called
CyberBattle 2000, enticing several expo attendees to play it.8 A
humorous review of CyberBattle 2000 appeared on DailyRadar.com
after the conference and read, in part:

It’s refreshing to see a videogame that pares
down creativity, revealing the very essence of
gameplay. The graphics engine, designed by ex-
Rare and id programmers, manages to recreate
the feeling of a battlefield, without overwhelming
the player with unnecessary distractions. The
glowing battlecraft reveal a subtle design ethic
unmatched by any similar title. . . . Musical
influences have been borrowed from many
sources, most notably Leonard Cohen and Philip
Glass. The result is an ambient simplicity with a
Mooglike analog vibe. . . . [That] brings us to the
plot—a plot so delicately strung that absolute
attention must be paid as it unwinds delicate
threads of intrigue and suspense. The twist at the
end of the game is stunning. Cyberbattle 2000
revels in the fact that no other game will ever
achieve this perfect balance between simplicity
and style.9

Today, many remember Combat fondly and some still play it
occasionally. Although the DailyRadar.com review was mockery
(mainly of videogame reviewing rather than Combat itself), there are
plenty of sincere contemporary reviews that are quite positive. One
reviewer calls the cartridge a "true classic" and notes, "While the
graphics can only be described as grotesque, Combat has great
gameplay. . . . Besides Pong, Combat may be the ultimate two-player
game."10 Another writes, "This is the Charlie Chaplin of the game
world. . . . Looks crap but is really, really good."11 Although there is
some dissent, most of those who have written about Combat recently
still praise it. It has been rereleased in recent years as part of the two-

https://calibre-pdf-anchor.a/#a338
https://calibre-pdf-anchor.a/#a339

player Atari Flashback 2, a VCS-compatible unit with forty built-in
games. These include a never-before-released sequel developed by
Atari: Combat 2.

Reappearances of Combat itself are hardly the only legacy of the
cartridge. Furthermore, it is not really reasonable to look for signs of
Combat’s influence in specific categories such as later tank games
and games that involve two-player battles. What the cartridge really
contributed was a compelling demonstration of the Atari VCS, an
advertisement for the system’s two-player capabilities and its ability
to pack many game variants into a single cartridge. Combat showed
that the system could be enjoyed by many people, and that through
difficulty settings and variants, people of different ages and aptitudes
could play against each other enjoyably. In this sense, a later tank
game such as Spectre may be a less remarkable descendant of
Combat than is Wii Sports.

Combat stood first in the line of VCS cartridges, where it made a
strong case to players and set a good example for developers. It
certainly didn’t exhaust the gameplay, graphics, or sound capabilities
of the Atari VCS, but it showed off what the system was made to do
and how it could be fun. Thanks to the programmers who would
continue developing this line of cartridges at Atari and elsewhere, the
platform would go on to support all sorts of innovation and to do
things that the original VCS developers—and the programmers of
Combat—almost certainly never imagined.

Adventure [3]

What video game could be more typical than an action-adventure?
Any canon of computer games would certainly include the Ultima
series, along with The Legend of Zelda and its successors; Tomb
Raider is also an action-adventure game, and the Grand Theft Auto
series borrows from that genre as well as others, such as the driving
game.

Before all of these looms Adventure, Warren Robinett’s second
game for Atari. (His first, Slot Racers, was a combat racing game in
which each player navigated a rudimentary slot car through a maze,
attempting to fire a bazooka and hit the opposing player’s car.)
Robinett was the first Atari employee who had a degree in computer
science, which may have had something to do with his visiting the
Stanford Artificial Intelligence Laboratory and encountering another
kind of maze there—one that would inspire the cartridge he created.
The game he devised was not at all obvious at the time, but it would
manage to establish the basic conventions of the graphical
adventure.

Text Adventure into Action Adventure

A few years before Robinett rode his bike between Sunnyvale and
Menlo Park, Don Woods added on to Will Crowther’s code to
complete the canonical version of the PDP-10 program Adventure.
This Adventure, which made its appearance in 1976, was the first
example of the form that would be called the "text adventure" and that
later still would be called "interactive fiction." Crowther and Woods’s

original specimen combined some elements from the fantasy
roleplaying game Dungeons and Dragons with aspects of the
experience of caving, one of Crowther’s hobbies. The canonical PDP-
10 Adventure, like Crowther’s even earlier version, has no graphics
whatsoever. It divides space into discrete areas and explains those
spaces using textual descriptions.

To interact with the game, the player issues textual commands to
move through an often-confusing series of rooms and passages and
undertake actions in those spaces. The player moves by naming
compass directions (GO NORTH) or destinations (BUILDING), and
performs actions by writing simple verb-noun sentences (GET
LAMP). The program can be accessed on a fancy video terminal, but
a Teletype or other print terminal, of the sort that was common in the
mid-1970s, works just as well. A typical exchange looked like this:

›go west
It is now pitch dark. If you proceed you will likely fall into a pit.
›light lamp
Your lamp is now on.

You are in a room filled with debris washed in from the surface.

A low wide passage with cobbles becomes plugged with mud and
debris here, but an awkward canyon leads upward and west. A note
on the wall says "MAGIC WORD XYZZY".
A three foot black rod with a rusty star on an end lies nearby.

Robinett became enamored with the PDP-10 Adventure. Once Slot
Racers was complete, he was determined to create a VCS
adaptation of the textual game.1 Reflecting on his work twenty-five
years later, Robinett called this effort "a combination of passion and
stubbornness."2 His passion was for Crowther and Woods’s game,
and his stubbornness was a refusal to let the Atari VCS’s utterly
different hardware prevent him from adapting the game and paying
homage to it.

Around the time when Robinett became fascinated with the PDP-10
Adventure, some programmers at MIT did as well. Dave Lebling and
Marc Blanc, working with Tim Anderson and Bruce Daniels, kept the
format of the text adventure for their Adventure-like game, which they
called Zork. (This term was used at MIT to designate an incomplete
program.) They developed an elaborate PDP-10 version of Zork by
1979, at which point three of them joined forces with others to found
Infocom, a company which became the major commercial text-
adventure developer in the United States. Infocom released versions
of Zork for many home microcomputer platforms of the early 1980s,
including the Apple][, the Commodore 64, the Atari 400/800, and the
IBM PC.

The development of the text-adventure genre, on the one hand, and
the action-adventure genre, on the other, forked off from Crowther
and Woods’s Adventure at a very early point, long before the general
public even knew that Adventure existed. This type of inspiration and
divergence, caused by developers’ casual encounters with research
or amateur work and their interest in reimplementing or improving it,
was common at the time. The PDP-10 Adventure was an experiment,
a diversion created by hobbyists. Although it is easy to forget about
this in today’s highly corporate videogame marketplace, many
important games have been developed in such a way.

The influence of the text-based Adventure on Robinett was quite
accidental. Today, the market pulls many of the strings of videogame
production. But the canonical PDP-10 Adventure was never
purchased or sold; it was, instead, distributed in what was informally
called the public domain. Anyone with the right platform could install
and play the PDP-10 Adventure if they wanted to do so. This helps to
explain why Microsoft was able to publish a port of Adventure in 1981
without consulting or paying Crowther and Woods, and why Atari
could market Robinett’s more distinctive VCS version using the same
title.

Virtual Space

Text adventures render their setting and their spaces as language.
This may seem like an unnatural mode in which to understand
something spatial, but text adventures can represent space
effectively, even portraying spaces in figurative or unusual ways to
create interesting puzzles for the player.
The Atari VCS was not built to present text in the way that a PDP-10

or a TRS-80 or an Apple][was. It has no images of characters built
into ROM and no facilities for text rendering and manipulation.
Although VCS programmers did devise ways to allow something akin
to typing on the machine, these solutions were kludges at best, never
offering the kind of keyboard experience that was familiar to users.

Instead, the console is engineered to display graphics and play
sounds. As described in the previous chapter, the machine offers a
low-resolution playfield, two sprite graphics (each with a
corresponding missile), and a ball graphic. Translating the first text
adventure had to mean somehow doing with the Atari VCS’s primitive
graphics what the PDP-10 Adventure did with prose. Robinett’s main
innovation in Adventure was devising an approach to the graphical
representation of a player’s movement through a complex space.
Robinett explained: "I had a scheme for adapting the text dialogue of
Adventure into a video game: use the joystick to move around, show
one room at a time on the video screen, and show objects in the room
as little shapes."3

Where a text adventure would have defined a single location, or
"room," with a description, a graphical adventure would display an
image of a virtual space on the screen. The player would move a
representation of a character around in this space. And to move
between portions of the larger space of which the room is a part, the
player would move that representation of a character to one of the
edges of the current space, so that it would appear on the opposite
end of an adjacent space, which the game would draw anew. Future
action-adventure games—most notably, The Legend of Zelda—used
this same method of rendering a large virtual space in screen-sized
segments.

To understand how Robinett implemented his solution in Adventure,
it is necessary to say more about TIA playfield graphics and
Robinett’s own experience authoring Slot Racers.

To give the sense of a room or enclosed space, Adventure needed
real graphical edges. As Robinett said, "In a text adventure game, a
room is a single location. Although there are passages to other
rooms, the room itself has no internal structure. . . . A single room can
show a simple maze on the screen, with passages going off the
screen to other (as yet unseen) maze rooms. The walls of the maze,
of course, block . . . movement. A 4 or 5-room maze can be quite
complicated."4

The problem is one of boundaries. Spaces need to have well-
defined boundaries to be comprehensible. Combat and Slot Racers
already made use of a facility of the Atari VCS to provide such
boundaries: TIA playfield graphics, those low-resolution screen
graphics that the program can specify in blocks. The display supports
forty blocks of playfield per line. The program can change these
between (or even during) each scan line of the television display.

To reduce the amount of memory on the TIA chip, Decuir and Miner
devoted only three bytes of storage to playfield graphics, of which two
and a half are actually used by the display. The registers’ names are
PF0, PF1, and PF2 (PF stands for "PlayField"). PF0 stores only half a
byte, or four bits, and the other two store a full byte, or eight bits. Two
eight-bit and one four-bit playfield storage locations amount to twenty
bits of space (8 + 8 + 4 = 20), or exactly half of the forty blocks actually
displayed on the screen. The TIA can be configured to automatically
double or mirror those

3.1 A clear view of the horizontal symmetry that is usually seen in
VCS playfield graphics—in this case, from Combat. The left half of
the screen shows how the playfield data maps to the TIA’s playfield
registers. The TIA does not write each of the three PF registers in the
same order: PF0 is written from the low bit to the high bit of the upper
nybble (half-byte), PF1 is written from the high bit to the low bit, and
PF2 is written from the low bit to the high bit. This method simplified
the chip’s circuit design, but it also made complex playfield routines
like scrolling more difficult to program.

twenty blocks on the second half of the display. The programmer
does this by setting (mirror) or clearing (double) the lowest bit of the
TIA’s CTRLPF (ConTRoL PlayField) register.
This capability of the Atari VCS most directly accounts for the hori

zontal symmetry of the playing field in Combat and Slot Racers
(figure 3.1). In Combat, the walls in the tank variants and the clouds in
both sorts of plane variants are drawn with playfield graphics. The
tracks in Slot Racers are drawn in the same way. The reason for this
symmetry being implemented in hardware in the first place had to do

with the two-player inspirations for the machine. Pong and Tank were
two-player games, with a human controlling each player. The games
set both players up with similar tools and obstacles—one paddle or
tank, the same set of walls, and so forth, literally evening the playfield,
as is culturally conventional for games of this sort.
Forming an arena accounts for one of two uses of playfield graphics

in early games like Combat and Slot Racers. In addition, they are
used at the top of the screen to display scores. One of the
innovations that distinguished Home Pong from Tennis on the
Odyssey was a score display of the sort that the arcade Pong also
sported. Playfield graphics in a doubled state are used to render the
score. Setting the second bit in the CTRLPF register described earlier
gives the left half of the color of player 1, and the right half the color of
player 2.
The TIA is responsible for taking the graphics data and color stored

in each of its registers and modulating the CRT to display the result
properly. For this reason, it is very easy to determine whether two
different elements (such as a sprite and the playfield) overlap.
Overlaps of different registers on common positions are called
"collisions." The TIA provides a set of programmer-readable collision
latches for each pair of graphical objects, indicating whether the two
objects are intersecting. Collision detection is a common feature of
graphical video games, but it is often a bit tricky to code up. Thanks to
the TIA’s provision for collision detection in hardware, it is easy to
implement things such as shooting or being shot by missiles, running
into a wall, or consuming something. All the program has to do is read
from a set of memory-mapped registers reserved for collision.

Combat and Slot Racers had already used collision detection to
prevent their tanks and cars from passing through maze barriers. The
VCS Adventure extended this use of collision detection to define
spaces to explore rather than just spaces where one can seek cover
from incoming fire. Likewise, the cartridge’s translation of text-
adventure space into actionadventure space comes from the use of
playfield graphics as enclosures. Whereas the PDP-10 Adventure

describes the interiors of spaces, the VCS Adventure defines their
boundaries; exploration in action-adventure games involves testing
and discovering the edges of spaces at least as much as it involves
exploring their interiors. To allow for this type of exploration, Robinett
had to devise a new way to use playfield graphics to describe a larger
space.

Movement

Both the VCS Adventure and its PDP-10 inspiration construct a large
virtual space by coupling many smaller spaces together and allowing
the player to move between them. But though text adventures
emphasize movement between spaces, action-adventure games
emphasize movement through and within spaces. In the VCS
Adventure, the player does not merely press the joystick in a
compass direction to go to the next screen. Rather, the player moves
a square around on that screen, perhaps choosing to continue to the
edge so that the square moves off the current screen and onto the
next screen.

This movement set the standard for later action-adventure games,
including the tile-based games in the Ultima and The Legend of Zelda
series. Even though most contemporary action-adventure games use
threedimensional (3D) rendered worlds rather than two-dimensional
(2D) top-down ones, the concept of movement from room to room, as
in a castle or dungeon, persists. Robinett’s solution to contiguous
movement through space may seem obvious to us now, but it
required a great deal of engineering, given the nature of VCS screen
graphics. The Adventure manual’s quaint explanation of screen-to-
screen movement testifies to how novel and unusual the scheme was
at the time: "Each area shown on your television screen will have one
or more barriers or walls, through which you CANNOT pass. There
are one or more openings. To move from one area to an adjacent
area, move ‘off ’ the television screen through one of the openings;
the adjacent area will be shown on your television screen." More than
any other feature of the machine, the register-based method of

drawing the screen a line at a time as discussed in the previous
chapter made some styles of play and forms of game harder than
others to implement. Consider Warren Robinett’s explanation of his
early work on Adventure development: "A month later, I had a
prototype: the player could move a small square "cursor" from screen
to screen, picking up the little colored shapes to be found on some of
the screens, which were connected edge to edge. And there was a
pesky dragon that chased the cursor around, trying to eat it.
Exhausted, I went on vacation."5 Robinett actually left the intense
work environment of Atari at that point for a monthlong vacation.6

What was so taxing about programming the Atari VCS? How would a
person need a month to recover from this sort of work? Programming
was, after all, Robinett’s job, and a VCS cartridge usually took about
six months to complete. What he accomplished at this early stage
probably sounds rudimentary to modern-day programmers and to
today’s players.

But adapting the system to allow for a large virtual space was not
simple at all. To move from screen to screen, the program must track
the location of the "cursor" and determine whether this location has
passed beyond one of the edges of the screen. Then, the program
must redraw the new screen and position the cursor at the opposite
end.

This operation is complex, because the VCS display is not divided
into pixels as a modern raster display is. Instead, the screen is built
out of units that correspond to television scan lines. To manage
vertical positioning, most VCS programs store the starting horizontal
location of an object in RAM. On each scan line, the program checks
to see whether the drawing of a sprite should be started or continued.
Determining whether an object is at the top or bottom of the screen is
relatively simple. It is just a matter of comparing the object’s scan line
position to that of the top or bottom boundary of a counter used in
drawing the visible display. Because the processor can ask the TIA to
report when it is about to start a new scan line, precise vertical
positioning is straightforward.

Precise horizontal position is another matter. There is no simple
way for the programmer to "poll" the TIA for its current horizontal
position; the television display doesn’t decompose into logical
horizontally divided units as simply as it does into vertically divided
scan lines. For this reason, accomplishing horizontal movement on
the VCS requires a different technique.

As detailed in the previous chapter, the unit that most resembles a
pixel on the horizontal axis of a VCS image is called a "color clock."
To move objects horizontally, the TIA provides a register for each that
allows the programmer to move it relative to its last position, left by up
to eight color clocks or right by up to seven. To execute such a move,
the programmer strobes a register called HMOVE at the start of a
scan line.

The TIA’s eight-bit registers do not overflow; adding 1 to 255 yields 0,
adding 2 to 255 yields 1, and so on. (The machine is incapable of
throwing an error.) This means that the hardware is set up for
horizontal wraparound, of the sort seen in Asteroids, a game that also
wraps the playing field vertically. If an object moves to the right edge
of the screen, the piece of it that goes off the screen will "naturally"
begin to appear on the other side. (This is exactly what happens to
planes and their missiles in the Combat plane games; the only thing
preventing the same sort of wraparound in the tank games is the
solid, rectangular boundary of the playfield.) Unless the program
keeps track of an object’s position in RAM, it has no simple way to tell
where on the screen the object currently appears. To move the
Adventure player from screen to screen, then, Robinett used an
additional routine to keep track of horizontal movement so that it was
possible to respond to player movement off the left or right of the
screen.

Robinett’s initial month of prototype development included more
than just player movement and room changes, but the relative
difficulty of simply determining the horizontal position of the player
and deciding whether a new room had to be drawn reveals a great
deal about the VCS Adventure’s technical innovation. In Combat, an

adaptation and expansion of Tank had been developed jointly with
the system and had helped guide the hardware design of the Atari
VCS in the first place. Adventure required the creative adaptation of
the machine’s technical features for new, unforeseen purposes. Such
innovation, while certainly possible, was not always easy. The VCS
Adventure provides an example of a design vision that exceeded the
obvious features of the VCS hardware, yet was nevertheless
eventually realized.

I Am a Ball

In many contemporary games, from World of Warcraft to The
Godfather to Tony Hawk Pro Skater, players have the option of
selecting or customizing the character to use during play. Since the
release of Ultima IV in 1985, game developers and players have
called this on-screen persona an “avatar," a term borrowed from the
Sanskrit word for incarnation. Avatars represent not only the fixed
characters of games like Zelda’s Link or HalfLife’s Gordon Freeman,
but also the more or less configurable characters of games like World
of Warcraft.
The role of the avatar is a dual one. On one hand, this game

element focuses the player on an aspect of the game’s fictional world,
whether this is World of Warcraft’s magical fantasy or Tony Hawk’s
professional skateboarding. On the other hand, it allows the player to
interpret the character based on attributes such as appearance,
motivations, and values.

Avatars have a history that precedes video games. In tabletop
roleplaying games like Dungeons and Dragons (D&D) and even
common board games like Monopoly, players create characters or
use tokens that embody them during gameplay. One way of thinking
about videogame avatars is as computational adaptations of D&D
characters.

The PDP-10 Adventure was inspired by D&D, but also by
Crowther’s caving expeditions in the Kentucky mountains. In this text-

based Adventure, the player moved around and performed actions by
typing commands at a prompt. The PDP-10 Adventure narrates
actions and environments to the player in the second person, as a
D&D dungeon master might have done, saying things such as, "You
are in a maze of twisty little passages, all alike." The combination of
textual display and second-person narration reinforces the user’s
dual role, as a game-player solving puzzles and as a character in that
game, affecting and being affected by its fictional world.7

In earlier video games, players also took control of an on-screen
representation: the ship in Spacewar, the paddle in Pong, the tank in
Tank. But all of these games offer predetermined actions for the
player. The Spacewar player cannot choose to leave his dogfight and
go explore a neighboring galaxy. In the VCS Adventure, the player’s
personal goals couple with the game’s rules and fiction through the
graphical avatar.
The Atari VCS provides memory-mapped registers for two player

sprites. Each one is eight bits wide. The VCS display is not high-
resolution by any measure, but sprite graphics can be displayed at
the highest resolution that the machine allows. Robinett chose to use
the sprites to represent objects and enemies in the game: a key, a
chalice, a sword, a dragon. But doing so left no player sprite available
to represent the object that is actually controlled by the person
playing the game.

Robinett decided to use the TIA’s ball graphic for this purpose.
Recall that the TIA offers registers for five movable objects—two
sprites, two missiles, and one ball. The Atari VCS was engineered
with Pong and Tank in mind, and so the TIA’s various object registers
are directly named for the objects that are used in these games. For
example, the programmer turns missile and ball graphics on and off
by setting or clearing the second bit of registers, ENAM0 (ENAble
Missile 0), ENAM1 (ENAble Missile 1), ENABL (ENAble BaLl). Even
though these names are nothing more than mnemonic labels—
shortcuts that save the programmer the trouble of remembering the
hexadecimal addresses of the registers—they are written into the

Stella Programmer’s Guide as the official nomenclature. All known
VCS assembler programs use these names for code sections that
output graphics.

There is nothing in the Adventure cartridge or the supporting
materials to name the player’s character or object. The manual also
never calls the object by a distinctive name such as "avatar." It simply
instructs the player in the imperative to "move." Originally, Robinett
called this object "the man," but later he referred to the figure as a
"cursor," since "its function, as a position indicator, is similar to the
rectangular blinking cursor found on word processing screens."8 A
"position indicator" is perhaps an appropriate way to understand the
avatar. It represents neither the player nor a character in the game,
but the coupling between the two.

Adventure is one of the first examples of a VCS game in which the
system’s graphics facilities are reinvented. Robinett finds a new use
not only for the ball, but also for the missile graphics, which draw the
thin walls that appear in some rooms. As used in Adventure, the ball
at least looks somewhat like a ball, although it is rectangular, as is
standard on the system due to the width created by TIA color clocks.
The missiles don’t resemble projectiles in any way; they just look like
barriers that extend across the entire height of some screens. Like all
VCS graphics, missiles can be turned on or off on each scan line (by
setting or clearing ENAM0/1). Turning a missile on for the entire
screen creates the thin wall we see in Adventure. It also prevents the
programmer from having to change those registers during an entire
screen draw, saving precious processing time between scan lines.

The repurposing of graphics registers has both technical and
expressive consequences. Technical innovations are often
understood as the creation of new technology—new materials, new
chip designs, new algorithms. But technical innovation can also mean
using existing technical constraints in new ways, something that
produces interesting results when combined with creative goals.
Designing the TIA’s graphics registers to support games like Pong
and Tank represents an interesting aspect of how platform

development happens; reusing those graphics registers for player
avatars and castle walls demonstrates a negotiation between the
platform and the author’s vision of a game.

Handling Items

Using a ball sprite for the player frees up the two sprite registers for
other things, including enemies and objects. With regard to the items
that littered the landscape, Adventure introduced a new convention
for acquiring and using objects, one that was specific to the graphical
setting and that remains in use even in today’s 3D virtual spaces.

In text adventures, each action is the result of one or more verbal
instructions, which the player types in at the prompt: TAKE KEY,
DROP KEY. Typed input isn’t an option on the Atari VCS, of course,
and the system’s joysticks each have only a single button. Robinett
chose to use a collision between the cursor and an item to indicate
that the item should be picked up. The VCS hardware collision
detection provides a simple way to implement pick-up. This choice
also frees the button to be used for something else—namely,
dropping things. To use an item, the player just causes the held item
to intersect with the target item. For example, a key collides with a
portcullis to open it, a sword with a dragon to kill it.
Adapting player-object collision to correspond with TAKE, using the

button to mean DROP, and having item-item collision stand in for a
few other verbs depending on context (KILL, OPEN) effectively
avoids the relatively large linguistic demands of text adventures and
recasts them as simpler graphical demands. This shift of convention
makes Robinett’s Adventure much easier to play than the PDP-10
Adventure: fewer commands need to be remembered, and players
can quickly learn how to operate the game. But this also compresses
the possibilities of the game’s fictional world. In the textual Adventure,
the player must engage in an unusual bit of textual banter to kill the
dragon: After typing "KILL DRAGON," the clarifying question "With
your bare hands?" has to be answered "YES." In the VCS Adventure,

you can kill the dragon, but not with your with bare hands, and not
after a repartee like this.

There were some special touches in the VCS cartridge that were
appropriate to a graphical game. Although most games of the time
(and even many of today) register a death or other consequence
when the player initially touches an enemy, Adventure’s dragon
chases the player when the latter touches it. Two small touches within
a specific amount of time are required to kill the avatar. Such subtle
interaction between cursor and dragon notwithstanding, text
adventures often focus on riddle and puzzle solving, such as
navigating a maze or figuring out the purpose of an item. This
practice does not carry through in action-adventure games. Instead,
rapid movement through space becomes the primary mode of play, a
characteristic of the genre that could also be seen in Robinett’s
previous game, Slot Racers.

Adventure’s sword offers an example of the curiosity of TIA collision
detection. The sword appears on the screen as a left-facing arrow.
Even though the TIA does provide a register to flip sprites
automatically on their horizontal axis, the sword always faces the
same way, no matter how the player moves. Moreover, the sword
itself looks more like an arrow; at best, it looks like a sword being held
from the tip rather than the hilt. Though VCS graphics could be rightly
described as "blocky," Robinett actually had far greater resolution to
work with than he ended up using for the sword sprite. One reason for
this decision might relate to the way collision detection functions on
the machine.

In today’s games, collision detection is handled in software. A
computationally cheap way to accomplish this is with bounding
boxes. In this method, boxes around each object are determined and
each pair is checked for intersections. This simple and quick method
is nevertheless inaccurate, because an object that does not fill its
bounding box may register as colliding with something when it
actually does not.

The VCS hardware collision is performed by the TIA, which checks
for overlapping logic states on its multiple graphics registers. For this
reason, only those bits that are turned on in the graphics registers of
a sprite can register collision. In other words, the parts of a sprite that
are actually seen are the only ones subject to colliding. Thanks to a
relatively simple circuit on the TIA, the Atari VCS offers more precise
collision detection than is done using the standard technique in
modern software toolkits such as Adobe Flash (see figure 3.2).

3.2 If Adventure had used bounding box collision detection, as on the
left, this arrangement of sword and dragon would indicate a collision,
because the box enclosing the former intersects the latter. Because
the VCS hardware implements collision detection by overlapping bits,
as on the right, there is actually no collision in this situation.

There can be a downside to precise collision detection. Unless an
item’s image strikes precisely against its target, no collision will
register, even in cases in which one would be desirable. The arrow-
like end of the sword expands the collision surface of the weapon and
also helps the player orient an attack in that direction.

The shapes of objects were not the only thing motivated by
technical intricacies. One object was specifically added to work
around a problem in the system for dropping and picking up object.
As Robinett explained, "The magnet was created because of a bug.
Sometimes the key to a castle would get rdropped inside a wall and
be unable to be picked up, so the magnet, which attacted other
objects, was a solution to that problem."9

Getting Lost

Text adventures are characterized by discrete spaces with detailed
textual explanations to help players remember, understand, and
navigate the world that the game presents. Because the text
adventure describes spaces using only text, when those spaces
become complex or obfuscated, as in the case of Crowther and
Woods’s classic mazes, the player is often driven to somehow map
the space (usually on paper, using an graph-like map or an adjacency
grid), so it can be understood and navigated. Very clever or very
spatially oriented players might be able to do this in their heads, but
more often, players would attempt to draw a map. The early player of
Crowther and Woods’s Adventure would likely be sitting at a print
terminal, in which case paper would be easily available; a pencil
(used to correct programs) might also be already at hand. Drawing
maps on paper, as people did in some pre-Adventure games such as
Hunt the Wumpus, became an important part of the process of
solving spatial puzzles in early text adventures.

The VCS Adventure could not rely on the availability of paper and
the willingness of players to use it to map locations, but it could
manage to avoid the complexities and confusions involved in the
textual representation of space in the first place. As Robinett
explained his perspective: "A maze is a geometric construction in
space; the positioning of its walls defines a maze. Video graphics do
an excellent job of capturing the geometry of a maze. By contrast,
using sentences to describe a maze is inefficient and piecemeal."10

https://calibre-pdf-anchor.a/#a350

This solution does not demand as much work from the player.
Instead of requiring paper and pencil, the game maintains coherence
between all visited spaces by keeping exits and entrances consistent.
A player can manage to remember that the avatar came from the left
and is moving to the right.
The obfuscation of space is still a characteristic design element in

the VCS Adventure. The game’s labyrinths typically cross multiple
screens, with branches near the edges of the screen. This design
makes it harder for the player to mentally map the maze in its entirety,
creating the feeling of being lost. Additionally, a maze of multiple
screens allows for the symmetrical playfields on a single screen to
create asymmetrical mazes when stitched together. Adventure also
includes wormholes that move the player into separate sections of its
spaces—spaces that don’t reconnect with themselves in expected
ways. At the start of the game, going down, left, and up puts the
player at the mouth of the blue labyrinth. But moving right from there
—which should put the player back into a room he passed through on
the way—exposes another part of the blue labyrinth! Worse, the blue
labyrinth also wraps around itself, transporting the player from one
side to the other as if by magic. This use of inconsistent maze
geometry (see figure 3.3) further confuses the player’s sense of
location.11 The same effect can be found in the mazes

https://calibre-pdf-anchor.a/#a351

3.3 This map of the world in Adventure makes the game’s spatial
inconsistencies clear. The screen below the point marked A seems to
have only dead ends on the right side, but there are actually exits
there that wrap around to the opposite side of the screen to the left.
Likewise, moving to the screen below point B requires a jump across
a place where the map does not exist. (This image is based on a map
by Maurice Molyneaux. For an annotated version, see
http://www.atarihq.com/2678/adv-map1.gif.)

http://www.atarihq.com/2678/adv-map1.gif.

in the PDP-10 Adventure, although those are portrayed using word
rather than image.

Confusing spaces have frequently been seen in action-adventure
games. The Legend of Zelda took Adventure’s four-directional maze
pattern and added a set of movements through the same maze as a
symbol for finding its exit. These "lost woods," as they are called in
the first version of that game, trap the player completely until the
proper sequence of directions (up, left, down, left) is discovered,
allowing escape. The traversal of space has become a standard way
to require the discovery of a particular input sequence, something
that had been previously done through the subtlety of language.

Another method of spatial confusion introduced in Adventure is
occlusion. In early text adventures, rooms and caverns are often dark
and their contents and exits are not visible. The player was typically
able to use a lamp or some other light source to illuminate these
areas, whose contents would then be described with text.
In a text adventure, illumination is usually all or nothing: a room is

either lit or dark. But this design doesn’t work for a graphical game
like the VCS Adventure. A dark room would just be a black screen.
The text adventure always provides a facility for direct input—the text
prompt—but there would be no obvious graphical analogue in a
totally dark room in the VCS Adventure.

Robinett managed to implement occlusion using a different method,
one that would come to be called "the fog of war" in later adventure
and strategy games. "Fog of war" is a military term that refers to the
ambiguity and confusion experienced in the theater of war. In games,
it usually refers to a lack of visual information on a map. Areas that
have been explored or settled become visible, whereas those that
have not remain shrouded or entirely black. Board games like
Stratego implement a kind of fog of war by hiding the identity of
opposing units. Tabletop miniature games often track the location of
units like tanks on a separate record or even a separate board.

Variations 2 and 3 of Adventure introduce catacombs, which take
the form of an orange labyrinth. These catacombs are darkened, and
the player can only see the maze’s walls within a small distance
around him. To accomplish the occlusion, Robinett simply made the
floor and walls the same color. The walls in Adventure are drawn,
after all, using playfield graphics. The color for the playfield and the
background are set by writing the same eight-bit color value to each
of two registers, COLUPF and COLUBK. The ball always takes on
the color of the playfield, which explains why the cursor matches the
walls and why its color changes from screen to screen.

To create the "light" that emanates from the player, Adventure uses
a widened square sprite that is orange. The player is centered inside
this “box," and both are moved together. The same TIA register that
controls playfield reflection or mirroring can also be set to draw the
playfield either underneath the sprite (the default setting) or on top of
it (as in Combat’s plane variants). In the catacombs, the playfield is
set to draw on top of the sprite, making the area around the player
cursor appear to glow with light. The effect is sophisticated, but it is
implemented in a straightforward way. The circle of light is just
another carried object, no different from a sword or a key. A similar
implementation of partial darkness—although one that is more
advanced—can be seen in Atari’s 1982 VCS game Haunted House.

Some video games implement the fog of war as a way to hide
knowledge that the player can discover. In Civilization, once a player
has explored a part of the world’s terrain, that square always remains
visible, as if the society had entered it into an almanac. Other games
implement the fog of war as transitory knowledge. In Warcraft, a
player must have units in a region to be able to see its immediate
surroundings. Both of these methods have their origins in
Adventure’s implementation of the fog of war.

The Easter Egg

An Easter egg is a message, trick, or unusual behavior hidden inside
a computer program by its creator. Easter eggs can be traced back at
least to the early 1970s, when the TOPS-10 operating system on the
PDP-10 was programmed to respond to the command "make love"
with "not war?"12 More recent Easter eggs are much more
sophisticated. One recent version of Microsoft Excel contains a
hidden flight simulator game, as does Google Earth.

Adventure contained the first Easter egg known to appear in any
video game. The hidden message itself is reasonably simple. Warren
Robinett signed his game "Created by Warren Robinett" using letters
running vertically down the center of the screen (see figure 3.4).
Accessing the Easter egg is less simple. To find it, the player must
cross a sealed wall in the black castle using the bridge and then pick
up a single black "dot" (actually a sprite graphic), which must be
brought to another wall in the yellow castle. The dot grants the avatar
entry into the secret room.

3.4 After a laborious process, the player is rewarded by being able to
enter a hidden room and read this unauthorized message left by
Robinett.
Robinett’s motivations for signing the game have much in common

with those of other Easter egg creators. Computer software,

https://calibre-pdf-anchor.a/#a352

produced in business contexts or otherwise, is often impersonal.
Easter eggs lay a human touch on such artifacts, reconnecting them
with their creators and the craft practice of authorship. Adventure’s
Easter egg continues this tradition.

But the state of Atari in the late 1970s offered a different context for
Robinett’s Easter egg. Management did not know about this element
of the game and so, of course, did not approve. Robinett explained in
an interview: "Each 2600 game was designed entirely by one person.
But on the package it said basically ‘Adventure, by Atari.’ And we
were only getting salaries, no cut of the huge profits. It was a
signature, like at the bottom of a painting. But to make it happen, I
had to hide my signature in the code, in a really obscure place, and
not tell anybody. Keeping a secret like that is not easy."13

Robinett expressed in this statement the same sort of gripe that
would cause David Crane, Larry Kaplan, Alan Miller, and Bob
Whitehead to quit Atari in 1979 to start the industry’s first third-party
developer, Activision. Robinett and his colleagues worked long,
solitary hours without much guidance or supervision—and with no
royalties—and Atari then made a fortune on their games without
giving them credit, publicly or internally.

Today, there are perhaps a handful of game designers whose
names are well known. Will Wright, Shigeru Miyamoto, Hideo Kojima,
and Richard Garriott are among them. Far fewer are directly
marketed as creators of their games—Sid Meier and American
McGee are the only two whose names actually precede titles of their
games, in the way that an A list film director or a best-selling author
might get top billing above a work’s title. Readers familiar with the
labor controversies of the contemporary games industry may imagine
that Robinett and others merely wanted credit or royalties. But the
role of a games programmer in these years was far broader than that
title suggests.

Once hired, Atari programmers were sent off to make games and
were essentially told "come back when you’re done."14 Robinett’s
own stories of going on vacation for a month fly in the face of

https://calibre-pdf-anchor.a/#a353
https://calibre-pdf-anchor.a/#a354

anything resembling micromanagement. The game programmer’s job
at that time was much more like a combination of what we now call
the executive producer, the designer, the programmer, the artist, and
the sound designer. Robinett explained:

I believe that Atari in the early days succeeded
because the games were labors of love by the
programmers who worked on them. At least that
was the case with my games for me. In those old
far-off days, each game for the 2600 was done
entirely by one person, the programmer, who
conceived the game concept, wrote the program,
did the graphics—drawn first on graph paper and
converted by hand to hexadecimal—and did the
sounds.15

Programmers were responsible in the early days of the Atari VCS
for every aspect of the game’s production up to the point where it
went on the cartridge, with packaging, marketing, and sales being
taken care of by others.16 Activision later acknowledged the
programmer’s role by printing the creator’s name on the box and
cartridge of each game, as discussed in chapter 6.

Unlike some pure action games along the lines of Combat,
adventure games offer good places to hide things, thanks to all the
convoluted spaces and the techniques discussed previously.
Adventure’s Easter egg is more than just a gimmick; it follows in the
adventure game tradition by revealing a secret—the secret of the
game’s own production.

Atari discovered the Easter egg when a fifteen-year-old player
wrote the company a letter about it. But the company never removed
it from the game. Robinett has remarked that this was, at least in part,
because of the cost of making a new ROM mask—roughly $10,000 in
the early 1980s.17

https://calibre-pdf-anchor.a/#a355
https://calibre-pdf-anchor.a/#a356
https://calibre-pdf-anchor.a/#a357

The Graphical Turn

Robinett designed Adventure specifically to overcome the
machine’s lack of textual input. Oddly, by the time he finally finished
the game, he had also completed another title with a text-based
display: BASIC Programming. In 1978, Atari introduced a keyboard
peripheral. Despite its name, the device was really just a small
rectangle of molded plastic with a grid of twelve small buttons. Plastic
overlays of the type that were later used in the Mattel Intellivision
helped the user understand the otherwise impenetrable combinations
of keypresses needed to output simple characters. Text entry was not
a simple matter of typing, but had a complexity more like that of using
a chording keyboard or of inputting text on a mobile phone.

To simulate the alphanumeric display native to a standard
microcomputer, Robinett used a twelve-character-per-line
alphanumeric display routine that VCS virtuoso David Crane had
written.18 Though primitive compared to the Apple][, the cartridge
made it possible to write and run simple programs in BASIC by typing
in textual commands, much as players type short commands when
playing a text adventure game.

Two decades later, amateur developers returned to this display to
create text adventures of the traditional PDP-10 Adventure style. Greg
Troutman’s 1998 title Dark Mage lets the player direct a banished
jester. Adam Thornton’s 2002 version of Lord of the Rings: The
Fellowship of the Ring repurposes the Dark Mage code to offer a
terse text-adventure version of the first volume of Tolkien’s famous
epic.

Given that the VCS BASIC Programming was developed alongside
the VCS Adventure, and that the text adventure did not enter mass-
market public consciousness until the 1980s—after Adventure
International’s cassette games gained ground and Infocom released
Zork commercially—it would not really be proper to call the action-
adventure genre either an evolution or a simple descendent of the
text adventure. Although Robinett’s game did have its origins in the

https://calibre-pdf-anchor.a/#a358

original Adventure, it was not influenced by a substantial tradition of
text-based adventures.

The turn away from text and toward graphics started by the VCS
Adventure was partly encouraged by games licensed from films,
which began to emerge in numbers in the early 1980s, just as
Adventure was released. During the development of the game, Atari
even asked Robinett to shelve it and use the design to create a game
based on the Superman license, which Warner owned. Robinett
managed to foist that job off on John Dunn, sharing his code to
facilitate the other game’s development. Superman uses the same
room-to-room movement of Adventure but employs a different
perspective to let the player look across an urban landscape rather
than down on an abstract dungeon. Superman has many of the
incongruous spatial features that are also seen in Adventure. Flying
up past the skyscrapers and onto the ground of another screen might
suggest movement across a city rather than over it, but the game was
more confusing than effective. Superman also expunged the movie’s
social and emotional relationships—and those of the comic books—
choosing action sequences instead. Games licensed from movies
have continued to follow this early VCS game in this regard.

The graphical turn in video games has been a bittersweet one. The
Crowther and Woods Adventure, Zork, and the interactive fiction
games that they fostered enjoyed enormous success during the
1980s, but that form was no longer marketable by the beginning of the
1990s. Interactive fiction continues to thrive among communities of
writers and players without being the mass-market phenomenon it
once was.19 And despite tremendous advances in the visual fidelity of
game hardware and software, the interactive engagement of
contemporary adventure games has changed little since the VCS
Adventure set the stage for the genre. Games have moved to 3D and
programmers have become more concerned with polygons than
pixels, but movement and collision detection remain the primary
building blocks of adventure games, and, indeed, of most video
games.

https://calibre-pdf-anchor.a/#a359

Pac-Man [4]

The arcade-inspired Combat was not difficult to fit onto the Atari VCS.
It was one of the games developed alongside the console’s
hardware, influencing the latter’s design. Adventure was inspired by
Colossal Cave Adventure, but Robinett thoroughly reimagined the
text game for the VCS platform, creating something with very different
appearance and different gameplay. When Atari acquired the home
console rights to Namco’s hit arcade game Pac-Man, the company
faced a different problem: that of porting the massively popular and
recognizable game from a platform with totally different technical
affordances.

Chasing the Blinking Coin-Ops

In the late 1970s, space shooters like Asteroids, Space Invaders, and
Galaxian reigned in the arcades. Sports-themed games like Pong,
war games like Tank and Battlezone, and driving games like Night
Driver filled out the typical tavern and arcade fare. Toru Iwatani, a
Japanese designer, wanted to create a different game, one that
would appeal to a broader set of players. Classic Pac-Man lore holds
that Iwatani was pondering this design problem as he was eating a
pizza. Looking at the pie with one slice removed, he saw a head with
its mouth agape and imagined it as an anthropomorphized character
who would eat things. 1 Iwatani devised the maze as a way to
structure the eating, and gave the game the title Pakku-Man, derived
from the Japanese onomatopoeia "paku-paku"—the sound of an
opening and closing mouth during eating.

Pac-Man did fairly well in Japan, but the game enjoyed wild
success in the United States. Pac-Man was more than a video game;
it was a cultural sensation, featured on the cover of Time and
spawning dozens of licensed products including clothing, trading
cards, cereal, board games, a record (Pac-Man Fever), television
shows, and consumer goods. There are many reasons for the game’s
success. Novelty was undoubtedly a part of it. Journalist Chris Green
has argued that Pac-Man filled a space in popular culture between
the second and third Star Wars films, making it a cornerstone in 1980s
popular culture. But beyond these feats of novelty and timing, Pac-
Man was, and perhaps still is, a game that everyone will be happy to
play. The game’s colorful, friendly characters made everyone want to
try it—boys and girls, men and women alike. Green explained:

Pac-Man feels like a cartoon, from the bouncy
theme music to the animated eyes on the ghosts to
the forlorn sound effect as Pac-Man is apprehended
and shrinks away to nothingness. Far more so than
any other game before it (and many that came
after), Pac-Man possessed elements of drama,
giving names to its avatars and featuring them in
brief comic interludes that played out after the
player had achieved a certain level of success. 2

It was into this cultural context that Atari released its VCS version of
Pac-Man in 1982. The home videogame market operated alongside
the arcade videogame marketplace, both enjoying significant popular
and financial success. Arcade games continued to be built on ever
more sophisticated technical infrastructures—ones that were
increasingly distant from the Atari VCS, whose design was now more
than half a decade old. Still, the massive popularity of arcade games
motivated ports of these increasingly sophisticated popular coin-op
games. After the VCS port of Space Invaders enjoyed considerable
success, partly rescuing Atari from the losses of 1977-1978, the

company became even more interested in arcade ports. Pac-Man
seemed like a fruit ripe for the plucking, or perhaps even the key to
Atari’s continued success.

From a very high level, at a glance, a VCS Pac-Man conversion
might seem like it would be straightforward. Although Adventure was
a huge risk—a game totally different in form from those that preceded
it—the PDP-10 Adventure was also entirely unknown to a popular
audience, so VCS consumers had no basis for comparison. Pac-Man
involved adapting an extremely prominent arcade title whose
gameplay, graphics, sounds, and even iconography and packaging
were universally understood and already based on graphical display
and collisions. The reality of the project was quite challenging. The
game was programmed by Tod Frye in an irrationally short time: six
weeks. Worse, the game was to be manufactured as a 4K ROM
rather than using the 8K bank-switched ROM that had become
possible by this time. This approach was taken to save money on
what would become an irresponsibly large production run of more
than ten million cartridges.

Adaptation is a long-standing concern in cultural forms of all kinds.
In 1972, the year of Pong, the film adaptation of the Mario Puzo book
The Godfather won the Academy Award for Best Picture. In 1980, the
year PacMan ruled the arcade, the Oscar went to another film
developed from a book, Robert Redford’s adaptation of Judith
Guest’s 1976 novel Ordinary People. Adapting novels to films is not
always simple, but both media forms are good at telling stories with
strong, deep, subtle characterization. Adapting films to video games
poses a different set of challenges, as is discussed in chapter 7.

Pac-Man, of course, was already a video game before it was a VCS
cartridge. Porting a graphical video game from one computer platform
(the arcade board) to another (the Atari VCS) does not demand a
change in fundamental representational or functional mode. Both
versions are games, rule-based representations of an abstract
challenge of hunter and hunted. Where the two versions diverge is in
their technical foundations—in their platforms. And in the case of this

title, those differences were significant enough to doom the VCS
rendition of Pac-Man, by some accounts even causing a major crash
in the videogame market during 1983.

Bitmaps and Mazes

The Pac-Man coin-op cabinet ran on a custom-made arcade system
board. (Later, Rally X and Ms. Pac-Man used the same board.) It
featured a Zilog Z80 CPU, a cheap eight-bit microprocessor that,
along with the 6502, dominated the microcontroller market of the
1970s and 1980s. 3 At this time, arcade hardware was still much more
advanced than home console hardware, because the latter needed to
be so much cheaper to make home machines affordable. The Z80

CPU runs three times as fast as the 6502, but more significant
differences are seen in the amounts of RAM and ROM. Pac-Man’s
boards hold 16K of ROM, 2K of video RAM, and 2K of general RAM.
The VCS Pac-Man cartridge has only 4K, a quarter of the ROM in
Pac-Man’s arcade incarnation. The 2K of RAM on the coin-op’s board
is sixteen times the amount in the Atari VCS. The home system, of
course, has no video memory.

More important than the sheer amount of memory afforded by the
arcade cabinet is how it was allocated and organized. Pac-Man’s
video display supports a resolution of 224 × 228 pixels, split up into a 28
× 36 grid of "characters" of 8 × 8 pixels each. In Pac-Man’s case, a
character is not a letter or number, but a bitmap tile. The 2K of video
RAM is logically spit into two 1K segments, with one kilobyte used for
character definitions and one for character colors. 1K is not enough
storage to hold 224 eightpixel-square bitmaps, and the same number
of palette colors would need to be stored somewhere, too. The coin-
op is set up so that this space is used to store references to bitmap
and color data. The program draws the video display by taking the
character and color references in VRAM and looking up a
corresponding bitmap or color defined in another 4K ROM chip
soldered to the board. It is this 4K ROM that holds graphical data such
as the maze parts, letters, and numeric digits.

Even before we get to the game’s hero and villains, Pac-Man’s
method of drawing the maze demonstrates one of the major
challenges in porting the game to the Atari VCS: time. In the arcade
game, the programmer would load character values into video RAM
once per maze, using the character tiles to create its boundaries. On
the VCS, the maze is constructed from playfield graphics, each line of
which has to be loaded from ROM and drawn separately for each
scan line of the television display.

To be sure, mazes had already been displayed and explored in
VCS games like Combat, Slot Racers, and Adventure. But these
games had to construct their mazes from whole cloth, building them
out of symmetrical playfields. The arcade incarnation of Pac-Mac
demonstrates how the notion of the maze became more tightly
coupled to the hardware affordances of tile-based video systems. In
the arcade game, each thin wall, dot, or energizer is created by a
single character from video memory. Though the method is
somewhat arcane, the coin-op Pac-Man also allowed up to four
colors per character in an eight-bit color space. (Each character
defined six high bits as a "base" color—which is actually a reference
to a color map of 256 unique colors stored in ROM—with two low bits
added for each pixel of the bitmap.) This method allows the hollow,
round-edged shapes that characterize the Pac-Man maze—a type of
bitmap detail unavailable via VCS playfield graphics. The maze of the
VCS game is simplified in structure as well as in appearance,
consisting of rectangular paths and longer straight-line corridors and
lacking the more intricate pathways of the arcade game (figure 4.1).

The arcade Pac-Man’s hardware also makes keeping track of the
state of the maze relatively simple. Each pellet has a unique location
on the tile grid. When a pellet is eaten, the program clears the
corresponding character

4.1 In the arcade Pac-Man, shown on the left, the screen is
constructed of fairly highresolution "characters," which are commonly
called "tiles." What was possible on the Atari VCS using playfield
graphics, as seen on the right, is not as impressive.

in memory, resulting in a plain black background. Tracking and
displaying the current state of the pellets on the VCS is much more
challenging. The pellets of the VCS Pac-Man are far fewer than the
dots in an arcade Pac-Man maze, and are drawn using the same
playfield graphics that define the maze borders. Because playfield
graphics are used, the pellets are the same color as the walls, and
are thin rectangles instead of dots—each pellet is composed of the
smallest block of playfield available. The manual that comes with the
VCS game tries to apologize for this divergence from the arcade
version by renaming the pellets "video wafers."
The playfield, as previously noted, is formed using 20 bits of data,

which are either doubled or mirrored, depending on the way the
CTRLPF register is set. The original Pac-Man maze is horizontally
symmetrical, which is very convenient. The pellets, however,
disappear as the player eats them, and it is obviously impossible for
Pac-Man to eat pellets symmetrically.

To address this challenge, Frye employed a technique for drawing
asymmetric playfields. To do this, the program must first set the
playfield register graphics for the left half of the screen during

horizontal blank. Then, as the electron beam passes across the
screen, it must change those registers just before the second half of
the screen starts. This technique requires careful processor timing as
well as additional RAM storage for the state of each pellet. Worse yet,
the positions for each remaining pellet need to be translated from
data in RAM into the unique display requirements of the TIA playfield,
which does not simply write its two and a half bytes in consecutive,
high-to-low bit order. To get the dots on the screen, the program
tracks their states separately from their positions on-screen,
performing a series of computationally expensive bitwise operations
to install the pellet data into the maze playfield locations, which in turn
use up valuable RAM. Maze and pellet logic—relatively simple for the
arcade cabinet, given its hardware affordances—were very
challenging on the Atari VCS.

Sprites

In computer graphics, a sprite is a 2D image composited onto a 2D
or 3D scene. The Atari VCS was designed to support two sprites,
each a single byte in size, set via two memory-mapped registers
(named GRP0 and GRP1) on the TIA. This design clearly shows the
influence of Pong and Tank—games that feature two opponents,
each controlled by a human player.
The coin-op Pac-Man also uses sprites, but once again, its platform

design offers considerably greater flexibility than does the Atari VCS.
Pac-Man has five moving objects on the screen at once: four
monsters and Pac-Man himself. The Atari VCS provides graphics
registers for two movable sprites, enough for two tanks (Combat) or a
key and a dragon (Adventure). But the Pac-Man arcade cabinet
hardware supports eight different moving sprites, each a bitmap of 16
× 16 pixels. Each of these shares the same graphical properties as
tile "characters," but they can also be moved to a specific (x, y)
coordinate on-screen. Bitmap data for up to sixty-four sprite graphics
is stored separately, in yet another 4K ROM, like the one used for
characters. This style of sprite—a movable bitmap—later became the

standard for home console hardware and was used in many systems,
including the Intellivision and the NES. 4

The nature of VCS sprites is very different. When the programmer
stores a value in the GRP0 or GRP1 register, the TIA displays that
eight-bit pattern on-screen. A VCS sprite is thus always eight bits
wide, although the TIA provided a few ways of modifying the
appearance of sprites on-screen.

Though a sprite is a 2D image, it is drawn (like everything on the
Atari VCS) one line at a time. Each sprite register can contain only
the one byte of data that it needs for drawing a single scan line. To
draw, for instance, a Space Invaders sprite, the program has to load
the byte of graphics for the alien invader that corresponds to the
current line on the television display and store that value in the proper
sprite graphics register during the horizontal blank, in between the
drawing of two lines. To position a sprite vertically, the program has to
keep track of which lines of the display have sprites on them, and to
compare the current line to that value in memory before drawing. The
sprite is laid out in memory like so:

Bit 7 6 5 4 3 2 1 0 Sprite:

Line 0 0 0 1 1 1 1 0 0 XXXX
Line 1 0 1 1 1 1 1 1 0 XXXXXX
Line 2 0 1 0 1 1 0 1 0 X XX X
Line 3 1 1 1 1 1 1 1 1 XXXXXXXX
Line 4 1 0 1 0 0 1 0 1 X X X X
Line 5 1 0 0 1 1 0 1 0 X XX X
Line 6 0 1 0 1 1 0 1 0 X XX X
Line 7 0 1 0 1 1 0 1 0 X XX X
Line 8 0 1 0 0 0 0 1 0 X X

For both the Pac-Man character and the ghosts, the same sprite
graphics can be used whether the character is facing left or right. The
Atari VCS (like the arcade cabinet) provides a register switch that
automatically flips the sprite graphics horizontally. The VCS Pac-Man
character always faces to the side—never up or down. If VCS Pac-

Man were able to look in those two directions, another two sets of
three-frame animations would have been needed. Although the
arcade board provides a facility for vertical sprite flipping in hardware,
the very idea of such mirroring doesn’t even make sense on the VCS,
as the programmer must manually set up and draw sprites on an
individual scan-line basis, not as a bitmap at a Cartesian coordinate.

Sprite graphics take up precious space in ROM. In the VCS Pac-
Man, each sprite is eight blocks high, requiring eight total bytes to
store. The game uses two sprite images for the ghosts—one for their
normal state and one for their eaten state. Neither of these includes
extra frames for animation. Pac-Man himself animates in three
frames when he eats and in six frames when he is touched by a ghost
and disappears. All together, that amounts to nine sprites, each one
byte wide and eight bytes tall, for a total of 80 bytes used on ROM.
This is a modest amount compared to the 192 bytes used for sprite
data in Combat. By reducing the fidelity of the game’s graphics and
animation, Frye won back precious ROM space for the additional
logic needed to set up the screen and move the ghosts. The need to
save ROM points to a major difference between programming Pac-
Man for an arcade board and programming it for the Atari VCS. The
continuous 4K ROM provides greater flexibility than the arcade board,
but far less total storage space.

The TIA also provides registers to set sprite colors: one named
COLUP0 and the other COLUP1. In many early VCS games, including
Combat, sprite colors were set once for the entire game. In later
games, the program stored a different color value in one or both
sprite color registers along with a different bitmap value. Multicolor
sprites were implemented, too. These included Pitfall Harry in
Activision’s Pitfall! The careful observer can note color banding in
most of these sprite graphics, though, which is not seen in the true
bitmapped graphics of later platforms like the NES. This style of
"stripe-colored" sprites is a particular trademark of VCS games.
Mercifully for Tod Frye, the iconic Pac-Man of the arcade game is a
single color, so no further ROM space or horizontal blank logic had to
be expended to draw his yellow image convincingly.

Combat uses two sprites, each of which fires a corresponding
missile—just what the TIA ordered, or what it was originally ordered
to do. But games like Taito’s Space Invaders were not designed with
the peculiarities of the Atari VCS in mind. Sprites were different in
many post-1977 arcade games. Most important, there were often
more than two per screen! When faced with the rows of aliens in
Space Invaders or the platoon of ghosts that chases Pac-Man, VCS
programmers needed to discover and use methods of drawing more
than two sprites, even though only two one-byte registers were
available.

As discussed in the previous chapter, the TIA offers a set of
horizontal motion registers for each of the sprites, the missiles, and
the ball. The TIA also exposes another register called HMOVE to
execute changes in hori zontal motion. These registers were primarily
intended to be set during a vertical blank—that is, between screen
draws. For example, Combat repositions both player and missile
horizontal positions each frame, then updates variables in RAM to
ensure that the objects are drawn on the appropriate lines, and then
updates the horizontal motion registers once at the start of the frame.

Larry Kaplan, one of the first developers to work on the Stella
prototype, figured out that sprite data could be reset more frequently
than once per frame. Because the VCS requires the program to
control every line of the television screen, it is possible to change the
sprite graphics’ values and their horizontal positions more than once
per frame. Kaplan first used this technique in Air-Sea Battle, one of
the console’s launch titles. In the game, multiple rows of enemies,
one per row, pass back and forth across the screen. Each player
controls a turret on the ground that can be aimed and fired at targets
in the air. Multiple targets are presented by resetting the sprite
graphics multiple times down the screen. Finally, when it is time to
draw the ground, the sprite graphics and horizontal positions are
reset for the player turrets.

Another variation of the horizontal movement technique helped
bring Space Invaders to the system. 5 The trademark feature of the

popular arcade game was the armada of slowly descending aliens,
arrayed in rows and columns. The TIA, of course, didn’t directly
support a display of alien forces like this. Kaplan’s Air-Sea Battle
technique allowed multiple sprites to appear down the screen, but
Space Invaders required multiple sprites in a horizontal line as well.
Rick Maurer, the programmer for the VCS port of Space Invaders,
discovered that strobing HMOVE while a line was being drawn would
reposition objects immediately, even if they had already been drawn
earlier in that line. The TIA, lacking any memory of what it has already
done, begins drawing the data from its sprite graphics registers to the
screen any time that HMOVE is reset. After one row of aliens had
been drawn using this technique, Maurer had the program read and
write new sprite graphics values from ROM to create a new row of
aliens. On each row, the aliens could have a different appearance.

These two techniques, combined with the VCS’s lack of a frame
buffer and subsequent requirement that the programmer draw every
scan line, allowed the VCS to overcome the apparent limitation of
supporting only two sprites on-screen. Rather than changing both
sprites and their positions every frame, one or both could be changed
every line. Together, these approaches extended the originally
imagined game design space on the Atari VCS, making the unit
capable of playing games that were very different from the arcade
hits of the mid-1970s. The importance of these exploits was not
overlooked at the higher levels of the company. Discussing this
technique in 1983, after he had become vice president of product
development at Atari, Kaplan commented, "Without that single strobe,
H-move, the VCS would have died a quick death five years ago." 6

Despite the cleverness of these techniques, both vertical
positioning and horizontal strobing required that sprites move
together in vertical unison, if they were to move vertically at all. Some
variations of Air-Sea Battle moved different enemy sprites at different
rates of speed by writing new values to the horizontal motion
registers, but the objects in that case only moved horizontally—never
along both horizontal and vertical axes.

Unfortunately, the four Pac-Man monsters need to move
horizontally and vertically, and to be independent of one another.
Nothing like this had been done before on the Atari VCS. Yet, just as
Space Invaders would have been unrecognizable without its
characteristic rows of invaders, so Pac-Man would have been
unrecognizable without its characteristic monster quadruplets.

To draw the four pursuers, programmer Tod Frye relied on a
technique called flicker. Each of the four ghosts is moved and drawn
in sequence on successive frames. Pac-Man himself is drawn every
frame using the other sprite graphic register. The TIA synchronizes
with an NTSC television picture sixty times per second, so the
resulting display shows a solid Pac-Man, maze, and pellets, but
ghosts that flicker on and off, remaining lit only one quarter of the
time. The phosphorescent glow of a CRT television takes a little while
to fade, and the human retina retains a perceived image for a short
time, so the visible effect of the flicker is slightly less pronounced than
this fraction of time suggests. 7 The fact that the monsters in Pac-Man
were commonly referred to as "ghosts" apologized somewhat for the
flicker and suggested the dimness of an apparition. The manual for
the VCS rendition of Pac-Man included large illustrations of ghosts to
drive the point home. The energizer dots are also comprised of sprite
graphics, but they flash regularly, making their visual appearance
less odd.

Later ports of games in the Pac-Man family, including the 1982 Ms.
Pac-Man and the 1987 Jr. Pac-Man, used less visually intrusive
techniques to draw the ghosts. Flicker was employed only when
necessary, on one horizontal band of the screen rather than on every
frame.

The flicker on the first VCS Pac-Man annoyed and disappointed
many players. Part of the problem is the nature of human vision. The
eyes can simply tire of the constantly flashing ghosts. Another part of
the problem is the effect of flicker on gameplay. The flashing of the
ghosts makes them harder to see, which is a major problem for a
game that is all about pursuit.

Another problem with the visuals is even more subtle. In Iwatani’s
original game, each ghost has a different color, name, and behavior.
This gives each of the opponents at least some sort of personality.
The arcade game prominently introduces the monsters by name—
Blinky, Inky, Pinky, and Clyde—during attract mode, when the
machine is luring players to insert quarters, and Blinky is further
fictionalized in the interstitial scenes between levels. No such transfer
of characterization was possible on the Atari VCS, in part because
the monsters cannot be distinguished from one another.
The flicker technique and the reuse of one sprite also made it

necessary to abstract the bonus fruit in the game. Aesthetically, Pac-
Man is already a very abstract game—even in the arcade. The player
eats pellets and energizers, not burgers and cola. The addition of fruit
fits the theme

VITAMINS

4.2 The manual for the VCS Pac-Man reimagines the bonus object,
which is drawn using playfield graphics, as a "vitamin."

of eating and serves an additional purpose in the game design:
considerable bonus points can be earned in return for steering Pac-
Man in the right direction to get the fruit. The visual fidelity of these
fruits, as well as the incongruity of their appearance, introduces an

element of whimsy into the game. Because the maze is identical on
each level, the fruit also marks achievement; players would talk about
"reaching the apple stage" or "getting to the key" (the nonfruit prize
that is offered last) to note their progress and boast about their skill.
To avoid storing even more sprite data in ROM and drawing an

additional flickering object that would result in even worse flicker,
Frye represented each of the fruit bonuses with a single, even more
abstract object: an orange box made of playfield graphics with a
yellow player-one missile graphic filling its inside. The object didn’t
change from level to level as it did in the arcade. In the printed
manual for the game, Atari tried to fictionalize this technical decision
by calling the bonus object a "vitamin," which was described as "two
intersecting rectangles." In this case, the platform constrained the
fiction of the game. The image of the vitamin in the manual even
looks like a stylized version of the rectangular boxes shown on-
screen, as shown in figure 4.2.

Bank Switching and Ms. Pac-Man

The VCS version was the first home console port of Pac-Man. Atari
reportedly produced upwards of ten million cartridges in its first run.
This was a very unusual production run, given that there was an
active base of only ten million VCS consoles. 8 At the time, Atari
executives reasoned that Pac-Man’s popularity in the arcade would
drive purchases of VCS hardware, thus increasing demand for the
game.

However, the cartridge’s limitations and compromises led to less
than anticipated interest in the game—much less. Atari did sell an
impressive seven million copies of the game, but that still left millions
to languish in the warehouse or to be returned unsold. 9 This was a
massive financial disaster. In the wake of Pac-Man’s commercial
reception, retailers began to mistrust the videogame industry. Their
suspicions would be confirmed with even more licensed games of
dubious quality that same year—most prominently, E.T.: The Extra-

Terrestrial. Pac-Man contributed to a chain reaction of reduced retail
commitment to home console video games, resulting in the so-called
videogame crash of 1983, which is discussed in more detail in
chapters 7 and 8. While larger companies like Atari and Activision
survived in some form, the many smaller companies producing
games for consoles quickly went out of business. It was not until
Nintendo released its NES in 1985 that the U.S. videogame market
recovered from this dark age.

In the videogame fan world, represented by posts from the Atari
amateur community and fan-authored historical documents like
Wikipedia’s pages on the game, blame for the poor quality of the
original VCS Pac-Man is leveled squarely at Frye and Atari. Indeed,
both programmer and company may have overreached in their
attempts to gobble dollars.

Frye developed the game from a prototype that he had been
working on when Atari acquired the game rights. The company
pressured him to use this incomplete version instead of starting over
again so that the game could be released in time for the 1981
Christmas season. Despite the strong technical limitations under
which he worked, Frye had an incentive to attempt the best work he
could in the space and time he was given. Atari CEO Ray Kassar
finally responded to the possibility of Frye and other senior
programmers being hired away by offering them a royalty on sales of
the cartridges they developed. Frye would get ten cents for every
Pac-Man unit sold. Once the game shipped and money started rolling
on, Frye made no secret of the wealth he was amassing. This didn’t
endear him to his coworkers, even though they were substantially
better off because of the new royalty arrangement. 10 For Atari’s part,
the company rushed the game to market at the lowest possible cost
in order to capitalize on the license alone rather than on a careful,
well-crafted rendition of the game.

A year later, Atari released an adaptation of Ms. Pac-Man that
responded to most of the gripes that players had about VCS Pac-

https://calibre-pdf-anchor.a/#a370

Man. Part of this work was derivative of Frye’s. Part of it benefited
from the perfect hindsight of the original VCS Pac-Man debacle.

For one thing, the game used an 8K ROM instead of the 4K ROM
that Frye was allotted for his project thanks to a technique called
bank-switching. The 6507 microprocessor used in the Atari VCS
featured only thirteen of the sixteen pins available in the 6502. This
limitation reduced the total address space of the machine to 8K, of
which 4K is devoted to RAM, the TIA, and the RIOT registers. This
leaves 4K of address space for cartridge ROM. As Pac-Man
demonstrates, limitations in ROM space are just as significant as
limitations in computation time or RAM. A bank-switched cartridge
partly relaxes this constraint, allowing the program to switch between
multiple 4K ROM banks. 11

The Ms. Pac-Man arcade game was itself a variation on Pac-Man,
originally created by General Computing Company as a
daughterboard that attached to the Namco Pac-Man board. The
arcade game changed the appearance and layout of the maze, also
adding three new mazes which appear on successive levels. It also
revised the monster AI to make the behavior of the four opponents
less evidently deterministic, changed the bonus fruit to move and
bounce through the maze, and introduced new cut scenes to go with
the fiction of Pac-Man’s courtship.

The VCS Ms. Pac-Man made considerable use of the additional
ROM space that bank-switching afforded. More ROM made it
possible to have all four mazes in the game. Additional space for
sprites allowed Ms. Pac-Man to face in all four directions, to feature
better animation, and most important, to include game and character
logos, bonus fruits, logos, interstitial screens, and an authentic
arcade attract loop (figure 4.3).

Fans and historians sometimes point to Ms. Pac-Man and later
VCS Pac-Man hacks and rebuilds as evidence that Pac-Man could
have been a much better game than it turned out to be. There is, for
example, Nukey Shay’s revision of Frye’s cartridge, which adds
credible arcade sounds, revised colors, better sprite graphics, and

https://calibre-pdf-anchor.a/#a371

colored fruit. 12 Shay also tuned the speed and control interaction to
better match the arcade. The game includes better renderings of the
main eater and of the ghosts, including animated vertical orientations
for Pac-Man. And it replaces the cloying VCS Pac-Man startup sound
with a credible two-voice rendition of Pac-Man’s characteristic theme
music—a remarkable feat, given the lack of similarity between Atari’s
sound registers and the Pac-Man board’s custom three-channel
waveform sound generator.

4.3 The VCS Ms. Pac-Man has bonus fruit, an attract screen, and
other visual features that connect it to its arcade counterpart.

Despite all of this, it doesn’t make sense to blame Frye for not
accomplishing what Shay did, or to imagine that the VCS Pac-Man
could have been a better game just because later versions of it were
indeed more faithful adaptations. The situation of Pac-Man’s
development and release was historically unique. The technical
affordances of the Atari VCS itself are further bound, at any point in
time, to the types of innovation that have already been accomplished

https://calibre-pdf-anchor.a/#a372

on the platform, along with the player response to the previously
released titles. Whether or not the videogame crash that hit in force in
1983 could have been averted, there is no question that a better
version of Pac-Man could have been released in 1982, given the right
circumstances. But those circumstances—a combination of
intersecting issues in culture, business, and reception—did not arise.
Part of that situation was the very intense demand for an adaptation
of a hit arcade game in the first place, a possible signal of the cultural
shift toward derivatives, licenses, and branded content as the first
phase of cross-media consolidation took root.
If there is a general lesson that can be learned from Pac-Man’s fate

on the Atari VCS, it is the importance of the framing and social
context of a property—video game or otherwise—when adapting it for
a particular computer platform. The VCS rendition of Ms. Pac-Man
demonstrates that an artifact with a strong social and cultural context
must carry some significant signs of that context into its adaptation.
One videogame writer described the VCS game as "a pale imitation
of the real thing," noting that "the cut-scenes were gone, the paku-
paku sound effect was no more, and Iwatani’s colorful, appealing
graphic design was butchered." 13 Perhaps the most interesting
feature of the VCS rendition of Ms. Pac-Man is that it includes an
authentic arcade attract loop, dramatic interludes, and accurate Ms.
Pac-Man logos on both the splash screen and the game screen.
These features add nothing to the gameplay, but they provide an
important frame for it. A home version of Pac-Man, it turned out,
needed to simulate the arcade experience, with its sounds and video
displays meant to draw players from afar, as much as it needed to
allow players to pilot a yellow pizza-critter around an abstract maze.

https://calibre-pdf-anchor.a/#a373

Yars’ Revenge [5]

In 1981 Yars’ Revenge burst forth from Atari, powered by impressive
graphics and sound and providing for compelling play. The game was
heavily promoted by the company—and its distinctive qualities made
it worth promoting. Yars’ Revenge became Atari’s best-selling original
cartridge, one that was emblematic of the Atari VCS experience for
many players. The story of its development reveals much more about
the interplay between arcade and home games. It also shows how
development capabilities were further evolving in the early 1980s and
how the facilities of the Atari VCS could be built upon to allow for
even more effective play in the context of the home.

Though the cartridge offers such eye candy as a scintillating vertical
stripe and similar-looking full-screen explosions, Yars’ Revenge didn’t
excel on the strength of its graphics alone. The game includes
several different elements, each with unique behaviors, necessitating
a lengthy description of the rules in the manual. Original as the
cartridge was, the Yars’ Revenge project was initially supposed to be
a simple port of a vector graphics arcade game. The programmer
went from this starting point toward something with a markedly
different look and with significantly changed gameplay. Yars’
Revenge does have some affinities with its arcade inspiration, but it
ended up earning the designation "original." The hit cartridge even
became something of a media property itself—at least, more so than
any other VCS game by Atari.

A Yar Is Born

Howard Scott Warshaw’s first assignment at Atari was the project that
would eventually result in Yars’ Revenge. Initially, he was to port the
arcade game Star Castle, produced by Cinematronics, to the Atari
VCS. As he told an interviewer, "I soon realized that a decent version
couldn’t be done, so I took what I thought were the top logical and
geometric components of Star Castle and reorganized them in a way
that would better suit the machine."1 Warshaw’s comment reveals
how the platform participates in the ecology of game development.
The design of Yars’ Revenge was not entirely determined by the Atari
VCS or dropped on the platform by its programmer with no concern
for how the system worked. The original idea was to imitate another
game, but the capabilities and limitations of the VCS led the
developer to create something different: a reorganization of Star
Castle’s major components that recognized the differences between
vector and raster graphics, exploited the abilities of the TIA, and was
well-suited to home play.

Warshaw explained in another interview how radical it was for Atari
to drop Star Castle, which it had already arranged to license:

I did something no one else had ever done, I went
to my boss and said that I had an idea for an
original game that would use the same basic play
principles of Star Castle but was designed to fit the
VCS hardware so it wouldn’t suck. And to their
credit, they let me go with it. Think about that. They
blew off a license to let me pursue an original
concept with the promise of making a better game
for the system. That would never happen today.2

An arcade game that was a hit would of course have a following
already, one that might generate enthusiasm and an initial market.
Even in the early days, when the arcade hits were Pong and Tank
rather than Pac Man, an arcade game’s fan following could be
important when it came to the home console market. Seen in this

way, the licensed arcade game was not very different from a book or
movie, which could also supply a video or computer game with
valuable recognition and a ready market of fans.

Even if an arcade game hadn’t been a huge success, as was the
case with Star Castle, it would often be ported. A deployed arcade
game contained a complete and fully implemented game design, one
that had been tested on the playing (and paying) public. Ironically,
however, the hardware capabilities of an arcade machine—in terms
of processing power, graphics, and controller setup—were always
significantly different from those of the Atari VCS, so that having a
well-tested and implemented game design on the arcade platform
didn’t mean very much when it came to the home console’s
hardware. A "port" from the arcade to Atari’s home system was not
like a port from one computer system to another, in which the
program being converted would function in the same way on both
platforms with only minor differences, after a few small changes were
made. For one thing, the VCS code for a game always had to be
written from scratch—there was no way to modify and reuse what
had been done for the arcade game. As Warshaw explained, "The
hardware in coin-ops was way beyond the capability of the VCS and
the code frequently wouldn’t even have been compatible. The closest
to using coin-op technology would be when occasionally we would
consult with original coin-op programmers to get questions about AI
algorithms answered. The code never even came close to passing
from arcade machines to VCS."3

Given the differences in platform and the need to rewrite each
game from scratch, a port to the Atari VCS had plenty of room to
become a fairly involved adaptation rather than a simple re-creation.
This could leave some fans of the arcade game disappointed, as
happened with Pac-Man. It could also lead to the porting project
taking a different and interesting turn, as happened when the Star
Castle project veered off to become Yars’ Revenge.

The most obvious difference between the Star Castle computing
system and the VCS was the arcade machine’s vector graphics,

which Atari called XY graphics. Atari’s successful arcade games
Tempest, Battlezone, Asteroids, and Lunar Lander all use this sort of
graphics system, which employs a fundamentally different type of
monitor. All early arcade games used a CRT, but the ones in vector
graphics games are wired differently than are the ones in standard
televisions. The electron beam does not sweep across the screen
from left to right, being turned on and off as it makes its way down
and then returns back to the top sixty times each second. Instead, the
electron gun is pointed at a certain location, turned on, and moved
from that (x, y) coordinate to another point in a straight line, where it is
turned off again. (An oscilloscope functions in a similar way; it just
uses a different method of deflecting the electron beam.) Because the
beam can be made to move arbitrarily instead of progressively
scanning along the screen, this way of illuminating a phosphor-
coated screen was also called "random scan." Vector graphics
systems draw lines in an (x, y) coordinate system; raster graphics
systems draw a grid of bitmap data representing a pattern of pixels.

Cinematronics was the first company to release an arcade game
that used this display technology: Space Wars, released in 1977. Like
the first raster arcade game, Nolan Bushnell’s pre-Atari Computer
Space, it was a two-player arcade implementation of the 1962 PDP-1
program Spacewar. Star Castle has significantly different gameplay,
and was developed by a different person, but the space setting and
control scheme show that it is clearly based on Cinematronics’ earlier
game Space Wars.4

Vector graphics have certain advantages over raster graphics; at
least, they did in the late 1970s and early 1980s. Specifically, it is
much easier on a vector system to rotate shapes and to scale them
up or down, as is needed when zooming in or out. For instance, to
resize an object that is centered on (0,0) and consists of some set of
lines, each endpoint’s coordinates can simply be multiplied by the
scaling factor. It does not get much trickier when the object is
centered elsewhere or when there should be different amounts of
scaling in the horizontal and vertical axes. It is also straightforward to
shear a shape, keeping one axis constant while shifting the other.

Rotation, scaling, and shear are the basic linear transformations, and
any one can be accomplished by subjecting the coordinates of a
shape’s points to a single matrix multiplication. In combination with
translation (the displacement of the shape in space, which just
requires addition of the amount of the displacement), these allow for
all the possible transformations that keep straight lines straight.
In a raster graphics system, particularly one with the limited

computing power of the Atari VCS, the only feasible way to show a
rotation of an object is to display a different bitmap—a hard-coded
image of the shape rotated by the desired amount. This is how tanks
and planes in Combat are rotated, for instance. A simple form of
scaling is supported in hardware, via the TIA’s number-size registers,
but smoother zooming has to be done with new graphics. Even when
the display hardware itself is not of the XY graphics sort, these
benefits of vector graphics can be seen when comparing software
platforms such as an early version of the bitmap-based Macromedia
Director and an early version of that company’s vector-graphics Flash
environment.

Through the Wandering Rocks

Vector graphics games used the special capabilities of the display
system to good effect. Battlezone is a classic example of a game that
uses the scaling capability to make tanks larger, so that they appear
to be approaching. Asteroids, on the other hand, makes more
prominent use of the facility for rotating shapes.

Although the ship can move freely about the screen in Asteroids,
the game is organized radially around the ship, which must be the
player’s center of attention and which can rotate and fire brilliant
shots in all directions. With its space setting, its rotating and firing
ship, and its controls, Asteroids shares several fundamental qualities
with Spacewar, with the arcade game Space Wars, and also with Star
Castle. The original arcade Asteroids, developed by Ed Logg, is

worth comparing to its Atari VCS port, which was published in 1981,
as was Yars’ Revenge.

Brad Stewart, who had earlier done the port of Breakout to the Atari
VCS after winning the right to port the game by besting a fellow
programmer in the arcade Breakout, went on to develop the VCS
Asteroids. Both the VCS and the coin-op game purport to be
Asteroids and do feature a rotating ship, rocks breaking up into
smaller rocks, and flying saucer enemies. But the arcade game uses
the capabilities of the vector display beautifully and works well in the
situation of the arcade; the cartridge exhibits classic VCS qualities
that connect to home gaming traditions and the TIA’s affordances.

The arcade Asteroids has five buttons that are used as controls
during the game: a pair of buttons for rotating clockwise or
counterclockwise, a pair to control thrust and fire, and a hyperspace
button that is set below the others—exactly the same five buttons as
on Space Wars. Star Castle has controls that are the same except for
the hyperspace button, which is missing on the Star Castle control
panel. In Asteroids, the monitor is oriented horizontally and the
playing field’s topology is that of a torus: objects wrap around
vertically and horizontally. This is the same as in Star Castle, and is
one option that can be selected in Space Wars.

A difference between Star Castle and the arcade Asteroids is the
lack of color overlays in Asteroids. A monochrome monitor was used
for Asteroids—originally, the Electrohome G05-801, a 19 monitor
made by Wells-Gardner Electronics and previously used in Lunar
Lander.5 Without overlays, an image on this monitor appears as white
lines on black. The asteroids are drawn more dimly, and move about
in arbitrary directions. The ship and flying saucers are drawn more
brilliantly, and the shots fired from either are particularly luminous
points. These aspects—along with high contrast, sharp lines, and a
fast refresh rate—make Asteroids visually impressive in a way that is
hard to imagine when looking at an emulator, screen shot, or
diagram.

The music and sound in the game is simple but very well suited to
play, as Sherry Turkle and an arcade game player she interviewed,
memorably described: "When the play picks up, Asteroids pounds out
a beat that stands between a pulse and a drum. ‘It’s its heartbeat,’
says the twelve-year-old player standing next to Marty in the
arcade."6

A typeface characteristic of vector graphics systems was used for
the score, copyright notice, "ASTEROIDS BY ATARI," and the high
score list. High scores had been saved and displayed before, initially
in pinball games, beginning with Midway’s 1976 Sea Wolf.7 But the
arcade Asteroids introduced an innovation: the ability for a high
scorer to enter three initials that are saved and displayed alongside
the score. Early games like Spacewar and Pong could be played only
as head-to-head multiplayer games. Space Invaders was the first
arcade video game to track high scores across individual games, but
Asteroids was the first game to allow players to personalize a high
score with their initials.

This seemingly innocuous feature ushered in a sea change in
arcade social practice. On game criticism site GameSpy, the
innovation was characterized this way: "Asteroids was the first video
game to take the idea of multiplayer competition beyond one-on-one
challenges that had no consequences beyond the actual players. . . .
Players didn’t have to play the game together in order to compete
with one another, they could compete against a whole community."8

High scores built on a tradition that predated the videogame arcade
—initials on the board in tavern games like darts, for example—to
create a new tradition for the 1980s. Instead of a game played by one
person at a time, Asteroids became a game played by the whole
arcade. In some cases, players competed against friends for rank on
the high score list. But more frequently, top score holders were semi-
anonymous legends, specters that players would try to top. If they fell
just short, they would sometimes deride the person who had scored
higher by adding three letters so that the high score list would look
like this:

SBJ 23000

SUX 21500

Even though the persistence in Asteroids is limited to a set of three
digit codes, the high score list transformed the game from a solitary
challenge—man against rock—to a social challenge—player versus
player. The space combat gameplay itself became a medium for
social combat in the arcade. High score holders felt compelled to
return to the arcade to see how their renown had fared in their
absence. The goading of the high score screen between Asteroids
game sessions became important—in some cases, as important as
the sessions of space combat that a player personally witnessed.

High score lists in home games served a very different function.
Homes are private spaces that don’t support chance encounters with
known or unknown competitors. High score lists can persist as a tool
for personal challenge, a way to leave a mark at a friends house, or
(rare in the 1980s) as a place where traces of family activity could be
seen. But this kind of high score list would have been limited to the
home computer, since home consoles had no internal nonvolatile
memory and were not able to save any data to rewriteable cartridge
memory until The Legend of Zelda. In that cartridge, the feature was
used only to save game progress, not to facilitate competition.

In Yars’ Revenge, no record of the high score is kept, and the score
is further deemphasized by being displayed only at the end of levels
or when the Yar is destroyed. This gives a pure look to the active
game screen, which lacks any numerals or letters and is given over
entirely to the playing field, but it also prevents competing players,
and the player currently controlling the Yar, from eyeing the score
during play.

A player can immediately recognize VCS Asteroids as a version of
the arcade game. It boasts similar gameplay, visual appearance, and
sound. The minor differences are telling, however. The asteroids are
filled-in and sometimes flickering masses that are drawn in a few
different colors rather than as monochrome outlines.9 The ship is also

solid, and fires at most two shots at once—not the four that are
possible in the arcade game. Although emulators have been able to
make the VCS Asteroids conveniently available on computers, they
have also shown sharply blocky pixels which were not seen in the
same way by players in the early 1980s. CRT televisions blur pixels
together to show something that was clearly different from a vector
graphics display, but which is also softer and fuzzier than how it is
seen on an LCD display.10

Perhaps the most significant difference between arcade and VCS
versions is not seen in the graphical display, but felt in how the game
operates and how the asteroids move. Rather than moving in
arbitrary directions, asteroids on the VCS move mainly up and down
with a slight horizontal component to their velocity. This means that
staying in the middle of the screen and never using thrust at all can
be a very effective strategy in the VCS game. In the arcade game,
this style of play gives only the slight advantage of a clearer view.

Asteroids was the first cartridge to use the bank-switching
technique discussed earlier in the context of Pac-Man and Ms. Pac-
Man. There was no idea in 1977 that more than 4K—really, more than
2K—would ever be desirable for a VCS cartridge. But as the system
took hold in the market and more elaborate projects got under way,
engineers at Atari looked into expanding the cartridge’s capacity.
Larry Kaplan’s Video Chess was the first cartridge slated to use bank-
switched ROM. However, Bob Whitehead managed to revise the
game to fit into 4K before it was released in 1979. Stewart worked with
Bob Smith at Atari to try to similarly compress Asteroids, but the
programmers found themselves between a rock and a hard place,
unable to fit the game into the largest standard ROM. By this point,
Atari had the technology ready to provide more memory: 8K, made of
two 4K banks. This was enough, and allowed Asteroids to be
contained on a cartridge without sacrificing its in-game "heartbeat"
music, color asteroids, sixty-six variants for one or two players, and
other features.

Building on Star Castle

https://calibre-pdf-anchor.a/#a384

The object of Star Castle is to repeatedly destroy the rotating cannon
in the center of the screen, with one’s triangular, rotating ship, a
vessel that looks and moves like the ones in Asteroids and Space
Wars. The enemy cannon appears behind colored overlays and is
surrounded by three concentric, rotating shields, each of which is
made of line segments. The segments can be destroyed by fire from
the player’s ship, but whenever an entire ring is shot away, it
regenerates. Whenever the player clears a path to the cannon,
creating a chance to shoot at it to destroy it, the cannon fires a large
missile toward the player’s ship. As the player is trying to break down
the shield rings, three mines also move out and seek the player’s
ship. They can be avoided or shot, although shooting them does not
increase the score and they soon reappear. After a central cannon is
finally successfully destroyed, another one quickly appears with three
intact rings around it.
In Yars’ Revenge, the player’s "ship" or "man" is the Yar, a "fly

simulator" that is controlled with the joystick. Yars’ Revenge replaces
the pivoting of the ship about a point, which could easily be done by
the vector graphics display system of Star Castle, with movement in
the standard eight directions—up, down, left, right, and diagonally.
The latter is a form of movement that was fairly easy for the Atari
VCS: translation while facing in one of eight directions. The Yar sprite
is animated, requiring an additional frame for each direction, but its
appearance facing right is a reflection of what it looks like facing left,
allowing for some savings. As was mentioned in the discussion of the
VCS Pac-Man, up/down reflection is not as straightforward as
left/right reflection. For this reason, the Yar sprites for up and down
are both laid out in ROM. Switching between the two requires reading
a different bitmap. The insect appearance of the Yar was simply
based on what Warshaw could draw and animate in an interesting
way within a player sprite.11 The name "Yar" has a more definite
referent—it was devised by spelling Atari CEO Ray Kassar’s first
name backward. Figure 5.1 compares screens from Star Castle and
Yars’ Revenge.

https://calibre-pdf-anchor.a/#a385

The objective in Yars’ Revenge is the Qotile, which moves up and
down along the right side of the screen and is protected by a shield.
All of the levels are similar in form, but the first one (and all the odd-
numbered levels) have a stationary, somewhat rounded shield
around the Qotile, while the other levels (all the even-numbered
ones) feature a block of shield whose pieces move left-to-right, down
a space, right-to-left, down a space, and then right-to-left again
through the block. The motion of the pieces mimics that of the CRT’s
electron gun as it sweeps across and back while moving down the
screen.

Defeating the Qotile is a somewhat complex process. Initially, the
Yar is in a mode where it fires shots that can chip away at the shield;
it can also directly touch the shield to eat away at it, although eating a
block may take several tries. In most variants, when the Yar
successfully eats a chunk of shield, the Zorlon Cannon appears and
the game enters a different mode. The cannon is the only weapon
that can defeat the Qotile. Pressing the button after the cannon has
appeared fires it. Complicating matters further are several other
game elements. There is a single destroyer missile that, like the three
mines in Star Castle, seeks the Yar and can kill it. A feature not in
Star Castle is the stripe of neutral zone; the Yar is safe from the
destroyer missile in this zone, but is unable to fire and is not protected
from a more powerful attack in which the Qotile fires itself off in the
form of a swirl. The swirls are similar to the large missiles that the
Star Castle cannon fires when a path is cleared to it, but they take off
at random. Finally, the Zorlon Cannon, although it is a weapon at the
player’s disposal, has the ability to hit and kill the player and can even
rebound off the shield to do so in certain variants.

On top of all this, the game’s behavior changes further in other
variants: difficulty increases in three phases as score increases, a
large bonus is offered for shooting the Qotile in swirl form, and a
larger bonus can be earned for shooting the swirl once it has
launched. The first two game variants are easier oneand two-player
versions suitable for young children. Two-player hotseat play and
one-player play is provided for each of the different difficulty levels.

The complex, intertwined objectives and obstacles of Yars’ Revenge
certainly show how far video games had come since Pong’s "avoid
missing ball for high score."

5.1 At Top, a screen from Star Castle, a vector graphics coin-op
game. The screen at the bottom is from Yars’Revenge, the Atari VCS
cartridge that was inspired by Star Castle. Details of the players’

ships are inset in each screen, showing signs of the different display
technologies that are being used.

There are reasons for these intricacies that cannot be attributed
solely to the programmer’s whim. Because there is only one button
on the VCS joystick, it is impossible to map one button to one type of
weapon and another button to another, even though this type of setup
was common on arcade games of the time—Tempest offered
superzappers, Defender smartbombs. It was not an option to have
one button for the Zorlon Cannon and one for regular firing. Instead,
Yars’ Revenge has two different modes. In one, the button shoots the
typical ordnance from the Yar, the energy missile; in the other, the
button fires the Zorlon Cannon, which follows the Yar horizontally but
is fixed to launch from the far left of the screen.

Although it might seem that complexity of this sort would inhibit new
players, testing didn’t indicate any problems along these lines, and
neither did sales. There are a few reasons why the nature of the
game may not have put off new players. Cartridges were a costly
investment, so any player who purchased the game was likely to
check the manual out in some detail before declaring the game a
dud. Players of the early 1980s would be more likely to read manuals
for other reasons. Today’s players expect the game to teach them
how to play, step by step, with live on-screen instruction via pointers
and overlays. The Atari VCS has no built-in support for text rendering,
and no programmer would have thought to waste precious ROM
space with instructions. Instead, this aspect of the experience was
offloaded to the manual. Most VCS cartridges also included many
variants—Combat’s twenty-seven video games, for example. To
understand which variant was which, the player would have to
consult a chart or description in the manual. An obvious fact that is
nevertheless worth noting is that there was no World Wide Web in
1981, and the dial-up computer bulletin board services (BBS) had not
yet become popular, so checking online to find out how to play wasn’t
an option.

But it wasn’t always necessary for players to consult the manual to
learn a game’s intricacies. They could learn from someone else who
had figured out how to play—even if that person hadn’t completely
mastered the game or understood every detail. The complexity of
play, rather than always shutting out newbies, sometimes offered an
opportunity for those who had played a bit to discuss how the game
worked. This sense of experimentation has not been entirely lost in
contemporary video gaming, although times have certainly changed.

To continue pursuing the details of this game’s workings, consider
the two options for attacking the shield. A player can eat away at it by
bringing the Yar directly into contact with it or fire at it from farther
away. This dual approach allows expert players to chew away in
more risky but higher-scoring maneuvers, while less skilled players
can choose the easier option of attacking the shield from a distance.
Players can hide from the missile in the neutral zone, avoid it, or, if
they like, shoot at it. The neutral zone can be a pleasant refuge, but
as it does no good against the Qotile’s swirl, it does not provide a
defense against every attack.

Killing a Qotile with a missile as it moves up and down along the
right side of the screen is a fine accomplishment, and earns the
player a thousand points, a substantial amount compared to the sixty-
nine points earned by shooting away a single part of the shield. If the
Qotile has transformed into a swirl and remains along the right side of
the screen, the bounty increases to two thousand points. The real
payoff comes from hitting a swirl that has launched into the air
against the player. This nets the player six thousand points and an
extra life. As with shooting the shield (as opposed to eating it), this
method provides more capable players with an additional challenge
while letting others progress and earn fewer points.

Beyond the basic redesign of the gameplay and the graphical
advances that were made, there were a few other innovations—
minor, but telling—in Yars’ Revenge. These features show how game
software could allow a fixed hardware platform to evolve and suit the
needs of home players a bit better. They include the ability to reset

the game from the joystick without reaching over to the console and
using the reset switch, a convenience that would evolve into the
NES’s placement of select and start buttons on the controller itself.
Another first was an "official" Easter egg. Robinett had slipped his
name into Adventure without permission; Warshaw got marketing to
agree to let him code the game so that his initials would appear when
the Yar is navigated to a certain spot on the explosion screen.

Yars’ Revenge also has a makeshift but useful facility for pausing
the game. The program waits at the beginning of each new level for
the player to press the button, allowing gamers to take a break from a
play session and to return to continue playing. There were some
similar features in other games, such as Breakout, which waits for the
player to press the paddle button to serve the ball. This contrasted
with how the ball serves automatically in the original Pong. The
inclusion of this feature helped players overcome the Atari VCS’s lack
of a true pause button and acknowledged the difference between
arcade games and home video games. In the arcades, it was
imperative to drive players through short games in order to harvest
additional quarters from them—no concept of pausing is compatible
with coin operation. At home, companies were competing to have
players purchase more cartridges. Long game sessions were
perfectly consistent with this goal, as they still are today.

The Code Zone

Yars’ Revenge features a large, four-part video kernel. There is one
part to draw the swelling explosion that ends a level, another to
display the score, another to draw the shield for half the frames of the
main sequence, and a final one to draw, in alternating frames during
the main sequence, the multicolored neutral zone.

The neutral zone’s random-looking patterns are not provided by a
pseudorandom number generator—an intricate algorithm that,
although deterministic, is complex enough to create a sequence that
looks random. Such an algorithm can be implemented on the Atari

VCS (as is discussed in relation to Pitfall! in the next chapter), but it
exacts a price in ROM (the code itself must be stored somewhere)
and in cycles (the code must be run while the game is also carrying
out the work of drawing the screen and updating the game state). The
alternative is to lay out a random-looking pattern in ROM and simply
load random-seeming bytes from this small entropy pool, one that
suffices to create a disorganized visual display. This approach takes
fewer cycles, but it requires that some random-looking pattern,
perhaps a fairly large one, is stored in ROM. If such a pattern were to
be added, something else in the game would have had to give—there
are fewer than a handful of bytes free in the finished Yars’ Revenge.

Warshaw used the second technique, but he made use of a
random-looking sequence of bytes that would already be laid out in
ROM by the time the game was finished—the game’s code itself:12

EOR (neutralZonePtr),Y
AND neutralZoneMask
STA PF2

AND #$F7

STA COLUPF
In this part of the neutral zone kernel (the first instruction is located at
$F084), the values pointed to by neutralZonePtr are brought into the
accumulator and masked against the contents of neutralZoneMask.
This accumulator value is used first as the pattern that is loaded into
a playfield register and, after it is masked again, as the playfield color.
The label neutralZonePtr points to the same address as does another
label, game-Timer. At this location, a count is stored that is continually
incremented, once each line, and ranges over the addresses in
cartridge ROM. This progression works it way through the code of the
Yars’ Revenge cartridge, with each byte of code being loaded,
transformed, and displayed on the screen. The bytes in ROM end up
being used in three contexts: as executable code, as playfield
graphics, and as the playfield color. When the Qotile is hit, they also
supply the random-looking arrangement of the full-screen explosion.

https://calibre-pdf-anchor.a/#a386

Warshaw told an interviewer that he had planned to use this
method from the start rather than working it out as a solution to a
problem that came up: "It was just a cheap way to get the effect I
wanted. I didn’t have the time or space to do it any other way."13 Still,
by making the game’s code into an important visual component of
Yars’ Revenge, Warshaw showed how a functioning program could
shine aesthetically. When the player looks at the neutral zone on the
screen, he is also literally looking at the code. Yars’ Revenge may not
have had any direct influence on the spectacular movie Tron
released the summer after the game, but the multicolored Master
Control Program is cast in a different light by the neutral zone,
actually drawn again and again by its own image, a liminal code-and-
data Janus.

Into Fiction; On to the Future

In ,Yars’ Revenge, the unique nature of the game elements, the
possibility for one’s ship to both fire and eat away at a shield, and the
unusual shape of the ship also offered hooks to which other fictional
media could attach. The comic Yars’ Revenge: The Qotile Ultimatum
was included with the cartridge, something that might not have
worked as well with early titles such as Combat, Air-Sea Battle, or
Video Olympics. At any rate, no similar comic projects seem to have
been considered early in the system’s history.

There was also a Yars’ Revenge album for children, released under
the Kid Stuff Records label, as well as an Atari-licensed Yar
Halloween costume. There was even some discussion during the
original VCS game’s development of doing an arcade version of Yars’
Revenge. A VCS-to-arcade port never became a reality, but the very
idea was probably unprecedented. From the origins of the Atari VCS
until the early 1980s, it was always assumed that arcade games
would supply the titles and game designs for VCS games, and it was
almost never imagined that innovation might move in another
direction.

https://calibre-pdf-anchor.a/#a387

Yars’ Revenge programmer Howard Scott Warshaw went on to
program two other important VCS cartridges: Raiders of the Lost Ark
and E.T.: The Extra-Terrestrial. These high-profile, prize projects
were attempts to capitalize on films, and were part of a trend that is
discussed in chapter 7 alongside the VCS game Star Wars: The
Empire Strikes Back. Both of Warshaw’s later games were quite
different from Yars’ Revenge, favoring exploration over shooting and
fast action. In addition to a Nintendo Game Boy Color port of Yars’
Revenge in 1999, there was also, oddly enough, a VCS sequel to the
game developed more than twenty years after the original and
released as part of the Atari Flashback 2 TV game system in 2005.

The multicolored neutral zone, pulsing color and sound, hi-res
score, proto-pause feature, and repeating but intricate gameplay of
Yars’ Revenge clearly came about in the context of how little the Atari
VCS was able to do—and how much it could manage when it was
pushed. Certainly, the cartridge looks primitive when compared even
to the typical NES game. It looks much more so when lined up
against later 3D games. But when compared to the VCS launch titles,
Yars’ Revenge can be seen as making a significant advance in
graphics, sound, gameplay, and interface. It also shows how an
arcade game could be reimagined as a home "original." Perhaps this
VCS cartridge didn’t step up to the level of Super Mario Bros. or The
Legend of Zelda, but for its moment—closer to the late-1977 Combat
than to the late-1985 Super Mario Bros.—it was a considerable
accomplishment.
Warshaw himself is clearly proud of the game’s status as a bag of

tricks that introduced many novel features and Atari VCS firsts, but he
finds the integrated experience of the game and its highly playable
nature and widespread appeal to be its biggest achievement: "What
was most exciting to me was to have made my first game be a
significant debut and make a splash. That and making a game that
was good enough that I enjoyed playing it. I was very proud of all that
was achieved by Yars. Although, if I had to pick one thing, it might be
that it was that Yars scored highest among adult women, the single
hardest market segment to reach."14

https://calibre-pdf-anchor.a/#a388

We, too, are unable to locate the secret of this game’s success in
any one technical feature. But there is another quality of Yars’
Revenge, beyond its playability, that bears mentioning: the game’s
unusual visual, aural, and interactive aesthetic. If members of today’s
generation of gamers were to walk in and see a game of Yars’
Revenge in progress on a screen, they might be unlikely to praise the
graphics and sound, but they would likely be startled by the unusual
image and look twice at it. This game does not fill the screen with
cleverly duplicated sprites, as was typical in the shoot-em-up genre.
And it does not use the saturated colors that would become typical of
Activision games. There is no score display during the main
sequence of play. The pulsing Qotile sprite and the blocky shield of
subdued color are a great contrast to the multicolored, shimmering
stripe that seems to rupture the display straight through to the level of
code.

The sound in Yars’ Revenge was effective at the time—and
elements of it were, in many ways, quite typical of videogame sound
and music in 1981. To some, the background droning may have
sounded similar to, and about as compelling as, the "heartbeat" of
Asteroids. But it was also not too far removed from the tank-tread
grinding and background hum of Combat. The sonic landscape of the
game was not constructed from any sort of complex interactive
musical score—music during gameplay was not typical on the Atari
VCS. Rather, it was built up from intermittent sound effects overlaid
on or replacing the background drone. This rough droning might have
evoked to period game players the overall hum of activity and the
blending sounds of coin-op games at the arcade. But even if it was
familiar in some ways, the sound had its own unusual qualities,
hovering somewhere between noise and music.

The subgenre of shooter into which Yars’ Revenge falls would have
to be that of the fixed or single-screen shooter, a category which also
includes the arcade games Space Invaders, Galaxian, Phoenix,
Centipede, and Gorf, all of which were ported to the Atari VCS;
Galaga, a famous game that wasn’t ported to the system; and Demon
Attack, an original game published by Imagic for the Atari VCS. But

Yars’ Revenge differs from all of these games by having the main axis
of conflict oriented horizontally rather than vertically. This unusual
choice, and the numerous modes and complexities of play, mean that
Yars’ Revenge plays in a way that is as strange, and as oddly
pleasing, as it looks and sounds.

Although Yars’ Revenge was off-kilter in many interesting ways, it
was dead on as a VCS cartridge, making use of the sound, graphics,
and interface that the system was best at providing. The full-screen
explosion and eight-directional Yar would have made no sense in the
context of an XY graphics system. Similarly, it would have been
bizarre in the extreme for Yars’ Revenge to have come about on the
competing Intellivision. The Qotile and Yar, represented with the two
VCS player sprites, would have been less natural as lone antagonists
on that platform, which featured eight moving objects. There would be
no need for the special mode for firing the Zorlon Cannon, as the
Intellivision controller has two fire buttons, not to mention a keypad.
And, to avoid giving the false impression that the Intellivision was
technically superior in every way and was a simple superset of the
Atari VCS, nothing like the fading and reappearing of the Qotile and
the shimmering of the neutral zone would have been possible using
the frame-buffered sixteen-color graphics system of that console.

Warshaw’s "original" was a brilliant variation on Star Castle, played
in virtuoso style on the Atari VCS. His skill in creating Yars’ Revenge
is not just seen in his programming chops and creativity. It can also
be found in his ability to innovate and improvise while building down
from the top (an already completed vector graphics coin-op game
with a working game mechanic), and up from the bottom (a platform
that offered a particular set of affordances and was used in the
context of the home). Many creative computational works are based
on earlier programs to some extent, either very directly (as with the
VCS Pac-Man), with some modification and extension (Combat), with
more radical reorganization (Yars’ Revenge), or with a complete
change of display, interface, and indentdigm (Adventure). But
whatever the influence of past programs, the developer always also
encounters the current platform. When the work being developed is

innovative, it is often enabled by new exploration of a platform’s
capabilities, by reconceptualizing the platform’s limitations, and by
attending in new ways to how and why people use it. Yars’ Revenge
is clever code, but the cartridge really excels when seen in the
context of Atari’s early VCS games and when plugged into its
platform to be enjoyed by players.

Pitfall! [6]

For a third-party home videogame developer in the early 1980s, the
terrain was loaded with treasures, laced with traps, and entirely
unknown. It was in this context that the upstart company Activision ran
ahead to develop and market the 1982 cartridge Pitfall! by David
Crane. The game held the top spot on the Billboard charts for 64
consecutive weeks and helped establish more than one videogame
genre.

Third-Party Games from Activision

David Crane, Larry Kaplan, Alan Miller, and Bob Whitehead were
Atari’s star programmers in the late 1970s, although this wasn’t
obvious to them until a memo was distributed with sales figures for
VCS games. Crane tallied up his titles—they were pretty much his;
although Atari packaged and sold them, he had done everything on
them from concept through design to programming and in-game art
and sound, as was always in the case in those days. Crane found that
the cartridges he developed (Outlaw, Canyon Bomber, and Slot
Machine) had earned more than $20 million for the company. As he
said, "I was one of the people wondering why I was working in
complete anonymity for a $20,000 salary."1 Others began to feel the
same:

When we looked closely at that memo, we saw that
as a group we were responsible for 60 percent of
their $100 million in cartridge sales for a single year,"

Crane recalled. "With concrete evidence that our
contribution to the company was of great value, we
went to the president of Atari to ask for a little
recognition and fair compensation. Ray Kassar
looked us in the eye and said, ‘You are no more
important to Atari than the person on the assembly
line who puts the cartridges in the box.’ After that it
was a pretty easy decision to leave."2

Atari was not the same company that it had been under founder
Nolan Bushnell. Although there had been a change, the idea of radical
equality Kassar cited in response to Crane’s request—programmer
being equal to assembly line worker—had a precedent. In the early
days, Bushnell maintained a policy that no one would be fired
(although they might be denied a raise) and ensured that everyone,
from executives to assembly line workers, had the same health care
plan. But with VCS development organized along a model of the lone
programmer who was almost completely, individually responsible for a
sometimes very lucrative game, it became less tenable to claim that
the programmer was no more important than any other human
resource.

Crane and Miller had the good fortune to meet Jim Levy, who was
already seeking venture capital and working toward starting a
software business. They joined him to found Activision in 1979. Kaplan
and Whitehead followed soon after. Levy, who had worked as a
recording industry executive, was ready to build up the image of
programmers and present them to the game-buying public as
individuals with personalities. Activision used means that already
existed—manuals, boxes, and advertisements—to promote the
programmers. At the same time, the company created a distinctively
non-Atari corporate identity, using only the most saturated colors in its
games, developing a consistent, distinct style for labels and boxes,
and including the Activision logo (but not any programmers’ names)

on every game screen. See figure 6.1 for an example of an Activision
box.

Convincing investors of the value of a venture like Activision was not
easy, but the most substantial barrier for any third-party VCS publisher
was the proprietary nature of the Atari VCS. Later companies would
have to reverse-engineer the platform to learn anything about how to
program it. Activision had the advantage of starting with four ex-Atari
programmers who were already conversant with the Atari VCS. Atari
did what it could to dissuade Activision from going into business,
which included filing a lawsuit against the company in 1980 that
alleged copyright violations and trademark infringement. It was not
settled until 1982, when third-party development of VCS cartridges had
become firmly entrenched.

6.1 The box art for Atari’s VCS launch title Indy 500, shown on the top
left, features an intricate, realistic painting of the game’s subject. The
game itself is much more abstract, as an image of the screen on the
bottom left shows. The box art for David Crane’s early Activision title
Grand Prix, top right, more closely matches the level of abstraction
and even the aesthetic used in the game itself, as seen on the screen
on the bottom right.

From an economic standpoint, Atari took a tremendous hit by losing
its lock on profit-making cartridges. But it’s not clear that Activision
was entirely bad news for Atari. As both Activision and Atari
programmers have recently suggested, the new source of competition
may have ended up goading Atari programmers to develop better
games.3

Development Practices

Today, video games are usually created by large teams working for
many years on a single project. The largest games require teams of
several hundred people. These teams are divided into strict roles:
programmer, artist, voice actor, designer, producer. In the heyday of
the Atari VCS, a single programmer would create an entire game. Until
Imagic broke the mold by having artist Michael Becker create the in-
game graphics for its 1982 Demon Attack, an "artist" working in game
development was the person who illustrated the box art or designed
the game’s printed manual.4

One might imagine that VCS games were created by one individual
just because they were simple. But as the previous chapters suggest,
the machine was anything but simple to program. In the early days of
the Atari VCS, though, software engineering for microcomputers and
videogame consoles was not nearly as industrialized a practice as it is
now. Commercial software was usually developed by individuals or
small groups. For example, in 1981, Microsoft bought exclusive rights
to its first Disk Operating System (DOS) from an individual coder and
then licensed it to IBM.5

Although it is possible for VCS programmers to share code,
cartridge development for the system is not amenable to the
engineering of individual titles by large teams. Even though
programmers learned each other’s techniques (both by directly talking
to one another and by reverse-engineering what others had done),
their work did not divide into neatly reusable subroutines. This does
not mean that VCS programs were under-engineered or poorly written
—the precise timing required just to get the screen to draw wouldn’t
allow for much sloppiness in coding. But the constraints of ROM and
RAM usage, cycle timing, and logic timing often demanded unusual
and unintuitive shortcuts.

For example, in the early days of Activision, programmers would
push up against various boundaries. They would often run out of ROM
space. Most 6502 assembly instructions are two bytes: one for the
opcode and one for the operand. Saving space on ROM requires
consolidating code—usually removing one line for every two bytes of
space reclaimed.

Assembler programs are composed of elementary instructions, not
of higher-order functions. For example, the following assembly
language instructions load a value from the top of RAM, add the value
8 to it, and store the result in the TIA register that sets the background
color:
LDA $80

ADC #$08

STA COLUBK
Each of the opcodes (LDA, ADC, and STA, in this case) are

mnemonic shortcuts for one-byte hexadecimal values that tell the
processor what operation to execute. The opcode LDA, for instance,
loads a value into the processor’s accumulator, a special register in
which it can perform mathematical operations. When assembled into
machine code, the opcode mnemonic "LDA" becomes the
hexadecimal value A9. Here is what the three example lines look like
in machine code:

A9 80 69 08 85 09

ROM frugality often required clever rearrangements of assembler
code, which sometimes made the resulting source files appear to be
puzzles encrypting their content rather than roadmaps elucidating it.
Consider a characteristic example. In an attempt to recover ROM

space, Bob Whitehead moved one of his subroutines so that it ended
just before a block of sprite data. The TIA’s sprite registers hold only a
single byte of data at a time, which the program changes each on
scan line. In this case, the first line of the sprite data was the
hexadecimal value $60, which also happens to be the machine
reference for the opcode RTS (return from subroutine). In this code,
then, the value $60 serves two purposes, as the opcode RTS when it
is encountered in program flow and as the value $60 (binary
%01100000) when it is read as data. As with the rendering of the Yars’
Revenge neutral zone, this is an example of the use of the contents of
ROM—only a single byte, in this case—as both code and data.

Examples like this one show the subtlety of trade-offs sometimes
necessary to make a VCS cartridge producible. Particular
compromises would include the removal of features from the game.
But in this case, the visual design of an on-screen object was subject
to an aesthetically unrelated happenstance, the accident of a
processor instruction used for program flow control.
By the early 1980s, VCS development was still largely the same,

although some changes were brewing. At Atari and Imagic, the first
artist-programmer teams were created, allowing artists to focus on
sprite and screen visuals. Almost all of Activision’s founders were
successful VCS programmers with a refined technical knowledge of
the machine as well as an intimate understanding of the commercial
viability of their talents. Instead of isolating its developers in
backrooms as Atari had done, Activision created "design centers":
small, close-knit teams of four to five people working together.
Activision’s original four formed the Pasadena Design Center. The
company later added the East Coast Design Center and the Boston
Design Center.

The work environment was more atelier than software shop.
Developers worked together in large rooms, occasionally turning to
each other to discuss design or programming techniques. David
Crane told the story of one such discussion: Carol Shaw was hard at
work on River Raid, which would become an influential vertical
scrolling shooter. In the game, the player has to maintain the plane’s
fuel supply, flying it over canisters in the river. There is a detailed fuel
gauge at the bottom of the screen, but Shaw wanted to include audio
feedback as well. She was programming alongside several other
Activision developers, and she asked for advice on an appropriate
klaxon-style sound to warn the player when the fuel level became
dangerously low. According to Crane, he rolled back in his chair,
looked up in thought for a moment, and recited a few lines of
assembly code that created the effect perfectly.6

Activision particularly encouraged peer review, the sharing of proto-
types, and even critiques of games in progress. These interactions
resulted in a major change to Pitfall! in the final week of development.
Just before the game was to be released, the version that was running
offered the player only one life for the whole game, not the three that
were provided in the final cartridge. In typical Crane fashion, he
imagined that giving the player one life for the whole game would offer
the ultimate challenge. "Thankfully," Crane explained, "my buddies
practically tied me to my chair until I put in extra lives and I’m glad they
did."7

Design Philosophies and Styles

By the early 1980s, VCS programmers had moved well beyond the
obvious capabilities of the machine. Groundbreaking arcade games
including Space Invaders, Pac-Man, and Donkey Kong had come out,
putting pressure on VCS development. Pong and Tank were no longer
kings. VCS developers had also grown more fluent in the platform,
and they began to push it in new ways with their growing expertise.
The change was remarked upon at the time, for instance, in a guide to
home video games: "The graphics of the Atari [VCS] games have

undergone a metamorphosis. Earlier cartridges produced in the late
1970s reflect more limited computer capacity and programming
expertise. Atari graphics have recently become more impressive."8

At Activision, noticeably different design philosophies began to
develop. For example, Steve Cartwright, the programmer of
Barnstorming and Frostbite, favored iteration and refinement. In his
job interview at Activision, Cartwright suggested a possible variant to
Bob Whitehead’s popular Skiing cartridge.9 If the skier were changed
to a kayaker, he surmised, the interaction could remain largely the
same, but would allow for adjustments to the setting and refinements
in the character’s behavior. This sort of technique would later come to
be known as skinning. Today, the term has a negative connotation,
suggesting commercial exploitation without fundamental innovation.
But Cartwright’s design philosophy was not without its positive
qualities. It involved the slow refinement of basic ideas toward
perfection.

Cartwright’s first Activision game was Barnstorming, released in
1981.10 In it, the player to navigates a biplane through barns while
avoiding obstacles. The player controls the plane with the joystick,
which is seen from the side. In 1982, Cartwright created Seaquest, a
submarine combat game. The player controls a vessel once more, this
time in water, and this time avoiding, collecting, or destroying various
objects at different levels of depth. Frostbite, Cartwright’s next game,
was released in 1983 and is similar as well. The player moves the
character Frostbite Bailey across a freezing river, taking care to land
only on ice floes that move from side to side. As the player changes
the colors of these floes, a block of an igloo appears on the icy bank at
the top of the screen. Frostbite is a very different game from
Barnstorming, but it retains core behaviors from its predecessors: a
player object moves up and down into "lanes" on the screen, avoiding
or collecting objects. All of these games clearly take advantage of the
line-by-line nature of VCS graphics. As in Air-Sea Battle and Freeway,
nonplayer objects are constrained to specific horizontal patches of the
screen, so that the sprite graphics registers can be reset at different

https://calibre-pdf-anchor.a/#a399

vertical locations and more than two simultaneous objects can appear
on-screen.

David Crane’s design philosophy was quite different from
Cartwright’s. Crane saw Atari VCS development less as a refinement
of the gameplay in known interaction models and more as a challenge
to make the highly constrained VCS hardware do new and exciting
things. In Crane’s words, "I got more enjoyment out of discovering a
new trick than from the game design itself. More often than not, I used
this technique to lead me in a new direction of game design, and some
of the tricks were to me as much an accomplishment as solving the
Rubik’s Cube the first time."11

Freeway, which Crane developed in 1981, offered an improvement
on the techniques of same-screen sprite register rewrites (which Larry
Kaplan had first used in Air-Sea Battle) and multicolored sprites (first
used in the 1978 Superman) accomplished by changing both the sprite
color (COLUP0/COLUP1) and graphics (GRP0/GRP1) values
between scan lines. Although neither technique was new, the two
were combined in Freeway in a synthetic way, causing many more
objects to appear in multiple colors. In the game, each player controls
a chicken, which can move up and down across a ten-lane highway.
The top and bottom lines of each row of cars appear black to indicate
the tires. The rest of the car is drawn in a single, solid color, with blank
areas forming the window glass. The effect is extremely simple, yet
disarmingly effective. The tank sprites in Combat and the car sprites in
Indy 500 certainly resemble the objects they are supposed to indicate,
but the addition of black tires and windscreens makes Freeway’s
vehicles feel more like cars and less like icons of cars. Additional
background detail, including lane dividers drawn with playfield
graphics, also work to create a realistic sense of the location.

Grand Prix, a side-scrolling racing game that Crane created in 1982,
is another interesting case. There had been previous racing games for
the system, including the 1977 launch title Indy 500 and Robinett’s Slot
Racers, but these games had tracks that appeared on single screens.
Grand Prix scrolls from right to left and includes computer-controlled
cars that the player must avoid. To accomplish this, Crane had to find

https://calibre-pdf-anchor.a/#a400

a way to draw cars entering and exiting the screen on either side. In a
modern buffered graphics system, this is a rudimentary problem: the
programmer simply positions a bitmap graphic so that it crosses the
edge of the screen. But the TIA automatically wraps sprite graphics
from right to left. Positioning a competitor car at one edge of the track
would make a portion of the sprite, which should not be displayed,
appear on the other edge. Crane could have scrolled the game
vertically, but this was not as suitable for drawing large, realistic-
looking, multicolored vehicles.

Changing the color of a sprite between horizontal lines, as in
Freeway, is relatively easy. But changing colors from color clock to
color clock across the screen is more or less impossible. Loading a
color value from ROM and storing it in one of the sprite graphics
registers requires a minimum of six processor cycles, while the TIA
traces three color clocks for every single cycle of the processor. In the
time it takes to load and store a single color value, the TIA will have
drawn an area nine "pixels" in length.

To accommodate richly colored cars that don’t wrap around the
screen, Crane had to keep track of the competitor car positions
relative to the edges. If a car needed to hang off either side, instead of
drawing the whole sprite, Crane drew only the portion of the car
necessary to reach the edge of the screen. Of course, this also meant
that separate sprite graphics, one for each possible horizontal slice of
the vehicle, had to be stored in ROM—doing computation to crop
sprites on the fly was not practical. More than just a little geekery
motivated Crane’s design philosophy; it was partly driven by a desire
to master the machine and show up his colleagues. Crane explains in
a 1983 interview in TWA Ambassador magazine, "It was unthinkable
before that to make a car the shape and color of those in Grand Prix.
At the time I was doing Grand Prix, people were telling me there was
no way to pack that much information into the limited amount of
memory space we had available. So I did. So there!"12

Crane’s games also drew largely on his own experiences or
interests rather than licensed properties or previous designs. In the
case of Freeway, Crane had seen a man trying to run across

https://calibre-pdf-anchor.a/#a401

Chicago’s Lake Shore Drive during rush hour, and it occurred to him
that the challenge would be particularly appropriate for the Atari VCS
—running across a freeway brings a whole new meaning to collision
detection. An early prototype of Freeway features little men instead of
chickens.13 In this version, contact with a car results in a shimmering
puddle of blood on the road. Reflecting on creatures that cross the
road—and perhaps recalling the Death Race controversy, described
in the next chapter—Crane changed the man to a chicken. In the
version of Freeway that finally shipped, collisions push the chickens
back two lanes rather than crushing them.

Pitfall! Crosses the Road

Pitfall! is an important early platformer and a predecessor to the side
scroller, a form of video game that was made famous by Super Mario
Bros. In this form, the "man" is seen from the side and typically moves
from left to right as the background and structures continuously
appear on the right and disappear on the left. Pitfall! is a platformer,
but not a true scroller. Because a new screen appears when the
character is moved to the edge of the screen, the cartridge is more of
a "pager," like Adventure. But unlike Adventure, Pitfall! is a "side
pager," with a perspective that catches the avatar in profile rather than
above. In this regard, it is more similar to Superman. With its side
view, the ability of Pitfall Harry to jump, swing, and climb and fall
between different levels, and with the need to drive this character
horizontally toward treasures, Pitfall! was an exciting early specimen
of the genre and managed to do a great deal without smoothly
scrolling.

A man crossing the highway inspired Freeway, but Pitfall! arose
from a combination of multiple influences, both technical and cultural.
It started with the challenge of creating realistically animating graphics
on the Atari VCS. The sprites in early games were static—one graphic
comprises Combat’s planes, Slot Racers’ cars, even Superman’s
multicolored human characters. Crane had already experimented with
simple animation to great effect in Grand Prix, giving the cars wheels

https://calibre-pdf-anchor.a/#a402

with tire treads that spin at different rates depending on the car’s
speed. But he had previously sketched out an idea for a realistically
moving man. This became the basis for Pitfall Harry.

Because of the limitations of RAM, ROM, and processor cycles that
were inherent to VCS programming, graphics like sprites were not
considered external assets that could be dropped into a game. VCS
programmers used quad-ruled paper to sketch out designs for sprites,
considering not only the eight-bit-wide patterns needed to render a
subject convincingly, but also how to design without changing sprite
colors during a scan line and while accounting for the total size of a
set of sprites in ROM. In some cases, the possible locations of a sprite
on-screen would dictate whether color changes were possible—for
example, there might not be enough time to change sprite color and
graphics values in addition to playfield graphics.

Another issue was the legibility of sprite graphics on-screen. The
eight-bit width of VCS sprites doesn’t provide a lot of room for detail,
and some objects or creatures prove very difficult to render in such
low resolution. Crane explained, "Early in my career at Atari, I
designed a Slot Machine game. When I tried to draw traditional slot
machine symbols—cherries, lemons, oranges, etc.—it became clear
that there was no way to render those objects in 8 monochrome pixels.
So I used cactus, cars and other angular objects that were easily
recognizable when drawn with pixels."14 The choice of the scorpion
and cobra obstacles in Pitfall! evolved from a similar process,
motivated more by how convincingly these opponents could be
rendered than by any prior interest in those creatures.

Crane worked on the "little running man" animation for several
months, refining its appearance and behavior.15 He walked
deliberately around the office, trying to record his own leg and arm
positions and to translate those movements to pixel paper. However,
Crane didn’t do any-thing with the little running man right away. Each
time he finished a project, he would bring out the designs and think
about a game that might make good use of it. Finally in 1982, a plan
came together:

https://calibre-pdf-anchor.a/#a403
https://calibre-pdf-anchor.a/#a404

I sat down with a blank sheet of paper and drew a
stick figure man in the center. I said, "OK, I have a
little running man. . . . Let’s put him on a path" (two
more lines drawn on the paper). "Where is the path?
. . . Let’s put it in a jungle" (draw some trees). "Why
is he running? . . . (draw treasures to collect,
enemies to avoid, etc.) And Pitfall! was born. This
entire process took about 10 minutes. About 1000
hours of programming later the game was
complete.16

The inspiration for Pitfall! wasn’t the side-scrolling jungle adventure,
but rather the running man. The adventure just gave him a reason to
run.

Cultural Inspiration

Today, highly detailed videogame characters with complex
backstories are common. Miyamoto’s Jumpman (who later became
Mario) and Iwatani’s Pac-Man had become cultural icons before
Pitfall! was released. But Pitfall Harry was the first popular videogame
character born on a home console system. He eventually spawned
numerous sequels, licensed products, and even a television cartoon.
The little running man was partly responsible, but cultural references
also helped fully furnish the game’s fictional world.

The film Raiders of the Lost Ark was released in 1981. Crane
acknowledges that the movie inspired the idea for an adventure in the
jungle. But apart from that particular kind of wilderness setting and a
guy who runs, little about his game resembles Raiders. (Howard Scott
Warshaw’s official Atari VCS Raiders of the Lost Ark cartridge takes
considerable license with the film’s character and the plot, but
nevertheless has many more identifiable elements that can be read as
related to the film.) Beyond the cinematic adventure of Indiana Jones,

https://calibre-pdf-anchor.a/#a405

there were two important inspirations that contributed to Crane’s
design.

The first explains Pitfall Harry’s ability to swing on a vine. This idea,
of course, comes from Tarzan, the original vine-swinger, who was
created by Edgar Rice Burroughs in 1912.17 Tarzan also inspired
Taito’s 1982 arcade game Jungle Hunt, although that game was
developed independently of Pitfall!, with neither developer knowing
about the other project.18 Perhaps jungle fever was in the air in that
year.
The second explains the crocodiles in some of the Pitfall! ponds.

From the 1940s through the mid-1960s, Paul Terry’s Terrytoons studio,
best known for the character Mighty Mouse, released a theatrical
cartoon series featuring two magpies named Heckle and Jeckle. The
cartoons featured typical amusing pranks, in which the two birds
calmly outwitted a variety of foes. In one sequence, the two ran across
the heads of crocodiles, deftly escaping their snapping jaws. Crane,
who was born in the mid-1950s, remembered seeing the cartoons as a
child. He speculated that this idea would make an interesting
mechanic in an adventure game.19

The result was interesting indeed, partly thanks to how it made the
Heckle and Jeckle maneuver interactive. To the amateur player of
Pitfall!, the screens with crocodile-filled ponds prove quite difficult. It is
possible to stand on the heads of the crocs only while their mouths are
open, and a misstep lands Pitfall Harry in the water. As the player
becomes more experienced, the player works up enough skill to jump
quickly and deftly over the crocodiles, just like Heckle and Jeckle.

Jungle Generation

Part of the success of Pitfall! can certainly be attributed to its clean,
clever amalgamation of popular culture icons. But the game’s primary
technical innovation is the size and complexity of the jungle
environment.

https://calibre-pdf-anchor.a/#a406
https://calibre-pdf-anchor.a/#a407
https://calibre-pdf-anchor.a/#a408

Adventure boasted the first multiscreen graphical world in a game,
an innovation that inspired Pitfall! and later action-adventure games.
But Adventure’s castles and labyrinths were the same every time—
they were hard-coded into the cartridge’s ROM. Even in 1982,
multiscreen VCS environments like the mansion in Haunted House or
the caverns in Raiders of the Lost Ark were hand-designed and
loaded from ROM. These environments may have seemed infinitely
larger than the crude one-screen worlds of Combat, but they were
small compared to the jungle in Pitfall! Adventure offered thirty
different screens to explore. Pitfall! had 255.

Pitfall!, like Adventure, was burned on a 4K ROM. Crane’s game
required considerably more room just for storing graphics, though.
Each of the sprites in Pitfall!—Harry, the cobra, the scorpion, the log,
the crocodile, the various treasures, and so forth—have multiple
animation frames, as well as color values for each display line. There
is also data for the timer counter and the ubiquitous Activision logo at
screen bottom. Yet the environment is considerably more detailed and
expansive than that of Adventure in both total size and detail. Even
accounting for the space used for Robinett’s Easter egg, Pitfall! had to
be highly compressed to fit in the same 4K that Adventure used.

Crane’s solution to the puzzle of ROM mapping a large world with
little ROM was to not store the world in ROM at all. Instead, the world
is generated, consistently, by code.

Generated environments are common in games as far back as
dungeon-crawlers like Rogue. But typically, after an environment is
generated, it has to be stored in memory for use during play. For
example, a new game of SimCity starts with a process of terraforming,
in which the land, seas, mountains, forests, and rivers are created. In
order for the player to be able to build a city atop it, the terrain data
must then be saved somewhere, either on disk or in RAM. The Atari
VCS has no disk storage, of course, and its paltry 128 bytes of RAM
often provides barely enough room to manipulate the state of the
game. (At any rate, even using all 128 bytes for storing the world would
have provided only four bits of storage per screen in Pitfall!, which
couldn’t have sufficed.) There was not enough room in ROM or in

RAM to store and manipulate the many screens of the Pitfall! jungle.
Crane found another method of mapping this game’s circular path,
which was 255 screens in circumference.

The finished program uses an algorithm to generate each screen
based on a screen definition. At the heart of this algorithm is a
polynomial counter, a type of binary counter that increments in a
pseudorandom sequence. Polynomial counters are frequently used in
pseudorandom number generators; they work by counting in a specific
but unusual order, for instance, (0, 6, 4, 6, 5, 3 . . .) instead of (0, 1, 2, 3,
4, 5, 6 . . .).

VCS programmers commonly used polynomial counters to create
randomness in games—for example, to mix up the starting state of the
pieces of the urn in Haunted House. But for the Pitfall! screens, Crane
did not want random generation. Otherwise, the player would get a
different screen if he moved Pitfall Harry off the left edge of a screen
and then back again, making it impossible to mentally map the game
world. For the screen definitions, Crane made a special counter that
could be run either forward or backward. One version of the algorithm
returned the next number in sequence; another returned the previous
number. If Pitfall Harry runs off the right edge of the screen, the kernel
uses the counter to get the next number in the sequence. If he runs
back off the left edge, it gets the previous number.
On its own, an eight-bit number is still not adequate to render the

many variations of an entire Pitfall! screen, which is composed of a
particular jungle background (there are three different tree patterns,
for variety), a scene pattern (holes, pits, crocodiles, and so on), the
type of objects on the ground (logs, fire, treasure, and so on), and the
position of the wall underground. The eight bits of each number in the
counter sequence are used to define the settings for the screen:

bit 7: Underground pattern
bits 6-7: Tree patterns
bits 3-5: Ground pattern
bits 0-2: Object pattern

As stated here, the high bit of the scene description is actually used
twice: once for the underground pattern (the location of the wall, if
applicable), and once for the tree pattern, which needs two bits to
count to three.

Because each number is guaranteed to remain consistent as the
player moves back and forth through the world, each screen appears
to be the same each time the player visits it. As every detail of the
screen is based on that one number, the entire world can be
computed algorithmically with very little memory. All told, the definition
of the entire 255-screen jungle occupies less than 50 bytes of ROM.

Adventuring at Home

Because the Atari VCS offers so little processing time between
frames, many cartridges use fixed patterns to define game levels. This
is true for the wall patterns in Combat’s variations, the rooms in
Adventure, the patterns of cars in Grand Prix, and many others. After
time, players can begin to remember the patterns for these games and
can greatly improve their performance. In one extreme example,
David Crane described a marathon session of Grand Prix at the
Consumer Electronics Show (CES) hospitality suite, in which he and
others played all day trying to achieve the perfect game.20

But 255 screens of jungle adventure are much harder to memorize
than are a couple minutes of auto racing. Before ,Pitfall!, most VCS
game sessions were quite short. In the case of head-to-head games
like Combat or Boxing, a session lasts only a few minutes. This is not
surprising, given the fact that most early VCS cartridges were ports of
arcade games, which offer short games so that players are compelled
to drop another quarter in the coin slot.
Robinett’s Adventure adapted the cave crawling text adventure, a

genre with a play context very different from the tavern or arcade. The
player of Crowther and Woods’s Adventure would have sat at a
terminal, probably in a nearly empty lab, where it would be possible to
play for a while. Sessions of VCS adventure games like Adventure

https://calibre-pdf-anchor.a/#a409

and Superman might not last much longer than arcade play would,
though. Adventure’s easiest variant can be completed in less than two
minutes, even by an inexperienced player.
Pitfall! offers a much longer game. A clock at the top of the screen

counts down for twenty minutes. Before this time elapses, the player
must find thirty-two treasures (eight each of money bag, gold bar,
silver bar, diamond ring) within this time, while also avoiding logs and
pits that reduce the score. Even when compared to Activision’s
previous games, Pitfall! was particularly well suited to the living room
or den. In the arcade or the tavern, there is a social reason to limit
gameplay, in addition to the financial incentive to increase coin-drop.
But the living room invites people to consume media in much longer
segments, such as the thirtyminute television show. The twenty-
minute single-player session was an innovation, one that helped
establish the experience of home console play. Pitfall! represents a
moment when arcade play gave way to a different form of home
console play.

The size and variation of the jungle contributes to the sophistication
of Pitfall!, but so do other details in gameplay and presentation. Before
Pitfall!, most VCS games offered one or two actions for the player—
typically the options to move and shoot that can be seen in Combat.
Even later, more visually striking titles like Star Wars: The Empire
Strikes Back do essentially the same. The conventions of moving and
shooting descend partly from arcade play, and they are certainly
reinforced by the VCS controller, with its joystick and its single red
button.

Pitfall! uses the same joystick controller, of course, with a button
press making Pitfall Harry jump rather than fire. But in Pitfall!, moving
and jumping allow several different modes of play, each requiring
different skills. On one screen, the player has to run across an empty
field, jumping over rolling logs. On the next, he must jump over holes
to avoid falling underground. On another screen, he must jump and
swing on a liana (a vine) over a pond, and on another, he must time
his run to avoid waxing and waning quicksand, or to jump across
crocodiles.

The game supports more than one action at different times, and
sometimes demands more than one at about the same time—
preparing to swing across a liana while avoiding rolling logs, for
example. Taking the underground passages allows Pitfall Harry to
move past three screens instead of one. Given the time constraints, it
is impossible to collect all thirty-two treasures without using the
passages, although using them subjects the player to the scorpion,
and special care is required to vault over this opponent. As the Pitfall!
manual summarizes, "You cannot excel at Pitfall! without acquiring a
variety of skills." A variety of skills drawn from a very small number of
possible actions (run, jump) characterizes the platformer genre, which
Pitfall! helped establish. The Activision game built on previous arcade
titles like Donkey Kong and looked ahead to side-scrolling, jumping
adventures like Super Mario Bros.

The title also anticipated other, even later work. Although no one
would call the game an "open-world game" in the style of The Legend
of Zelda or Grand Theft Auto, there are gestures toward this type of
experience in the way that Pitfall! builds on the graphical adventure
conventions of Robinett’s Adventure. Pitfall! features a large world
that cannot be contemplated all at once. It offers a variety of actions
built from a few core possibilities, each of which provides a unique
experience and demands a different skill. And finally, it gives the
player choices—even if limited ones—about where to go and what
route to take to get there.

Attention to Detail

The Pitfall! jungle features multiple areas on each screen, making the
game’s kernel much more complex than earlier games, even though
the overall program could not be larger. The routine that draws the
screen closely matches Crane’s original visualization of a setting for
his little running man. Like many Activision games, Pitfall! creates a
detailed on-screen image by splitting the screen up into horizontal
sections. First the kernel draws the score and timer. Next come the
trees and branches. Then it draws the top of the liana, then the liana

and Pitfall Harry, then the ground, the pits, next the ladder and
underground area, and finally the Activision logo and copyright.
Within each of these sections, Crane makes deft use of graphics

drawing techniques that had become second nature by this time;
namely, using the TIA graphics registers for visual elements different
from their intended purposes and reusing those registers multiple
times down the screen (see figure 6.2). For example, the leaves are
drawn with a mirrored playfield, as are the tree trunks, but the more
detailed branch segments where the trunks meet the leaves are
rendered using sprite graphics, carefully positioned to match the
location of the trunks and wide-doubled using the number-size
registers. The liana is rendered with the ball graphic, which is moved
slightly between each scan line to make it swing.

Those at Activision prided themselves on their richly colored,
graphically sophisticated games, and players certainly noticed the
difference. However, understanding the function of the TIA helps us
appreciate the true attention to detail in a game like Pitfall! One such
detail can be found in all Activision titles. Close inspection of the sides
of a Pitfall! screen reveals a black bar at the left edge, but not at the
right. The reason for this bar is partly aesthetic, partly technical.
To move a sprite, missile, or ball, the program must strobe the

horizontal move (HMOVE) register after setting the horizontal position
offset for the desired objects in their corresponding horizontal motion
registers (HMP0/1, HMM0/1, HMBL). Once HMOVE is strobed (which
is accomplished by writing any value to the register), the TIA executes
the motion changes. However, to complete this process, the TIA
requires that HMOVE

6.2 The distinct horizontal sections of a Pitfall! screen from the
programmer’s perspective. Pitfall! Uses the TIA’s graphics registers in
ways that were not originally intended, as many games did around this
time. In this image, areas drawn with playfield graphics are shaded in
black. The branch details between the trunk and canopy are drawn
with sprite graphics, as can be seen more easily in the inset detail.

take place immediately after a scan line synchronization (WSYNC),
so that the TIA has enough time to update the horizontal locations of
the objects before starting to draw the next line. As a result, doing
additional processing between lines (which is almost always
necessary) results in a short black bar on the left edge of the screen.
In the photograph of the screen from Star Wars: The Empire Strikes
Back (see jacket flap), black bars of this sort can be clearly seen.

The Activision designers thought this unintentional graphical effect
was truly hideous, and they resolved never to have it appear in any of
their games.21 Because games like Pitfall! make liberal use of
horizontal object motion in order to reuse different graphical elements
for different purposes, it was necessary to strobe HMOVE. But to
avoid an unsightly pattern of black bars, they strobed HMOVE on
every line, ensuring that a black border would run continuously down
the screen. In an emulator running on a modern computer, black bars

https://calibre-pdf-anchor.a/#a410

caused by strobing HMOVE particularly stand out. CRT televisions of
the early 1980s usually had casings that covered up the edges of the
tube, however, so what was considered unsightly at Activision was
even less noticeable, and the programming discipline at that company
is even more remarkable. Another graphical detail can be seen in the
area where the liana attaches to the jungle canopy. There is a thin
horizontal section of the screen at the bottom of the leaves where
branches, liana, and leaves all need to be drawn on the same lines.
The TIA offers only one register to set the color for both the playfield
and the ball, so those two elements always render in the same color
when drawn on the same scan line. For this reason, the top of the
liana (drawn with the ball graphic) takes the green color of the leaves
(drawn with playfield graphics). However, far from detracting from the
credibility of the vine, the green-topped liana gives the impression of
new growth at the jungle canopy. It doesn’t seem to be an artifact of
graphical sloppiness.

Activision’s peer critique improved player experience, but it also
could impose a considerable burden on programmers. By the time
Crane had been persuaded to add additional lives to Pitfall!, the game
was otherwise ready for release. He had already gone far beyond the
4K ROM limit, and back within it, many times, and had by his
estimation spent "hundreds of hours" making the code smaller:

Now I had to add a display to show your number of
lives remaining, and I had to bring in a new
character when a new life was used. The latter was
easy. Pitfall Harry already knew how to fall, and how
to stop when he hit the ground. So I dropped him
from behind the tree cover down to the path. For the
"Lives" indicator I added vertical tally marks to the
timer display. That probably only cost 24 bytes, and
with another 20 hours of "scrunching" the code I
could fit that in.22

https://calibre-pdf-anchor.a/#a411

Creativity and Control

Two years after Activision’s gang of four broke off from Atari, five other
Atari programmers followed suit. Rob Fulop, Mark Bradley, Bill Grubb,
Denis Koble, and Bob Smith teamed up with Jim Goldberger and
Brian Dougherty from Mattel to found Imagic in 1981. By 1980, the
programmers who were to found Imagic couldn’t have been able to
ignore Activision’s early successes, which included Dragster, Boxing,
Fishing Derby, and Checkers. Like Activision, Imagic established its
own unique aesthetics, both in its games and its packaging. In addition
to successful VCS titles like Atlantis and Cosmic Ark, Imagic started
making its games for both the Atari VCS and the Intellivision, further
distancing the concept of the third-party developer from any particular
platform-making company. As the third-party marketplace grew, the
studios made attempts not only

6.3 These paper overlays for Space Shuttle are intended to be placed
on the Atari VCS console itself. They have cutouts for the VCS
switches. Both of these overlays were provided with the cartridge so
that the game could be played with either a six-switch console or a
four-switch console. The creases in the center of the overlays are from
where they were folded to fit in the box.

to differentiate their styles from those of Atari but also to differentiate
them from one another.
One way that Activision addressed the VCS platform was by

revisiting the different controllers available for it. Atari had shipped the
console with both joystick and paddle controllers, but the latter quickly

fell into disuse as arcade ports beyond Pong and Breakout became
central to the system. The Activision cartridge Kaboom! made use of
the paddle, allowing VCS owners to haul out this almost-forgotten
controller.
Activision also experimented with more unusual ways to interact

with the console. Steve Kitchen’s Space Shuttle: A Journey into Space
was a flight simulator for the spacecraft. The game used the joystick,
and also used the console switches for gameplay rather than basic
setup. The color/black-and-white and left difficulty switches became
engine controls, the right difficulty became cargo door and landing
gear levers, and the game select and reset switches were used for
launch status controls. The game came with printed overlays (figure
6.3) to indicate these various functions.

Innovation in the use of VCS controllers certainly continued after the
release of Pitfall!, as did the development of third-party games.
Activision and Imagic were only the tip of the iceberg. And, with that
metaphor in mind, it must be admitted that the enormous mass of
third-party titles may have eventually played iceberg to the videogame
industry’s Titanic. In the months before the crash, though, Atari,
Activision, Imagic, and others kept pushing the Atari VCS to do more,
and the movies even claimed a beachhead in video gaming,
occupying the silicon of Atari’s leading home system.

Star Wars: The Empire Strikes Back [7]

Although it wasn’t the first video game based on a movie,1 the VCS
Star Wars: The Empire Strikes Back does have the distinction of
being the first video game of any sort that was based on any Star
Wars movie. Standing at the beginning of this product line is quite
notable, given that as of this writing there are about a hundred Star
Wars video games—counting ports and contemporaneously
developed versions of the same title for different platforms.

The toy company Parker Brothers found itself in an interesting
place in the early 1980s, with a connection to Star Wars and an
interest in the Atari VCS. Parker Brothers held the lucrative Star Wars
licenses for toys and games. At this time, it still wasn’t clear what
home video games exactly were as products. Atari had an official
opinion, which was expressed in a 19bout Atari Games, Etc, Etc.":
"The ATARI Video Computer System™ Game is not a toy, to be put in
the closet and forgotten. It’s a permanent part of a home
entertainment center." But Atari VCS games, like dedicated home
systems before them, were shown at the International Toy Fair, sold
at toy stores, and generally considered to be toys by the industry. The
toy company Mattel even developed its own rival to the VCS—the
Intellivision. So although the Atari VCS was often played by adults,
and although the videogame industry was certainly recognized as a
new force, it was still sensible for many reasons to consider the Atari
VCS and cartridges for that system as toys. Parker Brothers certainly
thought of VCS cartridges this way. The company claimed, based on
this idea, that it had the exclusive right to develop Star Wars
cartridges for the system.

As those at Parker Brothers contemplated how to exploit this
valuable license, marketing manager Bill Bracy asked programmer
Rex Bradford what could be done using the Atari VCS platform. What
kinds of images could be created?

His comment was [that] actually it’s possible to do fairly good
graphics. I asked him to give me an example. A couple of days later
he asked me to come into the programming area and take a look.
There on the screen was a good representation of Darth [Vader]—his
bust filled the screen. I seem to remember it had color and shading
and looked far superior to anything I had seen in the games on the
market at that time (fall of 1981). When I asked him what can we do
with it, his response was: nothing! I’ve used up all the space.2

That single static display of an iconic Star Wars image, impressive
as it was, filled the paltry standard amount of ROM (still 2K at the
time) all by itself. It did turn out, however, that a Star Wars game—
several games—could be coded for the Atari VCS. None that Parker
Brothers would produce ended up including a detailed representation
of a character’s mask or face. That would be left for another movie-
inspired game, E.T., which featured a visage that peered out at the
industry at the end of 1982 like a death’s-head. The Parker Brothers
games instead took a more abstract turn and played on the unique
technologies and situations of the Star Wars universe.

Before explaining how Star Wars: The Empire Strikes Back works,
how it was put together, and its specific relationship to the VCS
platform, it is worthwhile to look at some cultural and economic
factors that contributed to this game being contemplated in the first
place. These have to do, first of all, with the involvement of the toy
industry in video gaming, and, second, with the licensing of films and
other properties for use in video games.

Bounced from the Toy Store

Long, long, ago, in an industry far, far away, Nolan Bushnell wanted
to see if he could interest multiple retailers in selling his first product
for the home, Atari’s home Pong unit. He took the device to the
International Toy Fair in New York, where he struck out completely—
none of the companies there were willing to order even one. The
device did end up getting distribution through Sears, the company
that would also sell the Atari VCS as the Sears Telegames. At Sears,
Pong landed not in the toy section but in the sporting goods
department.

Although the toy industry didn’t embrace video games, several toy
companies did start making handheld electronic games with LED
displays in the late 1970s.

Mattel, which sold Barbie and her friends, formed a subsidiary
called Mattel Electronics and released its famous Football handheld
in 1977; the next year saw the release of a new version that allowed
passing. Several other sports followed, including Baseball and
Basketball. Mattel Electronics went on to release the main rival to the
Atari VCS, the Intellivision, in 1979.

In 1978 Simon, designed by television game pioneer Ralph Baer, hit
the market. It was a game of imitation that itself imitated the Atari
arcade game Touch Me, but expanded upon it by including colored
buttons, improved sound, and of course a very different, smaller form
factor. It was manufactured and sold by Milton Bradley, a company
most famous for the board game Life, first published in 1860. In 1979,
that company produced a remarkable innovation in handheld gaming:
the first cartridge-based handheld. This was the Microvision, whose
display had a mere 16 × 16 resolution. The system was engineered by
Jay Smith. He went on to develop Milton Bradley’s Vectrex, the first
and only home vector-graphics console.

Merlin, with eleven buttons and six games, may or may not have
been particularly wizardly. It was the top-selling system of the sort,
though—king of the early handhelds. Shaped like a then-futuristic
telephone (figure 7.1), the unit included tic-tac-toe, a Simon-like

game, a Mastermind-like game, and the ability to use the unit as a
musical instrument, which included recording and playback. It came
from Parker Brothers.

There were games with electronic components that preceded
these. An early one was Mattel’s board game Sonar Sub Hunt from
1961. Other notable electronic games didn’t arrive until the 1980s.
These included the Nintendo Game and Watch systems and Coleco’s
two-player Head to Head sports games. But by the end of the 1970s,
there was already a booming market for electronic games, ones that
seemed more computer than toy. Companies were going beyond the
electronic augmentation of board games into new form factors and
game types.

Parker Brothers and other companies sold a billion dollars worth of
handheld games in 1979, which didn’t encourage them to look to the
much smaller videogame market. In that market, the leading
company, Atari, had sales of only $238 million during that same year
—and that was after the Atari VCS had been on the market for more
than twelve months. (Furthermore, the Atari figure overstates the
home market by including the company’s lucrative sales of arcade
games.) Toy companies that were fixated on handhelds were jolted
from their game in 1981, however, when the handheld gaming crash
hit. By that time, the once-paltry home video-game market had grown
to a respectable $1.2 billion, the Atari VCS was clearly a huge
success, and Activision was a successful third-party publisher of VCS
cartridges. Activision had even been joined by other VCS cartridge
developers: Apollo and Imagic. The VCS cartridge market had been
dismissed only two years before, but now seemed to be a land of
opportunity.

7.1 Merlin, from Parker Brothers, was the most popular of the
handheld electronic games.

So in 1981, Parker Brothers finally turned to the VCS and other
home consoles, Its games would not reach shelves until 1982, the
year that ended with the crash. Although the company was not
experienced with videogame development, there were plans to
create titles for several platforms. This, at least, made the company
look better as a licensee than Atari would have. It must have been
enough, anyway. No one managed to invalidate Parker Brothers’
claim that its toy and game license included video games.

In U.S. toy industry reports and trade discussion, video games are
implicitly and explicitly named as a threat to the "traditional toy
industry" and revenues in these two categories are listed separately.
Industry articles cheer reports about videogame violence, hoping that
popular opposition will drive parents to spend more money on
traditional toys. Yet toy companies continue to diversify into making
video and electronic games and licensing their characters for use in
video games. Today’s "embrace and resist" approach to video
gaming continues a complex history between toy companies and
home video gaming.

License to Program

To recall the very beginning of the VCS era: when the system
launched near the end of 1977, there were nine cartridges available
from Atari. These were Air-Sea Battle, Basic Math, Blackjack,
Combat (which was included with the system), Indy 500, Star Ship,
Street Racer, Surround, and Video Olympics. Of these, at least five
(Air-Sea Battle, Combat, Star Ship, Surround, and Video Olympics)
were based to some extent on specific arcade games (Anti-Aircraft,
Tank, Starship 1, Blockade, and Pong). Of the others, one was
educational and one was a card game. The remaining two were
racing games that also had arcade precedents, including games in
the Gran Trak and Sprint series.

The first Parker Brothers catalog from 1982 also featured nine
games, a selection that reflected how much the industry had changed
in only a few years. The games listed—some of them still "coming
soon" at this point—were Amidar, Frogger, Reactor, Sky Skipper,
Spider-Man, Star Wars: Jedi Arena, Star Wars: The Empire Strikes
Back, Strawberry Shortcake Musical Matchups, and Super Cobra. All
of these nine were licensed games. Five were arcade ports that bore
the same names as the corresponding coin-ops. One of the others
was based on a comic book character, another drew on a greeting
card character, and the remaining two were the Star Wars games.
Although six of Atari’s launch titles supported two-player
simultaneous play, only one of the Parker Brothers games (Star
Wars: Jedi Arena) let two people play at the same time. There was
one educational, or "edutainment," title, Strawberry Shortcake
Musical Matchups, which was advertised as "a fine first video game
for little girls."
The first licensed game for the Atari VCS was Superman,

programmed by John Dunn early in the history of the system, in 1978.
Warner, the new owner of Atari, already owned the license rights to
the Superman character. Although it’s not exactly clear that the game
is based on the movie, Warner wanted to follow its Superman movie

—rapidly—with a video game that was somehow tied to it. Superman
was an innovative game, but not a big hit for Atari. This may have
been part of the reason for the unusual dearth of licensed titles (other
than coin-op conversions) until 1981. In the early 1980s, in a scramble
that would more than make up for this lack, companies turned eagerly
to licensing. Near the beginning of this period was the 1982 release of
the movie Tron, the arcade game Tron, and several home console
games based on the film, made by Mattel for the Atari VCS as well as
the Intellivision.

Not only did the Atari VCS creators exploit movies and arcade
games—they explored all sorts of curious characters and product tie-
ins. Mattel went on to produce an Intellivision game and a entirely
different VCS game based on a promotional character for a drink mix
by General Foods. Both of these games were available by mail order
and at retail stores and were called Kool-Aid Man. Other promotional
games tied to particular retail products included Chase the
Chuckwagon and Tooth Protectors, which were available only to
those who mailed in proof of purchase stamps. Atari made an
agreement with the Children’s Television Workshop to produce four
Sesame Street titles that would work with a special oversized keypad
controller for kids. And Data Age published a VCS game to promote a
popular band: Journey Escape.

It’s hard to finger any aspect of the Atari VCS platform that may
have hastened or slowed the growth of licensed titles. The
representational power of the machine was slight in comparison to
today’s consoles with their 3D graphics and full-motion video, but
there were manuals and box materials to create the necessary
associations. Anyway, a lack of representational power never
prevented properties from being licensed for other non-electronic
game forms and for various toys. When the question was whether to
license a property for use in a video game, the answer always was
based on corporate concerns, not technical or creative factors. The
precedent of the conversion of arcade games was important.
Converting its own games gave Atari the idea that another company’s
game, such as Taito’s Space Invaders, could be licensed and

converted. There was also Atari’s acquisition by media giant Warner
Communications, which in the short term, surprisingly, led only to the
development of Superman. The later licensing of E.T. for use in a
video game was an initiative from Warner, not from within Atari:
Warner’s CEO Scott Ross secured the E.T. license after extensive
negotiations, while Atari’s head, Ray Kassar, called the E.T. game "a
dumb idea."3 Beyond this, the particular influence of the 1977 Star
Wars as a trans-medial story that manifested itself in action figures,
die-cast space ships, and many other sorts of lucrative forms off the
screen cannot be ignored.

Attack of the Movie-Game

The first video game based on a movie or television series is
probably Mike Mayfield’s 1971 text-only game Star Trek, a strategy
game about commanding the USS Enterprise against the Klingons.
But Mayfield created the game as a hobbyist on a Sigma 7
minicomputer, a device that required as much space as several
refrigerators. It hardly seemed to be at risk of becoming a commercial
product.

The first commercial video game based on a movie seems to be
Atari’s own Shark Jaws, released just after Steven Spielberg’s
popular film Jaws in 1975. Shark Jaws was not an officially licensed
product. Reportedly, Atari tried to acquire the license, failed to do so,
and decided to make the game anyway. The Atari game’s name
might sound reasonably different from the title of the Spielberg film,
but the cabinet art used a typeface that mimicked the one in Jaws
marketing materials, and "Shark" was printed on the cabinet in tiny
letters next to the enormous word "Jaws" (figure 7.2) Aware of the
riskiness of this unofficial game, Bushnell, ever the daredevil, created
a new company called Horror Games to shelter Atari from litigation.
The game itself was simple, built as a modification of the Tank
circuitry. The player steered a diver trying to catch a fish while
avoiding a shark.

Shark Jaws was followed by Exidy’s controversial Death Race,
developed by Howell Ivey. This was the first video game to
encourage simulated automotive homocide. Players were challenged
to kill highly abstract humanoid figures ("gremlins," according to the
instructions) with their vehicles. The game’s rollout occasioned a
media frenzy. Death Race was denounced on 60 Minutes and
featured in The National Enquirer. This did wonders for sales of the
cabinet, for a short time, but before long the protests led Exidy to
capitulate and pull the game from the market. The 1976 Death Race
was clearly an attempt to play upon the success of the 1975 movie
Death Race 2000, an offering from the privileged, refined media
channel of the cinema that was produced by Roger Corman and
starred David Carradine and Sylvester Stallone. Exidy also did not
negotiate a license for the movie that its game riffed on. Exidy and
Atari were not alone in taking this course. In 1980 EduWare took the
risk of releasing an unlicensed Apple][game called The Prisoner
that was clearly based on the British television series of the same
name.

7.2 Advertising and cabinet art from the one-sheet for Shark Jaws,
with one of the two words of the title much more strongly
emphasized. The title of the film Jaws, as it was typeset in
promotional posters, is inset in the bottom left.

Because the Atari VCS was already being fed by arcade ports, it
wasn’t too much of a stretch for those at Atari to consider whether the
movies might also supply them with material. It was even less of a
stretch for media company Warner Communication, owners of Atari
since 1976.

Howard Scott Warshaw’s Raiders of the Lost Ark is an innovative
adventure game that transforms a movie into something playable on
the Atari VCS. It is in the same vein as Robinett’s Adventure, but
much more intricate and graphically advanced. Particular scenes and
settings from the movie are fairly clearly represented in the Raiders
cartridge, which features a splash screen, a diverse world, numerous
graphically detailed objects, an unusual control scheme in which one
player used both joysticks, and in-game music. The cartridge may
have made the most significant advances in the action-adventure
genre between the appearance of Robinett’s Adventure in 1978 and
the debut of The Legend of Zelda for the NES in Japan in 1985.
Raiders added a graphical inventory and subquests, helping to focus
and refine the action-adventure genre. The cartridge ended up being
a hit for Atari. It helped land Warshaw another Spielberg project, one
with a seemingly impossible deadline.

That project was E.T.: The Extra-Terrestrial, which Warshaw
managed to complete in only five weeks. (In comparison, Warshaw
said he put in four or five months of work on Yars’ Revenge and six or
seven months on Raiders.) The ill-fated 1982 film-licensed game
followed in the tradition of Adventure, Superman, and Raiders, using
between-screen navigation and challenging the player to avoid
colliding with scientists and police. E.T. has been ranked, more than
once, as the worst video game of all time. Atari’s financial collapse is
sometimes attributed to this one specific game—although this is
certainly an exaggeration. A legend tells of mounds of unsold E.T.
cartridges being buried by Atari in the New Mexico desert.4 The
legend is likely true, too. Although E.T. was not specifically named,
the New York Times did report that fourteen truckloads of equipment,
including game cartridges, were dumped at an Alamogordo landfill
and covered in concrete while guards kept reporters and other would-
be spectators away from the site.5

There are certainly reasons for the poor quality of E.T. Most
obviously, the development schedule—imposed because of the
pending holiday shopping season—precluded a high-quality game,
unless one were to be developed by some incredible stroke of luck. A

general problem that the makers of licensed games faced was the
need to tailor their schedules to the release of other media properties
or to the Christmas season, along with the need to maintain qualities
of the particular property being used. All of this was added to the
usual constraints and pressures provided by the platform and the
market. Conceptually, regardless of the production pressure that was
brought on by the Christmas deadline, E.T. suffered from the potential
inappropriateness of translating a film largely about the relationship
between a boy and a helpless alien into a work focused on moving
around and running into things.

Although the arcade may have been the first to host an exploitation
film game (Death Race), at least one third-party developer for the
Atari VCS wanted to see if it could out-schlock the coin-ops. Wizard
Video Games acquired the licenses to The Texas Chainsaw
Massacre and Halloween, releasing both of these oddities in 1983.
The Texas Chainsaw Massacre allows the player to control the villain
Leatherface and run around chainsawing victims, bloodlessly and
pointlessly. This is not a typical move in modern-day horror games,
but perhaps, along with Death Race, it is one of the early works that
anticipates the crime-spree possibilities of the Grand Theft Auto
series. Ed Salvo, who programmed for the then-defunct company
Apollo and ended up forming a company called VSS, took on the job
of programming The Texas Chainsaw Massacre for Wizard,
completing it in about six weeks. Halloween, which lets the player
control the innocent “last girl" and which features beheadings with
spurting blood, had been handed off to another programmer at VSS.
By the time these two games hit the market, the Atari VCS had
suffered a chain store massacre and the titles, even though they were
designed for controversy, didn’t manage to create much of a stir.

Imperial Technology

Parker Brothers ended up using the Star Wars name and properties
in four VCS titles: Star Wars: The Empire Strikes Back, Star Wars:
Jedi Arena, Star Wars: Death Star Battle, and Star Wars: The Arcade

Game. Another game, Star Wars: Ewok Adventure, was developed
but never released. Star Wars: The Empire Strikes Back was the first
to market and was the lead title in Parker Brothers’ first catalog of
Atari VCS cartridges, coming right before the famous Frogger. This
first Star Wars game was later ported to the Intellivision and Atari
5200.6 All versions of Star Wars: The Empire Strikes Back featured
very similar gameplay and graphics, although there are telltale signs
of the different platforms.

Bill Bracy described the process of developing the concept for this
game and its basic gameplay: "A small group of us, including
traditional game designers, video game players, and a couple of us in
marketing brainstormed on the various scenes from The Empire
Strikes Back and started developing storyboards and experimenting
with game techniques. We prioritized the game elements we wanted
to include and watched the list diminish as the available cartridge
space was used up."7

Although the game was still programmed by an individual
(Bradford, in this case, working with designer Sam Kjellman) in a way
that was typical of VCS development, this development process was
unlike Atari’s. At Atari, a programmer was essentially shut in a room
alone for a few months and left to develop a game. Often, the VCS
programmer took an existing arcade game that would be the basis for
the cartridge. But when an “original" concept needed to be devised at
Atari in the heyday of VCS programming, from 1977 through 1983, it
would be the work of a programmer, not a task force.

Although many elements may have dropped off the wish list that
Parker Brothers’ team developed, Star Wars: The Empire Strikes
Back built upon five years of VCS development to include features
that would have made jaws drop at Atari back in 1977. And it was
devised by a programmer who not only was working at a different
company—he had never worked at Atari. How did this programmer,
Rex Bradford, learn to develop VCS games? He explained: "Our first
job was to reverse-engineer the tradesecret Atari [VCS]. Parker
Brothers hired a company to strip off the top of the graphics chip and

photograph it. [Two engineers] stared at the circuit diagram, while I
wrote a disassembler to examine existing cartridge code. Then I
started writing some small programs to test our theories about how it
worked. Finally, by the fall of 1981, we were ready to create our first
game."8

In some ways, the first game that Bradford completed resembles
Eugene Jarvis’s 1980 arcade game Defender, which was ported to
the Atari VCS in 1981 by Bob Polaro. Star Wars: The Empire Strikes
Back is also a smoothly side-scrolling shooter in which the player’s
small ship, the snowspeeder, can move left or right along terrain,
wrapping around the playing field (figure 7.3) as can be done in
Defender. The same type of long-range view of opponents that this
earlier game offers is also present in Star Wars: The Empire Strikes
Back. But beyond that, there are significant differences. There are no
people running around on the ground who need to be defended from
abduction. Whereas Defender has a host of different enemies who
behave very differently, Bradford’s game has only the massive
Imperial walkers. These can fire two types of weapons, one ballistic
and one "smart." Both types of enemy fire can be shot down by the
snowspeeder. The snowspeeder can also land and a limited number
of repairs can be undertaken. The level of damage to the
snowspeeder and to walkers is indicated by their color, which shifts
through green and red into yellow.

The Imperial walkers are visually and formally formidable. They are
drawn in a rather elaborate way. A sprite scaled at 4× is used for the
body of a walker, in the top half of the screen. Then, a sprite scaled
2× is situated directly below to provide the legs. Both are effectively
eight "pixels" wide, although the sizes of these two pixels are not the
same, so that the top half appears twice as blocky as the legs. This
technique makes it easy to make the body "solid," while the legs are
not. The effect is an opponent whose Imperial scale dwarfs the Rebel
snowspeeder, effectively evoking the snowspeeder sequence in the
film but also resonating with the Star Wars Death Star infiltration and
battle, the opening sequence of the original film in which a giant
Imperial craft overwhelms a Rebel ship, and the overall Star Wars

mythos of an agile, individual, human-scale resistance to a lumbering,
enormous tyranny. It is not just the large visual scale of the walkers
that gives this sense—they are also extremely difficult to destroy,
requiring forty-eight shots, unless the player uses one of the other
two methods to dispatch them: firing into a bomb hatch or, less
sustainably, crashing the snowspeeder against the walker’s body in
one of the variants where the walkers are solid.

7.3 The tiny, agile snowspeeder, which the player controls, faces—or
in this case, runs away from—one of an endless supply of huge
Imperial walkers.

The cartridge didn’t have the "bosses" that would come to typify
shooters, ending each of the levels and presenting a culminating,
massive challenge to the player. The boss had only recently been
introduced in the 1980 arcade game Phoenix in the form of the
mothership. Nevertheless, in Star Wars: The Empire Strikes Backs
the standard opponents, the Imperial walkers, seem boss-like in
many ways. They are huge compared to the player’s craft and they
take many, many shots to kill. They also feature an intermittently
appearing "weak point," something that could be seen in Phoenix but

which in later games often was taken as a cue from Star Wars: The
Empire Strikes Back. In the game, a blinking "bomb hatch" appears at
random in one of a few locations on the Imperial walkers, remaining
for only a short time. If the snowspeeder fires into it, the enemy can
be dispatched in a single shot.
Another clever touch gave some 3D sense to the game. As the

snowspeeder is moved to the edges of the screen, the line defining
the mountains in the background moves left and right at half the rate
that the icy crags in the foreground move. This technique, commonly
called "parallax scrolling," also works to make the game more
exhilarating and to increase the feeling of velocity that sets the
player’s snowspeeder apart from the mighty but slow Imperial
walkers.

Despite these interesting features, Bradford has looked back
modestly at his first effort for the Atari VCS, created without any
official information on programming the platform, as being "not that
technically advanced" for a VCS cartridge.9 The design and
programming process at Parker Brothers worked well, though, and
the result got Star Wars off to a good start in the videogame arena.

The Players Are Listening

One of the unusual features of the first Star Wars game is its use of a
short but recognizable tune that plays as introductory and in-game
music. Although continual sound effects were common in VCS
games, it is hard to produce anything that sounds like Western music
on the machine. The frequencies that the TIA can generate miss
most of the chromatic scale. When Garry Kitchen was working as a
programmer for Activision, he went through and marked the notes
that the Atari VCS could hit. He then asked a professional composer
of jingles to put something together using only those notes. The
impressive composition that resulted from this constrained process
can be heard at the beginning of Pressure Cooker. Parker Brothers
managed to do pretty well with introductory musical numbers, too, as

it demonstrated in its first release, Frogger, which mimics the music
of the arcade game. Raiders of the Lost Ark also features a opening
theme that recalls that of the movie.

It was not simple to produce melodious music, though.
Programmers at Atari would often not attempt to do so, treating the
TIA like a percussion instrument instead and creating musical sounds
through rhythm.10 The distinctive monotone sound at the end of a
Missile Command level provides an example of the effective use of
this technique. James Andreasen’s 1982 Haunted House integrated
percussive sounds (of foot-steps) with short in-game "tunes"
indicating the ascent or descent of a stairway and other sound
effects. The game, which was also among the first to use player-
controlled scrolling between portions of a large virtual space, made
up for its rather underwhelming graphics with effective sound design.

Playing a tune during gameplay, rather than in an introductory
sequence or at a point where play is paused, introduces additional
difficulties. It has to be accomplished in the vertical blanking interval
along with the main game logic. This can be done, as modern-day
VCS programmer Paul Slocum showed when he hacked Combat to
create the 2002 cartridge Combat Rock. His modified game looks and
functions exactly like the original, but the sound effects have been
replaced with a recognizable version of "Rock the Casbah" by the
Clash that plays continually. Still, playing music during a game is
hardly straightforward.

When the snowspeeder endures for two minutes in Star Wars: The
Empire Strikes Back, it wins the temporary invulnerability of "the
Force" and the Star Wars theme plays, as it does when the cartridge
first starts up. This rare musical treat effectively draws a connection
to the Star Wars movies and also works effectively in the game,
making the period of invulnerability even more heightened. The
theme plays as sound effects from the game continue, too, so that it
is integrated into the experience of play rather than interrupting it.

https://calibre-pdf-anchor.a/#a422

Bradford also made great use of the 128-color VCS palette, cycling
the defeated walkers through a luminous magenta and neighboring
colors. When the walkers advance all the way across the screen to
inevitably defeat the player, the sky color-cycles in the same manner.
The Atari VCS Star Wars: The Empire Strikes Back plays on a
strength of the system: unlike the sixteen-color Intellivision, the Atari
VCS supplies numerous colors suitable for use in skies and sunsets.
The colors of the Atari VCS had already been used to display a
beautiful sunset, in fact, in an Activision game released the previous
year: Steve Cartwright’s Barnstorming. The landscape painter for that
game wasn’t Cartwright, though. He had lifted the sunset code and
data from a program called "the Venetian blinds demo," a simulation
of a window written by Activision’s David Crane. Other Activision
sunsets appeared in Chopper Command, Seaquest, and Frostbite.

Although the VCS palette for NTSC graphics includes the saturated
colors that became emblematic of Activision as well as colors that
worked well to fill the sky, the options didn’t suit every visual purpose.
Flesh tones were pretty much missing, making portraits of E.T. and
Darth Vader easier to manage than images that looked like ordinary
faces. One reaction to this was to ignore this limitation and paint the
character’s skin some shade of pink or yellow. This was the route
taken by the company Mystique, which produced so-called
pornographic cartridges for the Atari VCS, including Bachelor Party,
Beat ’Em and Eat ’Em, and the particularly odious Custer’s Revenge.
(In that game, the player directs a naked man to traverse a battlefield
and enact the rape—or consensual rape-fantasy penetration, if you
have a liberal interpretation of the game and the manual—of a Native
American woman tied to a post.) But other developers chose
scenarios and scenes so that they could use color effectively (and
more tastefully). This sometimes allowed dramatic effects to be
displayed to viewers who, plugging in a joystick, found the television
above the port to be the color of sky.

The Sun Sets on Atari’s Empire

The scenario of Star Wars: The Empire Strikes Back is similar to that
of Space Invaders and many other arcade games, in that the enemy
continually keeps coming. There is no way to win—only the possibility
of holding out for a longer or shorter period of time. The interesting
thing about this game structure is that it is perfectly consistent with
the corresponding sequence from the movie The Empire Strikes
Backs, in which the Rebel Alliance is unable to repulse an attack on
its Hoth base by Imperial walkers and can hope only to hold them off
for a while.

As has already been mentioned, upstart Atari and all the makers of
VCS games found themselves in the situation of the Rebel Alliance
by 1983. The causes of the crash were several. Many game players
were looking to home computers rather than videogame consoles by
this point. A variety of interesting computer games were available,
and there were reasons to prefer home computers. They could be
used for word processing, programming, and telecommunications as
well. It didn’t hurt, from the user’s perspective, that whereas
cartridges were extremely difficult to duplicate, computer games
could be typed in from listings in magazines or, if they were on
cassette or floppy disk, easily duplicated and shared.

While the popularity of home computers was growing, a flood of
VCS games entered the marketplace in 1982 and posed a problem
for the industry. Orders from retailers were overambitious, and
cartridges ended up returned or deeply discounted in the bargain bin.
Feeling burned, many retailers chose not to place new orders. There
were so many titles that consumers had a hard time discerning which
ones were likely to be enjoyable and which were likely to turn into
clearance cartridges that were a fifth the price of newly released titles
—perhaps worth even less than this. The first wave of returns and the
ensuing sales slump forced most of the third-party developers out of
business. E.T. almost certainly does not bear sole responsibility for
the crash, but, like a finger pointing to the moon, it shows that the
industry was putting effort into licensing rather than design and

programming, inundating the market with less innovative work that
had been forced through the development process quickly.

This crash was not the end of the Atari VCS—or, as it had come to
be known by this time, the Atari 2600. But it was the end of one
incarnation of Atari, a company that had already been transformed
under Warner, and it was the end of the boom years for the first
popular cartridge-based system. Many thought that it was end of
video games, which they imagined were a passing fad. This line of
thinking wasn’t correct or productive, but it did allow the American
videogame industry to be greatly outpaced by Japan’s Nintendo and
Sega, companies that continued to innovate with the next generation
of consoles, the Famicom (Nintendo Entertainment System) and SG-
1000 Mark III (Sega Master System). In the context of the toy
industry’s troubled relationship with video gaming, and given how the
industry was burned by the crash, Nintendo managed to persuade
American retailers to stock its system only by packaging it with a
robot and a light gun so that it became recognizable as a toy.

Nintendo also learned from Atari’s harsh lesson. When Atari
designed and released the Atari VCS in the mid-1970s, it seems
unlikely that anyone at the company seriously imagined that games
could be made for it by some other entity. When many other
companies did exactly that, Atari had no way to control which titles
appeared on its system. Nintendo devised a way to support retailers
and third-party developers—yet also to control them. The company’s
first-party licensing method required outside developers to submit
applications to qualify for third-party status, to buy official
development kits from Nintendo, and to submit their titles for review,
quality assurance, and release planning. Nintendo used the system
both to police quality and to limit the number of games that each
developer could produce per year, preventing another glut of titles.
Nintendo convinced retailers that games bearing its quality seal
would sell well, and this method worked.

Without Nintendo’s leap, the retail videogame marketplace might
not have recovered from the 1983 downturn—at least, not as quickly

as it did. But video games paid a price for their renewed commercial
success. Activision had thrived thanks to strong creative vision and
experimentation. Nintendo’s first-party licensing model set the stage
for the more homogeneous and anonymous work-for-hire mode of
videogame development that remains the norm. It also introduced a
culture of "soft censorship" in video games, with console
manufacturers getting the last word on what they would and wouldn’t
allow on their hardware.

Things could have come about very differently. Noting Atari’s
success and name recognition in North America and worldwide, in
1983 Nintendo asked Atari to bring the Famicom Computer System
(what would become the NES in North America) to market outside
Japan. Before a deal could be struck, Atari CEO Ray Kassar was
forced out of the company over allegations of insider trading.11 Chaos
struck Atari upper management, and Nintendo eventually lost
patience and released the NES on its own. A combination of pride
and humility can be seen in Atari’s reaction to Nintendo’s console,
which numerous executives witnessed firsthand during a trip to
Kyoto. In a memo circulated mid-1983 about the deal, Atari executive
Don Teiser compares the prototype NES to MARIA, the code name
for the Atari 7800 that was currently in development at Atari. "It
appears to be a superior machine," writes Teiser, "but the MARIA chip
is not yet finished."12

Despite internal turmoil at the company, Atari’s console remained
important in the mid-1980s as the next generation of video gaming
was rolled out. Along technological and business dimensions,
Nintendo’s system was among the platforms most directly influenced
by the Atari VCS. Atari’s system has remained influential both as a
distant technological ancestor of today’s home consoles and as a
residual but compelling presence in today’s gaming landscape.

https://calibre-pdf-anchor.a/#a423
https://calibre-pdf-anchor.a/#a424

After the Crash [8]

The Atari VCS had one of the longest production runs of any
microcomputer, and certainly the longest of any dedicated home
videogame console. Models were manufactured from 1977 through
1992. Commercial games continued to be released after the crash of
1983, with many appearing for the first time as late as 1987. That year,
for example, Atari released Real-sports Boxing, a side-view boxing
game with realistic boxers, a ring, and spectators that far outdid the
once-spectacular Boxing cartridge by Bob Whitehead, released by
Activision way back in 1980.

Lower-cost electronics contributed to such advances. Realsports
Boxing uses a 16K ROM, allowing eight times as much code and data
as the original cartridges did. But new conventions for gameplay also
began to feed back into VCS game design. Just as games like
Adventure and Pitfall! set conventions and expectations for future
games, so the next generation of titles introduced new design
challenges on the VCS platform. By 1987, Nintendo and Sega’s eight-
bit systems had been on the market for two full years in the United
States and longer in Japan. The VCS titles from the late 1980s often
adapted the conventions of games produced for such newer home
consoles, also borrowing from contemporary arcade games that were
unimaginable ten years earlier. For example, Realsports Boxing
includes a character selection screen; players choose to play as
boxers with unique styles and names like Iron Fists and Lefty
O’Leary. Instead of a single punch verb enacted by the joystick
button, Realsports Boxing accepts more complex combinations of
button and directional input, translating these into different moves:
hook, jab, or uppercut. Systems like the NES, which had two action

buttons compared to the Atari VCS’s one, and ever more complex
arcade machines, which often sported handfuls of different buttons,
had made more elaborate inputs common.

The Atari VCS had begun as a home console for ports of popular
coin-op games, mainly Pong and Tank; within a few years, it hosted
Space Invaders, Pac-Man, and games that were inspired by coin-ops,
including Yars’ Revenge. Later, the machine became a platform for
adaptations of popular movies—the Star Wars films, E.T.: The Extra-
Terrestrial, and even Porky’s. A decade after the system launched,
ports remained a strong influence, but in some cases the games
being ported were ones that themselves followed conventions
established earlier on the Atari VCS.

That it was possible to complete a game like Realsports Boxing—
even on a 16K ROM—testifies to the flexibility of the Atari VCS’s
architecture. The abstract simplicity of the machine, combined with
the stringent constraints that simplicity imposed, made for an
extremely flexible system. A more rigid hardware design, such as that
found in consoles of the late 1990s and early 2000s, with their support
for real-time 3D graphics, can provide for more sophisticated visual
presentations, but such a design also reduces the breadth of
representations that are possible. The minimal design of the Atari
VCS actually maximized what could be done with its small amount of
computation, making it a more versatile platform for creative
expression that it would have been with, for instance, built-in sprites
and hardware facilities that were well-adapted to drawing 2D,
overhead-view playfields, but were not adaptable to any other
perspective.

This simplicity continued to invite new innovations well into the late
1980s. In 1987, Exus released a new VCS controller, the first since the
Track & Field controller of 1984.1 The controller was a pressure-
sensitive mat that rested on the floor in front of the television,
emblazoned with five different-colored circles. Depressing any of
these with a foot or hand had the effect of closing a joystick switch or
pressing the red button, inputs for which designer could program

appropriate responses. The device was called the "Foot Craz" (figure
8.1). Two games were bundled with it, Video Jogger and Video
Reflex. Video Jogger is a simple running game similar to the running
events in Track & Field. But rather than depress buttons rapidly, the
player has to run—literally—on the sensors of the Foot Craz. Video
Reflex was a Whack-a-Mole-style game played with the feet. On-
screen, bugs appear in one of five colored regions. The player has a
limited time to depress the sensor corresponding to the correct
colored region.

Foot Craz preceded Bandai’s Family Fun and Fitness, which
Nintendo licensed in 1988 and released as the Power Pad. It took
more than a decade for this type of controller to achieve widespread
popularity in the home, but it finally did when Konami adapted its
popular arcade dancing game Dance Dance Revolution for the
Dreamcast and PlayStation. Since then, publishers, players, and
even HMOs and municipal governments have become interested in
the ways that input devices for video games can encourage physical
activity. Yet this idea was first explored on the humble Atari VCS in
the tenth year of that console’s life.

8.1 This first mat controller, by Exus, entered the market too late to
enjoy commercial success. The layout of the controller differs
considerably from that of both the Nintendo Power Pad and later
Dance Dance Revolution mats.

Playing On

Even though the Atari VCS continued to be manufactured in small
quantities into the early 1990s, its commercial viability was exhausted
by the late 1980s. Exus’s Foot Craz—the only product that company
ever made—enjoyed so little success in the market that the mat and
its games are among the rarest VCS collectibles.

Among the rarest, yes—but certainly not the only collectible items.
The Atari VCS has been a great platform for collectors and is clearly

the centerpiece of collectors’ gatherings such as the Classic Gaming
Expo, even though other platforms are well represented. Original
systems of different models, from the first wood-grained, six-
switches-on-the-front "heavy sixer" to the smaller, black 2600 Jr.,
remain widely available from specialty stores and by online auction.
Plenty of famous cartridges are easy to acquire, while a wide range of
arcana is available to those who want to pursue cartridges more
earnestly and are willing to spend more money. In addition to offering
collectors a low threshold and a high ceiling, VCS cartridges are fairly
durable, as are the consoles themselves, so it is possible for
collectors to play games from their hoard as well as admiring them.

Just as Atari wanted to provide a way for families to play their
favorite coin-op games at home in the late 1970s and early 1980s, the
recent owners of Atari’s intellectual property and brand have sought
to give Xbox and PlayStation players an opportunity to access their
favorite Atari VCS games on their current home consoles. The Atari
Anthology, released in 2004, collects dozens of VCS and arcade
games along with additional documentation, art, and resources from
the creation and marketing of the original titles.

Rereleases of VCS games on new consoles pose special
challenges. Getting older games to run on newer systems requires
either writing an emulator to implement the Atari VCS in software or
simply rewriting each game entirely, recreating each one on the new
platform. Either method introduces problems. Even an ideal emulator
cannot provide an Xbox with the original controls, such as difficulty
switches that can be easily toggled by either player during a game, or
other affordances of the original hardware. Differences in display
technology on modern monitors make emulated VCS games look
different than they did on a late 1970s or early 1980s television. But
recreating games from scratch is even harder, and requires extensive
effort for each game being redone. As we have tried to show in this
book, the material constraints of the VCS hardware can be seen as
providing opportunities for the creative process—not obstacles. The
increased power of modern computers, and their different set of

limitations, can sometimes make it very difficult to accurately port
games.

The Stella emulator is free software that works on Windows, Mac
OS X, and Linux, and that essentially implements the Atari VCS in
software. It gives computer users the ability to play VCS games, once
the ROM images for those games have been acquired. (These are
files that are generally 2K, 4K, or 8K in size and that contain all the
data that was stored in the original cartridges.) Downloading Stella
does not provide the user with authentic controllers, of course, or
supply one’s computer with a wood-grain finish.

A commercial emulator is provided in the Atari Anthology, which
collects many coin-op games along with its VCS titles.2 Among these
are the arcade game Asteroids. Modern plasma and LCD high-
definition televisions (HDTVs) have no electron beam and thus are
not capable of drawing a picture in the same way as it would have
been seen on an early VCS display—and certainly not on the XY
graphics display of a game such as Asteroids. However, they can
display pictures at very high resolution. The Atari Anthology port was
able to capture some of the high-resolution nature of Asteroids by
converting it to HD. As of this writing, Atari Anthology is the only title
for the original Xbox that supports 1080i HD resolution.

The toy company Jakks Pacific has produced a "television game"
joystick and a set of paddles that plug directly into a TV and contain a
selection of games. The Jakks units recreate the physical interfaces
to the Atari VCS, which the Atari Anthology does not do, but they offer
reimplemented rather than emulated games.

A good combination of controllers and authentic game function is
provided in Atari’s Flashback 2, released in 2005 with forty built-in
games and two detachable joysticks. This is the most recent
hardware implementation of the Atari VCS to be mass-manufactured.
The system was designed by Curt Vendel, who also runs the Atari
History Museum. It lacks a cartridge port, although it is possible (if not
extremely practical) to undertake a hardware modification and add
one. The Flashback 2 mimics the appearance of the first model of the

Atari VCS and includes a faithful implementation of the original VCS
board, all on a single low-cost chip.

Another way that VCS games live on is through lower-powered,
lower-resolution devices. In the recent past this has meant platforms
such as the Nintendo Game Boy Color; today, the more desirable
targets are mobile phones. The outcomes of cell phone ports are
usually poor. Incompatible interfaces are one reason—users control
mobile devices differently than arcade cabinets or home consoles.
But the difference in graphics systems is an even more severe
problem.

The element of the Atari VCS that stands out when the system is
held up to other platforms is the TIA. Even if the machine had been
built with a different processor, or had been shipped with controls of
some different design, the constraints of the TIA—two sound
channels, the line-by-line rendering requirements, the sprite-missile-
ball graphics, and so forth—would have left this hypothetical,
modified Atari VCS with a similar look and feel when it comes to
programming and play. The TIA is strongly tied to the nature of the
television’s CRT display. In the context of the home console
experience of 1977-1983, that the system was "video" was about as
important as that it was "computer." The Atari VCS is certainly not just
a "video" device in the generic sense of being able to display a
moving image: its TIA was designed to interface with a particular type
of video and audio hardware, a television set. All of its unique
features emanate from this.

Perhaps because of the special nature of the TIA, or perhaps
because of the limitless human capacity for technical fascination,
programmers have continued to hack at and develop original VCS
games. There is a thriving hobbyist community that has picked up the
Atari VCS, using and refining emulators, writing disassemblers and
development tools, and even manufacturing cartridges and selling
them, complete with boxes and manuals. This "homebrew" scene
could be seen, strictly speaking, as continuing the commercial life of
the Atari VCS, but the community is not very corporate. It operates on

the scale of zines and unsigned bands, with most recent ROMs
offered for free online—even if they are also sold in limited releases
of a few hundred copies in cartridge form.

Although many homebrew programmers are motivated by
nostalgia, they are doing more than recreating the glory days of the
Atari VCS—they are continuing to discover previously unknown
capabilities of the platform. Paul Slocum, who has completed Combat
Rock, Synthcart, and impressive work toward a Homestar Runner
game, managed to add a system for background music. Andrew
Davie, who did the PAL game Qb, devised a way of alternating colors
on different frames to achieve the visual effect of more than 128
colors. Thomas Jentzsch, creator of Jammed and Thrust, devised a
new bidirectional scrolling technique and, working with Fabrizio
Zavagli, also converted a slew of VCS games between NTSC and
PAL. The list of recent technical achievements and recent original
games goes on and on.

The Atari VCS has found uses in other domains, blasting into the
space of the museum and the worlds of art and music. Yucef Merhi
first exhibited a piece including an Atari VCS, net@ari, in 1985, and
has created a series of Atari Poetry works that run on the platform
since then—Atari Poetry through IV, initially; then, in 2005, Super
Atari Poetry; Atari Poethree in 2006; and, most recently, in 2007, atari
ex machina. Slocum’s band TreeWave and several other musicians
have used Synthcart as a part of live music performances. In 2006,
Mary Flanagan first exhibited her nine-foot-tall [giantJoystick], a
scaled-up but fully functional controller for the Atari VCS, modeled
after the original joystick for the system.

Atari’s venerable system has also been used to help students learn
and engage with the history of creative computing. In 2005, the
twenty-four-hour Retro Redux event at New York University
challenged students in the area to design Atari VCS games. Both of
the authors of this book have had students play and analyze games
on the system; Ian Bogost has also had them program their own
original games in Batari BASIC and assembly.3

The influence of the Atari VCS continues to be recognized by
gamers, designers, those involved with computing, and the world at
large. Numerous lists of top games throughout history are studded
with VCS titles. The founders of Activision were given the Game
Developer’s Choice First Penguin Award in 2003 for founding the first
third-party videogame development company. In 2006, Wired Blogs
picked the Atari VCS as one of "10 gadgets that changed the world,"
lauding it alongside the Sony Walkman and IBM PC. The following
year, PC World ranked the system thirteenth on its list of "50 best tech
products of all time," Technology Review included the Atari VCS on
its list of iconic and well-designed "objects of desire," and the system
took its place alongside famous toys in the Strong National Museum
of Play Hall of Fame.4

Obviously, the Atari VCS is a cherished relic. Although no longer
manufactured in its original form, it remains a living fossil. An article in
Time in 2001 described the console’s continued life after the turn of
the century: "At ’80s-themed parties it’s common to see a 2600 wired
to the TV set and guests jumping at the chance to rediscover their
first videogame experience."5 The VCS consoles have continued to
come out to play, for instance, for celebrations of the thirtieth
anniversary of the release of the system in late 2007. Just as a
practice like letterpress printing is a contemporary, ongoing activity in
addition to being the dominant method of printing from times past, the
Atari VCS is admirable for its historical role in video gaming while it
remains playable and programmable today.

Afterword on Platform Studies

As creative uses of the computer have blossomed in the past fifty
years, studies of digital media have also been undertaken, focusing
on computational artifacts, video games, and works of digital art and
literature. These studies have considered creative computing in many
different ways. We find it useful to distinguish five levels that
characterize how the analysis of digital media has been focused—
each of which, by itself, connects to contexts of culture in important
ways. The levels are illustrated in figure A.1.

Reception/operation is the level that includes reception aesthetics,
reader-response theory, studies based on psychoanalytic
approaches, and similar methods. This level is also where media
effects studies, such as desensitization to violence, and empirical
studies of interaction and play are found. Although only those types of
media that are interactive are explicitly operated, all sorts of media
are received and understood. This means that insights from other
fields can often be usefully adapted to digital media at this level. The
level of reception and operation includes a wide variety of studies that
are focused on the player, viewer, or reader, from the studies of
Sherry Turkle to applications of Wolfgang Iser’s reader-response
theory and Geoffrey R. Loftus and Elizabeth F. Loftus’s studies of the
behavior of game players.

Interface studies include the whole discipline of human computer
interaction (HCI); comparative studies of user interface done by
humanistic scholars and literary critics; and approaches from visual

studies, film theory, and art history. The approach that Jay David
Bolter and Richard Grusin have called "remediation" involves
concern for interface, although reception and operation are concerns
of remediation, too. This type of approach is not particularly unusual.
Many studies of digital media and computer games span multiple
levels, but studies often focus on one. The interface is an intriguing
focus, because it is visible yet particular to inter active systems. Even
if we imagine a poem or a movie as interactive, it is often not very
meaningful to characterize such a work as having an inter face apart
from its visual or aural appearance. The interface, although an
interesting layer, is what sits between the core of the program and the
user; it is not the core of the program itself. A chess program may
have a text interface, a speech interface, or a graphical interface, but
the rules of chess and the abilities of a simulated opponent are not
part of the interface.

A.1 The five levels of digital media, situated in
context.

Form/function is the level dealing with the core of the program,
including the rules of the game, the nature of the simulation, and the
abilities of the computer-controlled opponents. It is the main concern
of cybertext studies and of much of the work characterized as game
studies or ludology. Narratology, which has been used for a while to
understand literature and cinema, is an approach that deals with form
and function and that has been applied to digital media as well.
Because these approaches deal with the same level, it is at least
meaningful to imagine a narratology/ludology debate—an early
conflict in game studies over whether games are better understood
as essentially rule-based or narrative—while it makes much less
sense to think about a psychoanalysis/ludology debate or a
remediation/narratology debate.

Code is a level where explorations are still only beginning. Code
studies, software studies, and code aesthetics are not yet
widespread, but they are becoming known concepts. With both the
Ars Electronica festival and, more recently, the Society for Literature,
Science, and the Arts (SLSA) having events with code as the theme,
there are more contexts for discussing the way creative work is
actually programmed and the way it is understood by programmers.
The discipline of software engineering is a related field that concerns
itself with the code level as well as with organizational and individual
capabilities for software development. Of course, looking at the
source code for a particular program is very useful when considering
the code level. Comments, variable names, and choices made when
writing programs can be telling and can help us understand how
programs were written and under what conditions. Even if the source
code is not available, however, an analysis at this level of compiled
code and of records of the development process can reveal many
useful things.

Platform is the abstraction level beneath code, a level that has
fortunately received some attention and acknowledgment, but which
has not yet been systematically studied. If code studies are new
media’s analogue to software engineering and computer
programming, platform studies are more similar to computing

systems and computer architecture, connecting the fundamentals of
digital media work to the cultures in which that work was done and in
which coding, forms, interfaces, and eventual use are layered upon
them.

As we discussed the Atari VCS, we did not shy away from
mentioning some things about what games mean and how people
play them, what interfaces particular games use, the particular ways
that games function, and the code with which they are implemented.
But though we have considered other levels, our focus in this book
has been on the platform level, the one that we believe is most
neglected.

We hope that our book and future studies at this level will help fill in
our overall understanding of digital media and benefit the humanistic
exploration of computing. We also want to emphasize again that we
see all of these levels—not just the top level of reception and
operation—as being situated in culture, society, economy, and
history. Because of this, we sought to describe how the Atari VCS
platform came about as well as how it has influenced further cultural
production. A computational platform is not an alien machine, but a
cultural artifact that is shaped by values and forces and which
expresses views about the world, ranging from "games are typically
played by two players who may be of different ages and skill levels"
to "the wireless service provider, not the owner of the phone,
determines what programs may be run." We hope that this
awareness of the contexts of platforms has informed our approach in
this book, just as it has informed the best digital media studies at
other levels in the past.
We chose the Atari VCS as a starting point because it has been so

influential and popular. It is also relatively simple—we were able to
discuss every chip on the board in some detail without producing a
technical manual. It didn’t hurt that the Atari VCS remains, to us, an
immensely pleasurable game system to play on, to hack on, and to
program.

Platform studies is not just fun and games, though, and the
approach that we are advocating doesn’t apply to only the simplest
computational systems. Yes, considering the platform level can
certainly help illuminate other sorts of video games and game
systems. Video gaming has been an extremely rich category of
creative production on the computer. But consideration of the
platform can also enlighten our understanding of interactive visual art,
educational programs, hypertexts, works of interactive fiction, demos,
creative projects in text generation, visual and kinetic poetry, and
much more.

Although the Atari VCS is a platform that was originally realized in
hardware, the term "platform" in general does not mean simply
"hardware." There have been many influential software platforms
designed to run on different sorts of boxes. In the 1970s and 1980s,
BASIC became a not-quite-regularized lingua franca for the wide
array of minicomputers and, later, home computers. BASIC was
perhaps less principled than another beginner’s language, LOGO,
and was often maligned by advocates of structured programming, but
it served well enough for small-scale programs and facilitated a surge
in popular programming. Somehow, the "harmful" GOTO statements
of the language combined with new possibilities for program
distribution and the ease of access to BASIC that microcomputers
provided. Studies focused on the code of particular BASIC programs
are important to pursue, but studies that consider the programming
language as a platform for computational expression will also be
important.
BASIC is obviously not the only interesting software platform. Java,

released by Sun Microsystems in 1994, has been used for business,
scientific, and creative purposes and even to construct higher-level
computational platforms, such as Ben Fry and Casey Reas’s
Processing. Although not originally a programming language, Flash,
which became popular as a Macromedia product and is now an
Adobe product, is a fascinating software platform that acquired
computational capability as new versions were released.1 It has been

used to provide everything from professionally produced interfaces to
hilarious low-brow animations and games.

Many of the early microcomputers that had BASIC built in were very
interesting platforms in their own right. The Commodore 64 and Apple
][were both important in the development of computer games, and,
although many games were ported between the two platforms, their
unique features encouraged different sorts of games to be made. The
Apple][also provided a platform for advances in educational
software and for the development of the first spreadsheet. The
Commodore 64, on the other hand, was the first platform embraced
by the demoscene, a movement that grew to be strongest in Northern
Europe and that focused on programming computer-generated music
videos.

There are many other significant computational platforms, from the
computer-aided instruction system Programmed Logic for Automatic
Teaching Operations (PLATO), which debuted in 1960, to today’s
mobile phones. Many are of much greater complexity than the Atari
VCS. In these cases, a study the size of this book would not be able
to discuss the platform technology as broadly and as deeply as we
have been able to do with our chosen example. Just as it is useful to
peel back layers of abstraction in a few cases, it will be useful in other
cases to discuss how larger-scale systems are integrated without
exploding every technical detail of every part of the system. The Atari
VCS, as elegant and important as it is, cannot be used to explain how
an operating system works and how that part of a system influences
creative production. The console simply does not have an operating
system. Other studies that don’t consider chips and registers in as
much detail can deal instead with this component and with other
important aspects of computational platforms.

Our hopes for the future of platform studies are twofold. First, we
hope that new media studies of all sorts, by curious fans and devoted
scholars, will look to the platform level more often and will explore
how the platform is relevant to the work, genre, or category of
creative production that is being considered. It is not always obvious

how to go about this, and explorations of technical details can be
challenging, but already we have been provided with some good
examples of platform-aware work in Alexander Galloway’s Protocol:
How Control Exists after Decentralization, Steven E. Jones’s The
Meaning of Video Games, and Matthew G. Kirschenbaum’s
Mechanisms: New Media and the Forensic Imagination. We will of
course be glad if the work we have done here is useful to those
undertaking studies of specific VCS games and comparative
videogame studies that consider the 1977-1983 period. But we also
hope that this book will serve as a more general reminder that
studying what is underlying and assumed—the platform—is
rewarding in all sorts of digital media research.

Beyond that, we hope that others will choose to undertake studies
that center on platforms themselves. This encourages the
comparison of works done on the same platform, a type of
comparison we have found to be particularly fruitful. It also can lead
to a more holistic view of an integrated computer system, one that
wouldn’t be obtained by looking at a single program or a single
component. To provide a place for studies that focus on the platform
level and on particular computer platforms that have influenced
creative digital media work, the MIT Press is publishing the Platform
Studies series, of which this book is a part.2

Notes

We discuss the technologies used in the Atari VCS in
detail throughout the book. Our main source for
information about the way the Atari VCS hardware
functions and for the standard terms used to refer to
parts of the system is Wright, Stella Programmer’s
Guide. A good resource for beginners is Davie, "Atari
Programming for Newbies." There are several
available sources of information about VCS
cartridges, including the names of programmers who
were not credited in the game or on the cartridge,
box, or manual. Online, these include Atarimania
(www.atarimania.com) and AtariAge
(www.atariage.com). There is even a printed directory
of VCS games (Herman, ABC to the VCS) that
contains descriptions of more than seven hundred
games, although release dates and programmer
names are not provided for each game.
We also discuss many events in videogame history.

Whenever we believed that there might be some
question about when the event occurred or what

http://www.atarimania.com/
http://www.atariage.com/

happened, we indicated our sources in a note. We
have not included citations for historical facts that are
well-known and well-documented—for instance, that
the original arcade game Pac-Man was a Namco
product and was released in 1980. For general
information on videogame history, there are several
good books, including Burnham, Supercade; DeMaria
and Wilson, High Score; Forster, The Encyclopedia of
Game Machines; Kent, The Ultimate History of Video
Games; and Weiss, Classic Home Video Games,
1972-1984. There are also many good resources
online, including Herman et al., "The History of Video
Games," and www.thegameconsole.com.

1. Stella

1. One well-known media theorist who does engage both hardware and software is
Friedrich Kittler. In particular, see two essays in his collection Media Information
Systems, "There Is No Software" and "Protected Mode."

2. Uston, Buying and Beating the Home Video Games, 2.
3. This sort of idea had been around in computing for a while. It was called

"windowing." Ivan Sutherland developed the technique of showing one part of a
drawing in his work on the 1963 system Sketchpad. This did not mean that the
use of a similar concept on a television connected to an Atari VCS, or the
particular mode of navigation used in Adventure, was straightforward or obvious.

4. Buecheler, "Haunted House."
5. In 2006 dollars, the 1982 take of arcade video games, which was $7.3 billion

(Harmetz, "Hollywood Playing Harder at the Video Game"), is about $15.2 billion.
By 1994, the figure had dropped to $2.3 billion, and by 2006, it had sunk to $866
million. Williams, "10 Businesses Facing Extinction in 10 Years." The total sales
figure for 2006 computer and videogame software is $7.4 billion, according to the
sales data from the Entertainment Software Association (http://
www.theesa.com).

6. Cohen, Zap!, 27; Watters, "The Player."

http://www.thegameconsole.com/
http://www.theesa.com/

7. Loftus and Loftus, Mind at Play, 10-42 passim.
8. Adams and Rollings, Ernest Adams and Andrew Rollings on Game Design, 46.
9. Specifically, Atari started the first pizza parlor in 1977, during the Warner years.

Most of Bushnell’s ideas were not being adopted by the company, but it did start
a Pizza Time Theater at his suggestion. When Bushnell left, he bought the pizza
business from the company. Cohen, Zap!, 122-123.

10. Even more ironic was Baer’s development of the extremely successful handheld
game Simon, which was based on and improved upon Atari’s arcade game
Touch Me. For a legalistic presentation of Baer’s side of the story on this and
other matters, see Baer, Videogames.

11. Atari’s use of consumer components continued when Pongwent into assembly-
line production, and wasn’t restricted to the display system. Pongunit 00-0035, as
exhibited in the Boston Federal Reserve Bank in 2007, included the original
container used to collect coins and the label that was on this container originally,
declaring it a "Comet Standard Size Bread or Meat Loaf Pan." For a photograph
of the consumer television in the first Pongunit, see DeMaria and Wilson, High
Score, 20.

12. Kent, The Ultimate History of Video Games, 43.
13. Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog, 273.
14. DeMaria and Wilson, High Score!, 26.
15. Campbell-Kelly, 274.
16. Burnham states that "approximately 200,000" were sold (Supercade, 82), while

Baer states that the total is 350,000 (Videogames, 7).
17. IGN, "Atari 2600, 1977-1984."
18. Baer, 86-88.
19. Moritz, The Little Kingdom, 124.
20. Laing, Digital Retro, 15.
21. Evans, Hagiu, and Schmalensee, Invisible Engines, 121.
22. Goldberg, "The 2600 Story: Part I."
23. Connick, ". . . And Then There Was Apple," 24.
24. Perry and Wallich, "Design Case History."
25. The discussion that followed the blog post by Montfort, "An Atari VCS

Curriculum," was particularly helpful in our thinking about important cartridges.

2 Combat

Parts of this chapter are based on Montfort, "Combat in Context."
1. Like many small cash businesses, including laundromats, coin-op businesses

that dealt with vending machine, pinball, and arcade game distribution provided

easy ways to launder money and were at times run by organized crime. This
prompted increased regulation of these businesses.

2. McLuhan, "Printing and Social Change," 6.
3. NTSC is the television encoding system used in the United States, Canada,

Japan, Mexico, and many other Central/South American and East Asian
countries. The encoding standard used in most of Europe, much of Asia, Brazil,
and about half of Africa is called PAL. A third major format, SECAM, is used in
France, the other half of Africa, and the former Soviet Union. The development of
PAL was necessary because North American NTSC television would not fit the
50 Hz frequency of European power grids. Because the Atari VCS does not
automate its interface with the television, programmers would have to modify
their programs to account for the 242 visible scan lines of a PAL television,
compared with the 192 visible scan lines of an NTSC TV.

4. Wright, Stella Programmer’s Guide, 9.
5. Berkeley, "Small Robots—Report."
6. Wardrip-Fruin, "Expressive Processing," 59-60.
7. Vavasour, "Jeff Vavasour’s Video and Computer Game Page."
8. Leon, "CyberBattle 2000!"
9. O’Connor, review of CyberBattle2000.

10. Langberg, review of Combat.
11. Bolton, review of Combat.

3 Adventure

1. Robinett, "Adventure as a Video Game," 692-693.
2. Robinett, 692-693.
3. Robinett, 694.
4. Robinett, 703.
5. Robinett, 694.
6. Hague, interview with Robinett in Halcyon Days.
7. For a thorough discussion of how fictionality and rules interact in games, see

Juul, Half-Real.
8. Robinett, 697.
9. Hague.

10. Robinett, 704.
11. Robinett later created a diagram of Adventure’sspace that clearly showed the

disconnections between segments, but there are other ways of understanding
the game’s geometric inconsistency. Caving is a matter of moving up and down
in space, not just side-to-side. Because Adventureshows us only a two-
dimensional view of the space it represents, it is possible to imagine that

movement left, right,up, and down also involves movement into and out of the
plane of the TV screen, as if the player were ascending and descending a
sloping terrain. In such a world, the blue labyrinth would actually be under the
yellow castle.

12. Kirksey, Computer Factoids, 114-115.
13. Hague.
14. Or, as Jim Huether said in Warshaw, Once Upon Atari, episode 1, "I remember

when I started they just said we want you to do a game in about six months.
Here’s the equipment, here’s the manuals, there’s people around, you can ask
questions. You have no set hours. We don’t really want to see you until the game
is almost done."

15. Hague.
16. Occasionally, writers will refer to early videogame creators as "auteurs," invoking

auteur theory, which has been used to explain how individual authorship can
exist in industrialized productions that have large numbers of people involved
creatively. (See, for instance, Aarseth, "The Game and Its Name: What Is a
Game Auteur?") It is important to note that Atari VCS programmers were not
working in a context of this sort—they were literally doing all of the core creative
work of game design, interface programming, core game programming, and in-
game graphics and sound. Instead of making an analogy to someone like a
French New Wave director with a signature style, it would be better to compare
such a programmer to a filmmaker who does all the writing, cinematography,
photography, sound work, editing, costuming, set dressing, and acting as well as
the directing.

17. Hague.
18. Hague.
19. Montfort, Twisty Little Passages, 193-221.

4 Pac-Man

1. In Kohler (Power-Up, 22), it is noted that the story of the missing pizza slice
doesn’t exactly describe a real event, but that Iwatani nevertheless likes the story
and tells it as if it were true.

2. Green, "Pac-Man."
3. International Arcade Museum, "Pac-Man Videogame by Midway."
4. Even today, a movable object in a 2D or 3D world is often called a sprite. And

handheld systems like the Game Boy Advance and Nintendo DS, both of which
evolved from the Nintendo Entertainment System, offer even more complex
hardware management for sprites.

5. Rick Maurer made an important innovation in Space Invadersin addition to this
one. He introduced a cooperative two-player mode that was very suitable for a
home system and not present in any form in the arcade game.

6. Quoted in Perry and Wallich.
7. The effect is different on an LCD display, which means that an emulated Pac-

Mangame will not look the same as one played on a CRT television.
8. Townsend, "The 10 Worst Games of All Time."
9. Alexander, "Video Games Go Crunch."

10. Warshaw, Once Upon Atari, episode 2.
11. Control over memory banks is memory-mapped, meaning that a VCS program

writes to a specific location in memory to switch from one bank to another. This
can be very helpful, but is not as useful as being able to address a large memory
space directly. Often, some of the contents of one bank will have to be
duplicated in another because it is impractical to switch back and forth at every
point where it would be necessary.

12. Available to members of the AtariAge forums at http://www.atariage.com/
forums/index.php?showtopic=54937.

13. Kohler, Power-Up, 24.

5 Yars’ Revenge

1. Stilphen, interview with Howard Scott Warshaw.
2. Weesner, interview with Howard Scott Warshaw.
3. Email to Montfort, 28 October 2007.
4. Larry Rosenthal was the developer of Space Wars. After he left Cinematronics,

Tim Skelly needed to reverse-engineer the company’s own product (which was
not clearly documented) to determine how to create other XY graphics games of
this sort. After succeeding at this, Skelly developed Star Castle. Skelly, "Tim
Skelly’s History of Cinematronics."

5. Novak, Game Development Essentials, 9.
6. Turkle, The Second Self, 84-85.
7. Poole, Trigger Happy, 23.
8. GameSpy, "Asteroids Gives Birth to Smack Talk."
9. That is, assuming that the color/BW console switch is set to color and a color TV

is used.
10. Many emulators do now offer a mode in which pixels are blurred so that the game

appears more like a CRT image, although the scan lines of the television are still
not visible as they would be on original equipment. Zach Whalen has
investigated the difference between the "blocky" and "fuzzy" representations of
pixels in popular culture and has looked at how different display modes influence

http://www.atariage.com/forums/index.php?showtopic=54937

the appearance of digital images, particularly typography. Whalen, "Lost in
Emulation."

11. Email to Montfort, 28 October 2007.
12. This assembly code was developed from the binary stored in ROM; Debro,

"Yars_Revenge.asm."
13. Stilphen.
14. Email to Montfort, 28 October 2007.

6 Pitfall!

1. Fleming, "The History of Activision."
2. Fleming.
3. During a Classic Gaming Expo 2007 panel.
4. Rob Fulop, quoted in Hahn, "Favorite Atari 2600 Games." Fulop explained further

in a forum posting on http://www.AtariAge.com (16 October 2007): “After leaving
Atari, Bob Smith and myself wrote a few simple editors that ran on the Atari 800.
These tools enabled a graphic artist to author actual game graphics, changing
both the graphics, and color, on each scan line. When they were happy with the
way it all looked, the programmer ran some utility tool to add the appropriate hex
codes to their program. Michael Becker was the first artist to use these tools, and
he did such a great job on the set of demons that appear in Demon Attack that he
became Imagic’s first resident artist devoted exclusively to videogame graphics. I
think it took other companies awhile to catch on to this, which is why Imagic
games were known for the distinct look they have."
http://www.atariage.com/forums/index.php?
showtopic=114992&pid=1389687&mode=threaded&start=#entry1389687.

5. Bray, Innovation and the Communications Revolution, 272.
6. He told this anecdote during a panel discussion at the Classic Gaming Expo 2005.
7. Email to Bogost, 23 October 2007.
8. The text continues to note that VCS games had not reached "the level of the

Intellivision system," which is true, although VCS graphics capabilities exceed
those of the Intellivision in some ways, as discussed at the end of the previous
chapter. Of course, graphics were not the only aspect of VCS games that had
significantly evolved by the beginning of the 1980s; this book continues to remark
upon the advent of "multiboard plot-type games" such as Adventure. Uston,
Buying and Beating the Home Video Games, 26.

9. He described this part of his interview during a panel discussion at the Classic
Gaming Expo 2007.

10. All three of the games mentioned here—Barnstorming, Seaquest, and Frostbite
—feature naturalistic settings with sunsets. VCS sunsets are discussed again at

http://www.atariage.com/
http://www.atariage.com/forums/index.php?showtopic=114992&pid=1389687&mode=threaded&start=#entry1389687

the end of chapter 6.
11. Michael Thomasson, interview with David Crane.
12. Covert, "Meet David Crane: Video Games Guru." Although Freewayis sometimes

thought to have been inspired by Frogger, the two games were developed
simultaneously, with the developers having no knowledge of each other’s efforts.

13. This version, dubbed "Bloody Human Freeway" at AtariAge.com, is sometimes
mistaken for a homebrew hack of the game.

14. Email to Bogost, 23 October 2007.
15. Email to Bogost, 23 October 2007.
16. Email to Bogost, 23 October 2007.
17. Burroughs’s book Tarzan of the Apeswas first published in a single volume in

1914, but was serialized beginning in the October 1912 issue of All-Story.
18. The hero of the first version of JungleHunt resembled Tarzan quite directly. The

Edgar Rice Burroughs estate sued Taito over this game, called Jungle King, and
the company renamed the game and changed the player’s character to an
explorer in a pith helmet. International Arcade Museum, "Jungle King Videogame
by Taito."

19. Email to Bogost, 23 October 2007.
20. Email to Bogost, 23 October 2007.
21. Activision’s method is clearly more aesthetically pleasing, but the less refined use

of HMOVE has the side effect of making it easier for the contemporary critic or
developer to see how a screen might have been drawn. Whenever that black bar
appears, the HMOVE register has been strobed, usually giving a clue that the
TIA has just moved some graphical object.

22. Email to Bogost, 23 October 2007. Ironically, this attention to detail didn’t extend
to the PAL conversion of the Pitfall! cartridge. The PAL video standard runs at 50
Hz rather than the 60 Hz of NTSC, which means that the Pitfall! timer, a critical
element of the game, runs slower and "20:00" does not correspond to 20 minutes.

7 Star Wars: The Empire Strikes Back

1. That distinction goes to Atari’s coin-op game Shark Jaws, discussed later in this
chapter.

2. Email to Montfort, 24 October 2007.
3. Kent, The Ultimate History of Video Games, 237.
4. A delightful play on this legend is seen in the first music video from the band

Wintergreen, for its 2006 song "When I Wake Up."
5. New York Times, "Atari Parts Are Dumped." See also Jankel and Morton,

Creative Computer Graphics, 138.

6. Actually, only the first official game. A "Star Wars Simulation" had been pro
grammed and was available in 1978: "Written in 14 K bytes of 8080 assembly
language, the program code is offered on Tarbell and CUTS tape." Byte, "Star
Wars Simulation."

7. Email to Montfort, 24 October 2007.
8. Email to Montfort, 5 November 2007.
9. Email to Montfort, 5 November 2007.

10. Bowen, "Musical by-products of Atari 2600 games."
11. New York Times, "Insider Accord in Atari Case."
12. Teiser, interoffice memo.

8 After the Crash

1. Bogost, Persuasive Games, 296. This was one of several examples of a VCS
device that prefigured later videogame developments. Another was the
GameLine modem, allowing the same sort of service that later came to be
offered by the PlayStation Network, Wii Channels, and Xbox Live. Forster, "The
Encyclopedia of Game Machines," 27.

2. For a detailed consideration of the challenges of emulating the VCS, see Vava-
sour, "Back to the Classics." In that article, the developer of the Atari
Anthologyemulator explains how he dealt with one aspect of emulation: "The
Atari 2600 console had 128 different unique colors. The circuits for generating
those colors are hidden inside a custom chip. Rather than guess, I created a
special ROM and downloaded it into my Atari 2600. It was programmed to cycle
through all the possible colors. A bar code on the top of the screen identified
which color was being selected. The result was captured with a PC video card
and the program scanned the captured video, deciphering the bar code and
noting the dominant color that was on the screen with it."

3. Batari Basic is a BASIC language compiler for the Atari VCS, created by Fred
Quimby. It is available at http://www.bataribasic.com.

4. Null, "The 10 Gadgets that Changed the World"; Null, "The 50 Best Tech Products
of All Time"; Bourzac, "Objects of Desire"; Dobbin, "Atari 2600, Raggedy Andy,
Kite Enshrined."

5. Rothman, "Atari 2600."

Afterword on Platform Studies

1. Before Macromedia bought it, Flash was called FutureSplash Animator.

http://www.bataribasic.com/

2. See the Web site http://www.platformstudies.com for more information on
theseries.

http://www.platformstudies.com/

Bibliography

Texts

Aarseth, Espen. "The Game and Its Name: What Is a
Game Auteur?" In Visual Authorship: Creativity and
Intentionality in Media, edited by Torben Kragh
Grodal, Bente Larsen, and Iben Thorving Laursen,
261-269. Copenhagen: Museum Tusculanum Press,
2005.

Adams, Ernest, and Andrew Rollings. Ernest Adams
and Andrew Rollings on Game Design. New York:
New Riders, 2003.

Alexander, Charles P. "Video Games Go Crunch."
Time 122, no. 17, 17 October 1983.
http://www.time.com/time/printout/0,8816,952210,00.ht
ml.
AtariAge. 1998-2008. http://www.atariage.com.

Atarimania. 2003-2008.
http://www.atarimania.com/start.php.

http://www.time.com/time/printout/0,8816,952210,00.html
http://www.atariage.com/
http://www.atarimania.com/start.php

Baer, Ralph H. Videogames: In the Beginning.
Springfield, N.J.: Rolenta Press, 2005.

Berkeley, Edmund C. "Small Robots—Report." April
1956. http://www.blinkenlights
.com/classiccmp/berkeley/report.html.
Bogost, Ian. Persuasive Games: The Expressive
Power of Video Games. Cambridge, Mass.: MIT
Press, 2007.

Bolton, Lee. "Review of Combat." Lee’s Peek and
Poke, 2000. http://leespeekandpoke
.members.easyspace.com/combat.html.
Bourzac, Katherine. "Objects of Desire." Technology
Review, May 2007. http://www
.pcworld.com/article/id,130207-page,1-
c,technology/article.html.
Bowen, Robert. "Musical By-Products of Atari 2600
Games." Form, Culture, and Video Game Criticism
Conference, Princeton University, 6 March 2004.

Bray, John. Innovation and the Communications
Revolution: From the Victorian Pioneers to
Broadband Internet. London: New Riders, 2002.

Buecheler, Christopher. "Haunted House: An Atari
2600 Classic . . . and the True Progenitor of Survival
Horror?" GameSpy, 8 December 2002. http://www
.gamespy.com/articles/490/490366p1.html.

http://www.blinkenlights.com/classiccmp/berkeley/report.html
http://leespeekandpoke.members.easyspace.com/combat.html
http://www.pcworld.com/article/id,130207-page,1-c,technology/article.html
http://www.gamespy.com/articles/490/490366p1.html

Burnham, Van. Supercade: A Visual History of the
Videogame Age 1971-1984. Cambridge, Mass.: MIT
Press, 2003.

Burroughs, Edgar Rice. Tarzan of the Apes. Chicago:
A. C. McClurg, 1914.

Byte. "Star Wars Simulation." Byte 3, no. 10
(November 1978): 194.

Campbell-Kelly, Martin. From Airline Reservations to
Sonic the Hedgehog: A History of the Software
Industry. Cambridge, Mass.: MIT Press, 2003.

Cohen, Scott. Zap!: The Rise and Fall of Atari.
Philadelphia: Xlibris Corp., [2001]. Copyright 1984.

Connick, Jack. ". . . And Then There Was Apple." Call-
A.P.P.L.E, no. 24 (October 1986): 22-27.

Covert, Colin. "Meet David Crane: Video Games
Guru." Hi-Res 1, no. 2 (January 1983): 46.

Davie, Andrew. "Atari Programming for Newbies."
AtariAge.com, 2003. http://www
.atariage.com/forums/index.php?showforum=31.

Debro, Dennis. "Yars_Revenge.asm." 21 September
2005. http://www.bjars.com/
source/Yars_Revenge.asm.

Decuir, Joe. "Three Generations of Game Machine
Architecture." Classic Gaming Expo, Las Vegas, Nev.,

http://www.atariage.com/forums/index.php?showforum=31
http://www.bjars.com/source/Yars_Revenge.asm

14-15 August 1999. http://www.atariarchives.org/dev/
CGEXPO99.html.
DeMaria, Rusel, and Johnny Wilson. High Score!:
The Illustrated History of Electronic Games. New
York: Osborne/McGraw-Hill, 2002.

Dobbin, Ben. "Atari 2600, Raggedy Andy, Kite
Enshrined." ABC News, 8 November 2007.
http://abcnews.go.com/Technology/GadgetGuide/wire
Story?id=3840526.

Dodgson, Harry, Nick Bensema, and Roger Williams.
"Combat.asm." 2002.
http://www.bjars.com/source/Combat.asm.

Evans, Davis S., Andrei Hagiu, and Richard
Schmalensee. Invisible Engines: How Software
Platforms Drive Innovation and Transform Industries.
Cambridge, Mass.: MIT Press, 2006.

Fleming, Jeffrey. "The History of Activision."
Gamasutra, 30 July 2007. http://www
.gamasutra.com/view/feature/1537/the_history_of_acti
vision.php.

Forster, Winnie. The Encyclopedia of Game
Machines. London: Gameplan, 2005.

Galloway, Alexander. Protocol: How Control Exists
after Decentralization. Cambridge, Mass.: MIT Press,
2004.

http://www.atariarchives.org/dev/CGEXPO99.html
http://abcnews.go.com/Technology/GadgetGuide/wireStory?id=3840526
http://www.bjars.com/source/Combat.asm
http://www.gamasutra.com/view/feature/1537/the_history_of_activision.php

GameSpy. "Asteroids Gives Birth to Smack Talk," in
"25 Smartest Moments in Gaming." GameSpy.com,
30 July 2007. http://archive.gamespy.com/articles/
july03/25smartest/index7.shtml.
Goldberg, Marty. "The 2600 Story: Part I." Classic
Gaming/IGN, n.d.
http://classicgaming.gamespy.com/View.php?
view=Articles.Detail&id=401.

Green, Chris. "Pac-Man." Salon.com, 2002.
http://dir.salon.com/story/ent/master
piece/2002/06/17/pac_man/.

Guest, Judith. Ordinary People. New York: Viking,
1976.

Hague, James. Halcyon Days: Interviews with Classic
Computer and Video Game Programmers. Savoy, Ill.:
Dadgum Games, 1997. Free Web version, June 2002,
available online at http://www.dadgum.com/halcyon/.

Hahn, Duane Alan. "Favorite Atari 2600 Games." n.d.
http://www.randomterrain .com/atari-2600-memories-
favorite-games.html.
Harmetz, Aljean. "Hollywood Playing Harder at the
Video Game." New York Times, 2 August 1983, C11.

Herman, Leonard, Jer Horwitz, Steve Kent, and
Skyler Miller. "The History of Video Games."
Gamespot, n.d.

http://archive.gamespy.com/articles/july03/25smartest/index7.shtml
http://classicgaming.gamespy.com/View.php?view=Articles.Detail
http://dir.salon.com/story/ent/masterpiece/2002/06/17/pac_man/
http://www.dadgum.com/halcyon/
http://www.randomterrain.com/atari-2600-memories-favorite-games.html

http://www.gamespot.com/gamespot/features/video/
hov/.

Herman, Leonard. ABC to the VCS: A Directory of
Software for the Atari 2600. 2nd ed. Springfield, N.J.:
Rolenta Press. 2005.

IGN. "Atari 2600, 1977-1984." n. d.
http://classicgaming.gamespy.com/View.php?
view=ConsoleMuseum.Detail&id=8&game=4.

International Arcade Museum. "Jungle King
Videogame by Taito." Killer List of Video Games,
1995-2008. http://www.klov.com/game_detail.php?
game_id=8258.

International Arcade Museum. "Pac-Man Videogame
by Midway." Killer List of Video Games, 1995-2008.
http://www.klov.com/game_detail.php?
game_id=10816.

Jankel, Annabel, and Rocky Morton. Creative
Computer Graphics. Cambridge: Cambridge
University Press, 1984.

Jones, Stephen E. The Meaning of Video Games.
London and New York: Routledge,2008.

Juul, Jesper. Half-Real: Video Games between Real
Rules and Fictional Worlds. Cambridge, Mass.: MIT
Press, 2005.

http://www.gamespot.com/gamespot/features/video/hov/
http://classicgaming.gamespy.com/View.php?view=ConsoleMuseum.Detail
http://www.klov.com/game_detail.php?game_id=8258
http://www.klov.com/game_detail.php?game_id=10816

Kent, Steven L. The Ultimate History of Video Games.
New York: Prima, 2001.

Kittler, Friedrich. Literature, Media, Information
Systems. Ed. John Johnston. New York: Routledge,
1997.

Kirksey, Kirk. Computer Factoids: Tales from the
High-Tech Underbelly. Lincoln, Neb.: iUniverse, 2005.

Kirschenbaum, Matthew. Mechanisms: New Media
and the Forensic Imagination. Cambridge, Mass.: MIT
Press, 2008.

Kohler, Chris. Power-Up: How Japanese Video
Games Gave the World an Extra Life. Indianapolis:
Brady Games, 2004.

Laing, Gordon. Digital Retro. London: Ilex, 2004.

Langberg, Ben. Review of Combat Le Geek, 2003.
http://abscape.org/legeek/r_combat .htm.

Leon, Harmon. "CyberBattle 2000!" DailyRadar.com,
2000. Original site offline, see
http://web.archive.org/web/*/http://www.dailyradar.co
m/features/showbiz_feature_page_84_1.html.
Loftus, Geoffrey R., and Elizabeth F. Loftus. Mind at
Play: The Psychology of Video Games. New York:
Basic Books, 1983.

http://abscape.org/legeek/r_combat.htm
http://web.archive.org/web/
http://www.dailyradar.com/features/showbiz_feature_page_84_1.html

McLuhan, Marshall. "Printing and Social Change."
Vol. 1 of Marshall McLuhan Unbound. Corte Madera,
Calif.: Gingko Press, 2005.

Montfort, Nick. Twisty Little Passages: An Approach
to Interactive Fiction. Cambridge, Mass.: MIT Press,
2003.

Montfort, Nick. "An Atari VCS Curriculum." Grand Text
Auto, 6 July 2004. http://
grandtextauto.org/2004/06/06/an-atari-vcs-curriculum/.

Montfort, Nick. "Combat in Context." Game Studies 6,
no. 1 (2006). http://gamestudies
.org/0601/articles/montfort.
Moritz, Michael. The Little Kingdom: The Private
Story of Apple Computer. New York: William Morrow,
1984.

New York Times. "Atari Parts Are Dumped." 28
September 1983, D4.

New York Times. "Insider Accord In Atari Case." 6
June 1984.

Novak, Jeannie. Game Development Essentials: An
Introduction. Clifton Park, N.Y.: Thomson Delmar,
2004.

Null, Christopher. "The 10 Gadgets that Changed the
World." Wired Blogs, 12 December 2006.

http://grandtextauto.org/2004/06/06/an-atari-vcs-curriculum/
http://gamestudies.org/0601/articles/montfort.

http://www.wired.com/gadgets/miscellaneous/multim
edia/ 2006/12/wiredphotos6.

Null, Christopher. "The 50 Best Tech Products of All
Time." PC World, 2 April 2007.
http://www.pcworld.com/article/id,130207-page,1-
c,technology/article.html.
O’Connor, Frank. Review of CyberBattle 2000.
[Parody review of Combat.] DailyRadar .com, 2000.
Original site offline, see
http://web.archive.org/web/*/http://www
.dailyradar.com/reviews/game_review_693.html.
Perry, Tekla, and Paul Wallich. "Design Case History:
The Atari Video Computer System." IEEE Spectrum
20, no. 3 (1983): 45-51.

Poole, Stephen. Trigger Happy: Videogames and the
Entertainment Revolution. New York: Arcade
Publishing, 2000.

Puzo, Mario. The Godfather. New York: Putnam, 1969.

Robinett, Warren. "Adventure as a Video Game:
Adventure for the Atari 2600." In The Game Design
Reader, ed. Katie Salen and Eric Zimmerman.
Cambridge, Mass.: MIT Press, 2006.

Rothman, Wilson. "Atari 2600." Time, 11 March 2001.
http://www.time.com/time/
magazine/article/0,9171,102027,00.html.

http://www.wired.com/gadgets/miscellaneous/multimedia/2006/12/wiredphotos6
http://www.pcworld.com/article/id,130207-page,1-c,technology/article.html
http://web.archive.org/web/*/http://www.dailyradar.com/reviews/game_review_693.html
http://www.time.com/time/magazine/article/0,9171,102027,00.html

Skelly, Tim. "Tim Skelly’s History of Cinematronics." 1
June 1999. http://www
.dadgum.com/giantlist/archive/cinematronics.html.
Stilphen, Scott. Interview with Howard Scott
Warshaw. 23 April 2005. http://www
.digitpress.com/archives/interview_warshaw.htm.

thegameconsole.com. "A Brief History of the Home
Video Game Console." http://
www.thegameconsole.com.

Teiser, Don. Interoffice memo to John De Santis.
AtariMuseum.com, 14 June 1983.
http://www.atarimuseum.com/articles/atari-nintendo-
deal.htm.

Thomasson, Michael. Interview with David Crane.
Good Deal Games, 2003. http://
www.gooddealgames.com/interviews/int_David_Cran
e.html.
Townsend, Emru. "The 10 Worst Games of All Time."
PC World, 23 October 2006.
http://www.pcworld.com/printable/article/id,127579/pri
ntable.html.
Turkle, Sherry. The Second Self: Computers and the
Human Spirit. New York: Simon & Schuster, 1984.

Uston, Ken. Ken Uston’s Guide to Buying and Beating
the Home Video Games. New York: Signet, 1982.

http://www.dadgum.com/giantlist/archive/cinematronics.html
http://www.digitpress.com/archives/interview_warshaw.htm
http://www.thegameconsole.com/
http://www.atarimuseum.com/articles/atari-nintendo-deal.htm
http://www.gooddealgames.com/interviews/int_David_Crane.html
http://www.pcworld.com/printable/article/id,127579/printable.html

Vavasour, Jeff. "Back to the Classics: Perfecting the
Emulation for Digital Eclipse’s Atari Anthology."
Gamasutra, 13 January 2004.
http://www.gamasutra.com/
features/20050113/vavasour_pfv.htm.

Vavasour, Jeff. "Jeff Vavasour’s Video and Computer
Game Page." 2008. http://www
.vavasour.ca/jeff/games.html.
Wardrip-Fruin, Noah. "Expressive Processing: On
Process-Intensive Literature and Digital Media." Ph.D.
diss, Brown University, 2006.

Watters, Ethan. "The Player." Wired 13, no. 10
(October 2005). http://www.wired
.com/wired/archive/13.10/bushnell_pr.html.
Weesner, Jason. Interview with Howard Scott
Warshaw. 29 May 2007. http://www
.gamecareerguide.com/features/378/on_game_desig
n_the_.php?page=2.

Weiss, Brett. Classic Home Video Games, 1972-1984.
New York: McFarland, 2007.

Whalen, Zach. "Lost in Emulation: World of Difference
in Videogame Typography."
3rd Annual UF Game Studies Conference,
Gainesville, Fla., 1 March 2007.

http://www.gamasutra.com/features/20050113/vavasour_pfv.htm
http://www.vavasour.ca/jeff/games.html
http://www.wired.com/wired/archive/13.10/bushnell_pr.html
http://www.gamecareerguide.com/features/378/on_game_design_the_.php?page=2

Williams, Geoff. "10 Businesses Facing Extinction in
10 Years." Entrepreneur, 19 September 2007.
http://www.entrepreneur.com/extinction/index.html.
Wright, Steve. Stella Programmer’s Guide. 3
December 1979. Reconstructed by Charles Sinnett,
11 June 1993.
http://www.atarihq.com/danb/files/stella.pdf.

Video Games

This section of the bibliography is organized by
author. Whoever was originally credited as author of
a video game when the game was originally released
is considered to be the author for the purposes of this
list. Since policies for attributing authorship vary,
"Atari" is the author of all games published by that
company, while individuals were considered the
authors of Activision games. In all cases, including
when games have a corporate author, we have
indicated, to the best of our knowledge, the people
who programmed, designed, and did other work on
these games.

Amstar Electronics. Phoenix. Arcade. Distributed by
Centauri. 1980.

Atari. Pong. Arcade. Designed by Nolan Bushnell.
Engineered by Al Alcorn. 1972.

Atari. Gran Trak 10. Arcade. 1974.

http://www.entrepreneur.com/extinction/index.html
http://www.atarihq.com/danb/files/stella.pdf

Atari. Touch Me. Arcade. 1974.

Atari. Anti-Aircraft. Arcade. 1975.

Atari. Home Pong. Engineered by Al Alcorn, Bob
Brown, and Harold Lee. 1975.

Atari. Breakout. Arcade. Designed by Nolan Bushnell
and Steve Bristow. Engineered by Gary Waters and
Steve Wozniak. 1976.

Atari. Night Driver. Arcade. Programmed by Dave
Shepperd. Engineered by Ron Milner, Steve Mayer,
and Terry Fowler. 1976.

Atari. Air-Sea Battle. Atari VCS. Programmed by
Larry Kaplan. 1977.

Atari. Basic Math. Atari VCS. Programmed by Gary
Palmer. 1977.

Atari. Blackjack. Atari VCS. Programmed by Bob
Whitehead. 1977.

Atari. Combat. Atari VCS. Programmed by Joe Decuir
and Larry Wagner. 1977.

Atari. Indy 500. Atari VCS. Programmed by Ed Riddle.
1977.

Atari. Star Ship. Atari VCS. Programmed by Bob
Whitehead. 1977.

Atari. Street Racer. Atari VCS. Programmed by Larry
Kaplan. 1977.

Atari. Surround. Atari VCS. Programmed by Alan
Miller. 1977.

Atari. Video Olympics. Atari VCS. Programmed by
Joe Decuir. 1977.

Atari. Breakout. Atari VCS. Programmed by Brad
Stewart. 1978.

Atari. Slot Racers. Atari VCS. Programmed by Warren
Robinett. 1978.

Atari. Asteroids. Arcade. Developed by Ed Logg and
Lyle Rains. 1979.

Atari. Basic Programming. Atari VCS. Programmed
by Warren Robinett. 1979.

Atari. Basketball. Atari VCS. Programmed by Alan
Miller. 1979.

Atari. Lunar Lander. Arcade. 1979.

Atari. Superman. Atari VCS. Programmed by John
Dunn. 1979.

Atari. Video Chess. Atari VCS. Programmed by Larry
Kaplan and Bob Whitehead. 1979.

Atari. Adventure. Atari VCS. Programmed by Warren
Robinett. 1980.

Atari. Battlezone. Arcade. Programmed by Ed
Rotberg. 1980.

Atari. Missile Command. Arcade. 1980.

Atari. Space Invaders. Atari VCS. Programmed by
Rick Maurer. 1980.

Atari. Tempest. Arcade. Programmed by David
Theurer. 1980.

Atari. Asteroids. Atari VCS. Programmed by Brad
Stewart. 1981.

Atari. Defender. Atari VCS. Programmed by Bob
Polaro. 1981.

Atari. Yars’ Revenge. Atari VCS. Programmed by
Howard Scott Warshaw. 1981.

Atari. E.T.: The Extra-Terrestrial. Atari VCS.
Programmed by Howard Scott Warshaw. 1982.

Atari. Haunted House. Atari VCS. Programmed by
James Andreasen. 1982.

Atari. Pac-Man. Atari VCS. Programmed by Tod Frye.
1982.

Atari. Raiders of the Lost Ark. Atari VCS.
Programmed by Howard Scott Warshaw. 1982.

Atari. Realsports Boxing. Atari VCS. 1987.

Atari. Atari Anthology. PlayStation 2 and Xbox. 2004.

Bally Midway. Tron. Arcade. Engineered by Atish
Ghos. Programmed by Bill Adams. Art by George

Gomez. 1982.

Bally Midway. Jr. Pac-Man. Arcade. 1983.

Blizzard Entertainment. Warcraft: Orcs & Humans.
Mac System 7 and PC. 1994.

Blizzard Entertainment. Warcraft III: Reign of Chaos.
Mac OS 9, Mac OS X, and Windows. Designed by
Rob Pardo. 2002.

Blizzard Entertainment. World of Warcraft. Mac OS X
and Windows. 2004-present.
Burness, Jack. Lunar Lander. PDP-11 program.
Commissioned by DEC. 1973.

Bushnell, Nolan. Computer Space. Arcade.
Distributed by Nutting Associates. 1971.

Cartwright, Steve. Barnstorming. Atari VCS.
Activision, 1981.

Cartwright, Steve. Seaquest. Atari VCS. Activision,
1982.

Cartwright, Steve. Frostbite. Atari VCS. Activision,
1983.

Cinematronics. Star Castle. Arcade. 1977.

Cinematronics. Space Wars. Arcade. 1977.

Coleco. Telstar Combat! Dedicated. 1977.

Core Design Ltd. Tomb Raider. Macintosh,
PlayStation, PC, and Sega Saturn. Eidos, 1996.

Crane, David. Freeway. Atari VCS. Activision, 1981.

Crane, David. Grand Prix. Atari VCS. Activision, 1982.

Crane, David. Pitfall! Atari VCS. Activision, 1982.

Crowther, Will, and Don Woods. Adventure. PDP-10
Fortran. 1976.

Data Age. Journey Escape. Atari VCS. 1982.

Davie, Andrew. Qb. Atari VCS. 2003.

DSD/Camelot. Tooth Protectors. For Johnson &
Johnson, 1983.

Electronic Arts. The Godfather: The Game.
PlayStation 2, PlayStation 3, PSP, Xbox, Xbox 360,
Wii, Windows. 2006.

Exus. Video Jogger. Atari VCS. 1987.

Exus. Video Reflex. Atari VCS. 1987.

Garriott, Richard (as Lord British). Ultima I: The First
Age of Darkness. Apple][. Origin Systems, 1980.

Garriott, Richard (as Lord British). Ultima IV: Quest of
the Avatar. Apple][and many other home computers
and consoles. Origin Systems, 1985.

General Computing Corporation. Ms. Pac-Man.
Distributed by Bally Midway, 1982.

Google. Google Earth. Web and downloadable
application with video game Easter egg. 2004-
present.
Gremlin. Blockade. Arcade. 1976.

Hasboro Interactive. Atari Arcade Hits: Volume 1.
Programmed and produced by Jeff Vavasour.
Windows. 1999.

Higinbotham, William. Tennis for Two. Developed at
the Brookhaven National Laboratory. 1958.

id Software. Quake. PC. 1996.

Imagic. Demon Attack. Atari VCS. Programmed by
Rob Fulop. Art by Michael Becker. 1982.

Exidy. Death Race. Arcade. Engineered by Howell
Ivey. 1976.

Jentzsch, Thomas. Thrust. Atari VCS. XYPE. 2003.

Jentzsch, Thomas. Jammed. Atari VCS. XYPE. 2004.

Kaplan, Larry, and David Crane. Kaboom! Atari VCS.
Activision. 1981.

Kee Games. Tank. Arcade. Engineered by Steve
Bristow and Lyle Rains. 1974.

Kee Games. Sprint 2. Arcade. 1976.

Kee Games. Sprint 1. Arcade. 1978.

Kitchen, Garry. Pressure Cooker. Atari VCS.
Activision. 1983.

Kitchen, Steve. Space Shuttle: A Journey into Space.
Atari VCS. Activision. 1983.

Konami. Track & Field. Atari VCS. Programmed by
Jaques Hugon and Seth Lipkin. 1984.

Konami. Dance Dance Revolution. Arcade. 1998.

Konami. Dance Dance Revolution 2nd Mix.
Dreamcast and PlayStation. 1999.

Lebling, Dave, Marc Blanc, Timothy Anderson, and
Bruce Daniels. Zork. PDP-10. 1979.

Lebling, Dave, and Marc Blanc. Zork. Z-Machine.
Infocom. 1980.

Logg, Ed, and Dona Bailey. Centipede. Atari. 1980.

M Network. Kool-Aid Man. Atari VCS and Intellivision.
Mattel Electronics. 1983.

Mattel. Simon. Handheld game. Engineered by Ralph
Baer. 1978.

Mayer, Steve, Dave Shepperd, and Dennis Koble.
Starship 1. Atari. 1977.

Mayfield, Mike. Star Trek. SDS Sigma 7 and HP
minicomputers. 1971.

Maxis. SimCity. PC and Commodore 64.
Programmed by Will Wright. Brøderbund. 1989.

Meier, Sid. Civilization. PC, Macintosh, and other
home computers. MicroProse. 1991.

Microsoft. Excel. Macintosh and Windows application
with video game Easter Egg. 1985.

Midway. Sea Wolf. Arcade. 1976.

Midway. Defender. Arcade. Developed by Eugene
Jarvis. 1980. Midway. Gorf. Arcade. 1981.

Mullich, David. The Prisoner. Apple][. EduWare.
1980.

Mystique. Bachelor Party. Mystique. 1982.

Mystique. Beat ’Em and Eat ’Em. Atari VCS. 1982.

Mystique. Custer’s Revenge. Atari VCS. 1982.

Namco. Galaxian. Arcade. Distributed by Midway.
1979.

Namco. Pac-Man. Arcade. 1980.

Namco. Galaga. Arcade. Distributed by Midway. 1981.

Namco. Rally X. Arcade. 1981.

Neversoft. Tony Hawk Pro Skater. Activision, 1999.

Nintendo. Super Mario Bros. Nintendo Entertainment
System. Designed by Shigeru Miyamoto. 1985.

Nintendo. The Legend of Zelda. Nintendo
Entertainment System. Designed by Shigeru
Miyamoto. 1986.

Nintendo. Super Mario 64. Nintendo 64. 1996.

Nintendo. Wii Sports. Wii. 2006.

Parker Brothers. Amidar. Atari VCS. Programmed by
Ed Temple. 1982.

Parker Brothers. Frogger. Atari VCS. Programmed by
Ed English. 1982.

Parker Brothers. Spider-Man. Atari VCS.
Programmed by Laura Nikolich. 1982.

Parker Brothers. Star Wars: The Empire Strikes Back.
Atari VCS. Programmed by Rex Bradford and Sam
Kjellman. 1982.

Parker Brothers. Sky Skipper. Atari VCS. 1983.

Parker Brothers. Star Wars: Jedi Arena. Atari VCS.
Programmed by Rex Bradford. 1983.

Parker Brothers. Strawberry Shortcake Musical
Matchups. Atari VCS. Programmed by Dawn
Stockbridge. 1983.

Parker Brothers. Super Cobra. Atari VCS.
Programmed by Mike Brodie. 1982.

Rockstar Games. Grand Theft Auto: San Andreas.
PlayStation 2, Windows, and Xbox. Take Two, 2004.

Russell, Steve, Martin Graetz, and Wayne Wiitanen.
Spacewar. PDP-1. Developed at MIT. 1962.

Shaw, Carol. River Raid. Atari VCS. Activision, 1982.

Slocum, Paul. Combat Rock. Atari VCS. 2002.

Slocum, Paul. Synthcart. Atari VCS. 2002.

Spectravision. Chase the Chuck Wagon. Atari VCS.
For Ralston-Purina, 1983.

Taito. Space Invaders. Distributed by Midway, 1978.

Taito. Jungle Hunt. Distributed by Midway, 1982.

Thornton, Adam (as One of the Bruces). Lord of the
Rings: The Fellowship of the Ring. Atari VCS. 2002.

Toy, Michael, Ken Arnold, and Glenn Wichman.
Rogue. Unix, PC, and Macintosh. 1980.

Troutman, Greg. Dark Mage. Atari VCS. 1998.

Twentieth Century Fox. Porky’s. Atari VCS. 1982.

Valve. Half-Life. PC and PlayStation 2. Sierra
Entertainment. 1998.

Valve. Half-Life 2. Windows, Xbox, Xbox 360, and
PlayStation 3. Valve Corporation. 2004.

Vatical Entertainment. Yars’ Revenge. Game Boy
Color. Telegames. 1999.

Velocity Development. Spectre. Peninsula
Gameworks. 1991.

Whitehead, Bob. Boxing. Atari VCS. Activision. 1980.

Whitehead, Bob. Skiing. Atari VCS. Activision. 1980.

Wizard Video Games. Halloween. Atari VCS. 1983.

Wizard Video Games. The Texas Chainsaw
Massacre. Atari VCS. Programmed by Ed Salvo.
1983.

Yob, Gregory. Hunt the Wumpus. BASIC. 1972.

Motion Pictures

Bartel, Paul. Death Race 2000. New World. 1975.

Clark, Bob. Porky’s. Twentieth Century Fox. 1982.

Coppola, Francis Ford. The Godfather. Paramount
Pictures. 1972.

Lisberger, Steven. Tron. Disney. 1982.

Lucas, George. Star Wars. Fox Pictures. 1977.

Lucas, George. Star Wars: The Empire Strikes Back.
Fox Pictures. 1980. Redford, Robert. Ordinary People.
Paramount Pictures. 1980.

Spielberg, Steven. Jaws. Universal Pictures. 1975.

Warshaw, Howard Scott. Once Upon Atari. 2003.

Index

Action-adventure games, 5, 6, 43,48-49, 61. See also
specific action-adventure games
Activision

box art, 100, 101
design centers, 103-104
design philosophies and styles,104-107
founding of, 60, 61, 100, 143
success of, 116, 122
third-party games, 99-101
VCS controllers and, 117
video games for the VCS (see Barnstorming;

Boxing; Freeway; Frostbite; Grand Prix; Kaboom!;
Pitfall!; Pressure Cooker; River Raid; Seaquest;
Skiing; Space Shuttle: A Journey into Space)
Adaptation

of arcade games, 41, 44, 50-51,77-79, 83
of board games, 51
of movies, 15, 67, 119, 123-128,131-133, 138

Adventure (PDP-10 game), 44-46,48, 51, 53, 59, 66
as inspiration for Adventure (VCS game), 15

text adventure form, 43-45
Adventure (VCS game) 5,43-63, 65

bounding boxes, 54-55
catacombs, 58, 59
description of, 16
Easter eggs, 59-61
fog of war, 58-59
handling items in, 53-55
influence of, 6
inspiration for, 15
mazes, 56-58, 68
missile graphics, 52-53
movement, 48-51
multiscreen graphical world, 110
obfuscation of space, 56
position indicator, 51-52
programmer of (see Robinett,Warren)
session length, 112
spatial confusion in, 56-58
sword sprite, 54
TIA ball graphic in, 52
virtual space, 45-48
walls and wall patterns,58-59, 112
wormholes, 56

AI (artificial intelligence), 5,38-40
Air-Sea Battle, 72, 73, 105, 123
Alcorn, Al, 7
Amidar (VCS game), 123

Anderson, Tim, 44
Andreasen, James, 131
Apollo, 122
Apple][, 12, 13, 14, 149
Apple Computer, 12, 13
Arcades, 15, 65, 68. See also specific arcade games

Asteroids, 65, 83, 85, 87
as basis for VCS cartridges, 123
characteristics of, 6-7
market for, 66
one-player, 31
Pac-Man, 67-70, 104
popularity of, 66
porting to Atari VCS, 67, 82-83
two-player, 31

Artificial Intelligence (AI), 5, 38-40
Artist-programmer teams, 102, 103
Assembler programs, 33, 102-103
Asteroids (arcade game) 65, 83, 85, 87
Asteroids (VCS game), 50, 141

bank-switching technique, 87-88
controls, 85
graphics display, 87
high score list, 86-87
lack of color overlays, 85
playing field, 5
sound/music in, 85-86, 88, 96

Atari, 4, 6, 8, 9, 10, 11, 12, 15, 20, 42,43, 45, 49, 59, 60,
61, 62, 65, 73, 75,76, 77, 81, 82, 83, 84, 86, 88, 99,
102,103, 106, 116, 117, 119, 121, 122, 123,124, 128, 129,
131, 133, 140

arcade games and 6, 8, 9, 11, 20, 75,82-83, 84, 86-
88, 121, 125

acquisition by Warner Communications, 11, 124
development of cartridge-based console, 6, 9, 11.

See also Atari VCS
dedicated systems, 9-11, 120, 122. See also Pong

(dedicated home game)
financial collapse of, 127, 133-134
generic term for video games, 4
home computers, 12, 45
influence of midway on, 6-8. See also Bushnell,

Nolan
licensing, 94, 123-124, 125, 126, 129
litigation, 8, 100
management practices and work environment of,

49, 60-61, 62, 73,99-100, 102, 103, 128-129
marketing, sales, and distribution, 10,12, 15, 20,

45, 60, 62, 65, 66, 75-77,81, 82, 89, 99, 101, 119, 121-
122, 123,125-126, 140

video games for the VCS (see Adventure; Air-
Sea Battle; Asteroids; Basic Math; Basic
Programming; Basketball; Blackjack; Breakout;
Combat; Defender; E.T.: The Extra Terrestrial;
Haunted House; Indy 500; Pac-Man; Raiders of the

Lost Ark; Realsports Boxing; Slot Racers; Space
Invaders; Star Ship; Street Racer;
Superman;Surround; Video Chess; Video Olympics;
Yars’ Revenge)
Atari Anthology, 140, 141
Atari Arcade Hits: Volume 1, 40
Atari 2600. See Atari VCS
Atari 2600 Programming for Newbies, 33
Atari Poetry series, 142
Atari VCS, 2, 6, 10, 11, 14

architecture, block diagram of, 26
choice for study, 148
collectible items, 139-140
color palatte, 132
controllers (see Controllers [VCS])
design of, 4, 12-15
earlier games and, 14-15
end of commercial viability, 139-140
flexibility of, 15
game cartridges (see Cartridges [VCS]; specific

Atari cartridges)
graphics display, 28-30, 49-50
influence of, 143
lack of pause button, 92
licensing of games, 124
manual for, 91
microprocessor, 4
overscan period, 30

popularity of, 4
ports, 138
processor selection, 25-26
production run, 137
programming, 21, 28, 32-33, 108
RAM, 21, 23-24, 27, 69, 102, 108, 111
registers, 34, 35, 52-53
release of, 12
reset switch, 34
ROM, 88, 102, 103, 108, 120, 138
storage of programs, 22
success of, 122
TIA (see Television Interface Adapter)
transformative port or adaptation, 23
translation of text adventures, 45-46
use in other domains, 142-143

Avatars, 5, 51, 52
AY-3-8500, 10, 22
AY-3-8700, 22
Bachelor Party, 133
Baer, Ralph, 8-9, 14, 121
Bank switching, 26, 77, 87-88
Barnstorming, 105, 132
Baseball, 121
BASIC, 13, 148, 149
Basic Math, 123
Basketball, 5, 121
Battlezone, 22, 65, 83, 84

Beat ’Em and Eat ’Em, 133
Becker, Michael, 102
Bensema, Nick, 33
Berkeley, Edmund, 38, 39
Bitmaps, 84
Blackjack, 123
Blanc, Marc, 44
Bogost, Ian, 143
Bolter, Jay David, 145
Boxing, 112, 137
Bracy, Bill, 120, 128
Bradford, Rex, 120, 129, 132
Bradley, Mark, 116
Breakout, 13, 24, 41, 85, 92
Brown Box, 8-9
Bushnell, Nolan, 6-9, 84, 120, 125
Campbell-Kelly, Martin, 9, 10
Cartoons, inspiration from, 109-110 Cartridges

(VCS). See also specific video games
advertisements for, 119
as collectible items, 139-140
development of, 101-104
early, 4, 5, 9-11, 123
interface for, 25-26
market for, 122
releases after 1983, 137
rereleases, 140
Stella emulator and, 140-141

third-party developers, 116-117, 122,134, 143 (see
also Activision)
Cartwright, Steve, 104-105, 132
Cathode ray tube (CRT), 27, 34, 142
Centipede, 96
Channel F, 11, 12, 14, 25, 27
Chase the Chuckwagon, 124
Checkers-playing program, 38
Children’s Television Workshop, 124
Chopper Command, 132
Chuck E. Cheese’s Pizza Time Theatres, 8
Cinematronics, 84
Civilization, 59
Codes, 2, 36, 37, 93-94, 103
Code studies, 147
Coin-op games. See Arcades
Coleco, 121
Collision detection, 48, 53, 107
Color, 68, 72, 105-107, 132, 141
Colossal Cave. See Adventure (PDP-10 game)
Combat, 19-42, 123

basis for, 20
billiard hit, 31
boundaries for virtual space, 46
code, 32-34
collision detection, 48
description of, 15-16, 19-20
early form of, 20

game variations, 35-36, 91, 112
Biplane, 19, 20, 22, 29, 31-32, 35,50, 59
code for, 36, 37
Invisible Tank, 19, 31
Invisible Tank-Pong, 19, 31
Jet, 19, 31, 32, 35, 50, 59
Tank, 19-20, 31, 42
Tank-Pong, 19, 31

handicapping adjustment, 32
horizontal symmetry, 20, 47
inspiration for, 11, 65
joystick controllers, 22-23, 34
mazes, 68
number-size registers, 34, 35
one-screen environment, 110
playfield, 20, 47
playfield graphics, 48
prototype, 20
raster graphics, 84
reappearances of, 41-42
ROM, 32, 33
session length, 112
sound in, 96
sprites, 71, 72, 106, 108
Tank and, 50-51
for two players, 31-32
vertical symmetry, 20

Combat Rock, 132, 142

Commodore computers, 12-14, 25, 149
Compilers, 33
Computer Space, 7, 9, 84
Constraints of VCS programming, 4,138, 140-142

RAM, 14, 23, 27, 69-70, 102, 108, 111
ROM, 21, 23, 77, 102, 108, 111
timing and cycle counting, 102, 108,111

Contexts of play and physical spaces
arcades, 6-7, 66
home, 6-11, 81, 112-113
tavern and restaurant, 6-9, 65

Controllers (VCS), 22-26, 117
changing / swapping of, 25
joysticks (see Joysticks)
paddles, 24, 36, 39-40, 51

CPU, 12, 13
Crane, David

Activision and, 60, 99-100, 104
design philosophy and style, 105-107
games developed by, 99
Grand Prix sessions and, 112
Pitfall! development, 108-110
Venetian blinds demo, 132

Crash of 1982-1983, 76, 78, 133
Crowther, Will, 43-45, 56
CRT (cathode ray tube), 27, 34, 142
Cultural references, in fictional game worlds,109
Custer’s Revenge, 133

Cyan Engineering, 12, 25
CyberBattle 2000, 41
Dance Dance Revolution, 139
Daniels, Bruce, 44
Dark Mage, 62
Data Age’s Journey Escape, 124
Davie, Andrew’s Qb, 142
D&D (Dungeons and Dragons), 44, 51
Death Race, 107, 125, 127, 128
Decuir, Joe, 13, 20, 27, 36, 46-47
Defender arcade game, 91, 129
Demon Attack, 96, 102
Design

cost considerations, 4, 12-14
flexibility, 15, 21
simplicity, 41, 138

Digital media studies, levels of, 145-147
Diode-transfer logic (DTL), 12
Disassembler, 33
Documentation. See Manuals and documentation
Dodgson, Harry, 33
Donkey Kong, 104
Dougherty, Brian, 116
Driving games, 21, 65. See also specific driving

games
DSD/Camelot’s Tooth Protectors, 124
DTL (diode-transfer logic), 12
Dungeons and Dragons (D&D), 44, 51

Dunn, John, 123-124
Easter eggs, 59-61, 92
EduWare, 125
E.T: The Extra-Terrestrial, 76, 94, 120,124, 127, 133
Exus’s FootCraz, Video Jogger, and Video Reflex,

138-140
Fairchild Video Entertainment System (VES)

Channel F, 11, 12, 14, 25, 27
F8 CPU, 12

Famicon, 134, 135
Film adaptation games. See Moviebased games
Flanagan, Mary, 142-143
Flashback 2, 41, 42, 141
Flash ROM, 21
Flicker technique, 73
Fog of war, 58
Football, 121
Foot Craz, 138-140
Form/function level, of digital studies,146-147
Frame-buffered graphics systems, 27
Freeway, 105, 107
Frogger (VCS game), 123, 131
Frostbite, 105, 132
Fry, Ben, 149
Frye, Tod, 67, 69, 71, 72, 74-76, 78
Fulop, Rob, 116
Galaga, 96
Galaxian, 65, 96

Galloway, Alexander, 149
Game cartridges. See Cartridges(VCS); specific

video games
Game developers, 60-61, 116. See specific game

developers
"homebrew" programmers, 142
teams of, 101-102

Garriott, Richard, 61
General Computing Company, 77
General Foods, 124
General Instruments, 10, 22
[giantJoystick], 143
The Godfather, 51
Goldberger, Jim, 116
Google Earth, 59
Gorf, 96
Grand Prix, 106, 107, 108, 112
Grand Theft Auto series, 4, 113, 128
Gran Trak 10, 21, 22
Green, Chris, 66
Grubb, Bill, 116
Grusin, Richard, 145-146
Half-Life series, 5, 51
Halloween, 128
Handheld electronic games, 121-122
Haunted House, 6, 59, 110, 111, 131-132
High-definition televisions (HDTVs), 141
High score list, 86-87

Higinbotham, Willy, 8, 9
Home Pong. See Pong (dedicated home game)
Home video games, 8, 14. See also specific home

video games
benefits/risks of, 11
with interchangeable cartridges, 10-11
market for, 66, 133-134
reduced retail commitment to, 76

Horizontal blank period, 28
Horizontal movement technique, 72-73
Horizontal positioning, 50
Horizontal symmetry, of playing field, 47, 69
Horror Games, 125
Illumination, in text adventures, 58
Imagic, 102, 103, 116-117,

video games for the VCS (see Demon Attack)
Indy 500, 106, 123
Intel chips, 12, 13
Intellivision, 14, 96, 132
Interactive fiction. See Text adventures
Interfaces, 25-30

for cartridges, 25-26
direct manipulation concept, 25
Peripheral Interface Adaptor, 14, 23
TIA (see Television Interface Adapter)

Interface studies, 145-146
International Toy Fair, 119, 120
Iser, Wolfgang, 145

Ivey, Howell, 125
Iwatani, Toru, 65
Jakks Pacific, 141
Jammed, 142
Jarvis, Eugene, 129
Java, 148-149
Jentzsch, Thomas’s Jammed and Thrust, 142
Jones, Steven E., 149
Journey Escape, 124
Joysticks, 22-25

Combat, 22-23, 34
[giantJoystick], 143
introduction of, 14
Pitfall!, 113
in "television game" systems, 141

Jr. Pac-Man, 74
Kaboom!, 117
Kaplan, Larry, 38, 60, 72-73, 88, 99
Kassar, Ray, 76, 89, 100, 124, 135
Kee Games, 20
Keenan, Joe, 20
Kernel, 34
Kirschenbaum, Matthew G., 149
Kitchen, Garry, 131
Kjellman, Sam, 128
Koble, Denis, 116
Kojima, Hideo, 61
Konami’s Track & Field, 138

Kool-Aid Man, 124
Lebling, Dave, 44
Legal disputes, 9
The Legend of Zelda, 49, 95

debut of, 127
"lost woods," 58
memory, 87
open-world style, 113
virtual space, 4-5, 46

Leon, Harmon, 41
"Little running man" animation, 108-109
Loftus, Elizabeth F., 6, 145
Loftus, Geoffrey R., 6, 145
Logg, Ed, 85
LOGO, 148
Lord of the Rings: The Fellowship of the Ring (VCS

game), 62
Ludology, 146
Lunar Lander, 31, 83, 85
Magnavox Odyssey, 8, 11, 12, 21, 25

games of, 31
score display, 48

Manchester Mark I, 38
Manuals and documentation, 91, 142

Combat, 19, 36, 37
Pac-Man, 69, 74, 75
Yars’ Revenge, 81

MARIA, 135

Mark III, 134
Mask ROMs, 21, 25
Mattel Electronics, 119, 121. See also Intellivision

video games for the VCS (see Kool-Aid Man)
Maurer, Rick, 73
Mayer, Steve, 12, 20, 25, 26
Mayfield, Mike, 125
Mazes, 56-58, 68
McGee, American, 61
McLuhan, Marshall, 27
Meier, Sid, 61
Merhi, Yucef, 142
Merlin, 121, 122
Microsoft Excel, 59
Microvision, 121
Midway games, 6-9. See also Arcades
Miller, Alan, 5, 60, 99, 100
Milner, Ron, 12, 20, 25, 26
Milton Bradley Company, 121
Miner, Jay, 13, 20, 27, 46-47
Miyamoto, Shigeru, 61
M Network. See Mattel Electronics
Monopoly, 51
MOS Technology

6502 processor, 4, 12, 25, 28, 67
6507 processor, 12-13, 25, 27, 28, 77
6532 Peripheral Interface Adaptor, 14, 23

Motorola chips, 12, 13

Movement
in action-adventure games, 48-49
contiguous through virtual space, 48-51
horizontal, 50, 72-73
in Pitfall!, 107
vertical, 50
in Yars’ Revenge, 88-89

Movie-based games, 15, 123-128. See also specific
movie-based games
Ms. Pac-Man (arcade game), 67
Ms. Pac-Man (VCS game), 74, 77-79, 87
Music, in-game, 131-133

Asteroids, 85-86, 88, 96
Combat, 96
Yars’ Revenge, 95-96

Mystique’s Bachelor Party, Beat ’Em and Eat ’Em,
and Custer’s Revenge, 132-133
Narratology, 146-147
NES (Nintendo Entertainment System), 12, 14, 76,

135
New York University Retro Redux, 143
Night Driver, 65
Nintendo, 134, 137

Famicon, 134, 135
Game Boy Color, 141
Game Watch System, 121
NES, 12, 14, 76, 135

Noyce, Robert, 12

NTSC graphics color palate, 132
Odyssey. See Magnavox Odyssey Opcodes, 103
Oscilloscope display, 8, 14
Overscan period, 30
Pac-Man (arcade game), 67-70, 104

bitmap tiles, 68, 69
cultural context of, 66
mazes, 68, 70
pellets vs. video wafers, 69, 70
success/popularity of, 66, 76
wide appeal of, 66
Zilog Z80 CPU, 67

Pac-Man (VCS game) 65-79
bank-switching technique, 77, 87
bonus points, 74-75
conversion from arcade, 66-67
cultural context of, 78-79
description of, 16
ghosts, 66, 71, 72, 74, 77
graphics display, 68
mazes, 68, 70
naming of, 65
pellets vs. video wafers, 69, 70
playfield graphics, 68, 69
production run, 75-76
RAM, 67, 77
registers, 69
ROM, 67, 77

sales of, 76
Shay’s revision of, 77
sprites, 70-75
success/popularity of, 76
vitamin, 75

Paddle controllers, 24, 36, 39-41, 51
Paddle games, 41. See also specific paddle games
Pager, 107
Parallax scrolling, 131
Parker Brothers, 119-123, 128

video games for the VCS (see Amidar; Frogger;
Sky Skipper; Spider-Man; Star Wars: Jedi Arena; Star
Wars: The Empire Strikes Back; Strawberry
Shortcake Musical Matchups; Super Cobra)
Partial reinforcement, 6, 7-8
PDP-1 Spacewar, 5, 7, 8, 31, 51-52, 84-86
PDP-10 minicomputer

Adventure, 44-46, 48, 51, 53, 59, 66, 112
Zork, 44

Peripheral Interface Adaptor (PIA), 14, 23
Phoenix arcade game, 96, 130
PIA (Peripheral Interface Adaptor), 14,

23
Pitfall!, 6, 29, 107-117

description of, 16
extra lives for players, 104
generation algorithm for screen image, 111-112
graphics details, 114-116

home context, 112-114
horizontal object motion, 114-115
horizontal sections, 114-115
inspiration for, 109-110
joystick controller, 113
jungle generation, 110-112
movement in, 107
player skills/actions, 113-114
programmer (see Crane, David)
ROM, 110
session length, 112-113
sprites, multicolor, 72

Pixels, 28, 29
Platforms, 16, 23, 45, 67, 70, 79, 82, 84, 92, 97, 100,

116-117, 120, 128, 135, 137-138, 140, 141, 147.See also
specific platforms by name

arcade game vs. VCS, 82-83
collection and, 140
concept of, 2, 3-4, 5-6, 147-150
constraints from, 3, 4, 16, 23, 25, 38, 65, 75, 77, 97,

102, 105, 117, 127, 140, 141
influence on creative production, 3, 4, 14, 16, 23,

33, 42, 52-53, 67, 76, 80, 92, 97, 137, 140
influence on genre, 4, 5-6, 16, 43-45, 62, 82, 99,

106-108, 112, 113, 127, 149
layers of, 3, 147
reverse engineering of, 100
software, 2, 84, 148-149

types of, 2-4, 14, 17, 45, 140-141, 147-150
Platform studies, 2-4, 147-148

choice of Atari VCS for, 148
examples of, 149-150
future of, 149-150

PLATO (Programmed Logic for Automatic Teaching
Operations), 149
Playfield graphics, 46-47, 75

forming an arena with, 48
reflection or mirroring, 59
score display, 48

Playfields (VCS)
asymmetric, 69-70
Combat, 20, 47

Pong (arcade game), 5, 7-9, 15, 86, 92 ease of use, 9
home version (see Pong [dedicated home

game])
influence of, 70, 104
launch of, 9
paddle controllers, 24, 51
playing field, 5, 47
success of, 11
TIA ball graphics and, 52-53
volume production of, 9

Pong (dedicated home game), 9-11, 25, 120-121
four-player, 37
paddle controllers, 24, 51
success of, 11

Pong-like games, 20, 37
Pong-on-a-chip, 10
Pong Sports series (Sears), 36, 37
Porky’s (VCS game), 138
Pornographic cartridges, 132-133
Porting and ports (of VCS games)

from arcade games, 66-68, 74, 82-83, 123, 126,
129

to arcade games, 14-15
from computer games, 149
to handhelds, 121-122
to home console, 83
to newer consoles, 128, 133-135

Pressure Cooker, 131
The Prisoner, 125
Processing (programming language), 149
Processors, MOS. See MOS Technology
Programmable read-only memory (PROM), 21
Programmed Logic for Automatic

Teaching Operations (PLATO), 149
Programming language, 2-3
Qb, 142
Quake, 4
“Racing the beam," 4, 28
Raiders of the Lost Ark, 94, 109, 110, 126-127, 131
Rally X, 67
RAM. See Random-access memory
RAM/Input/Output/Timer (RIOT), 14, 23, 77

Random-access memory (RAM)
Channel F, 11, 14
horizontal motion registers, 72
VCS, 21, 23-24, 27, 69, 102, 108, 111

Random scan, 83
Raster graphics, 3, 49, 84
Reactor, 123
Read-only memory (ROM)

mask ROM, 21
sprite graphics and, 71
use in early video games, 13, 20-23
VCS, 88, 102, 103, 108, 120, 138

Realsports Boxing, 137-138
Reas, Casey, 149
Reception/operation level, of digital studies, 145, 146
Relay Moe, 38, 39
Remediation, 146
Resolution devices, lower-powered, 141
Retail sales

of Atari VCS, 4, 6, 122
of handheld electronic games, 121-123
of Pac-Man (VCS game), 76
of Pong (dedicated home game), 10-11, 120-121
of VCS cartridges, 12, 75-76, 91, 99, 122

River Raid, 6, 104
Robinett, Warren

Adventure development, 5, 44-46, 49-56, 58, 65,
92

credit for royalties, 60, 61
game signing, 59-60
Slot Racer development, 43, 46

Robot Pong games, for Video Olympics, 38-40
ROM. See Read-only memory
Ross, Scott, 124
Russell, Steve, 7
Salvo, Ed, 128
Same-screen sprite register, 105
Scrolling, 106
Seaquest, 105, 132
Sears Telegames, 121
Sea Wolf, 86
Sega Master System, 134, 137
Sesame Street games, 124
Shark Jaws, 125, 126
Shaw, Carol, 104
Shay, Nukey, 77
Shooter games, 96. See also specific shooter

games
Side pager, 107
Side scroller, 107
Sigma 7 minicomputer, 125
SimCity, 110-111
Simon, 121
Skiing, 105
Skinning, 105
Sky Skipper, 123

Slocum, Paul, 132, 142
video games for the VCS (see Combat Rock;

Synthcart)
Slot machines, 7
Slot Racers

boundaries for virtual space, 46
collision detection, 48
description of, 43
horizontal symmetry of playing field, 47
mazes, 68
playfield graphics, 48
programmer (see Robinett, Warren)
single screen, 106
sprites, 108
VCS adaptation, 44

SLSA (Society for Literature, Science, and the Arts),
147
Smith, Bob, 88, 116
Smith, Jay, 121
Social context, of video games, 78-79
Society for Literature, Science, and the Arts (SLSA),

147
Soft censorship, 134
Software platforms, 148
Sonar Sub Hunt, 121
Sound. See Music, in-game
Space Invaders (arcade game), 31, 65, 85

licensing, 124

playing field, 5
Space Invaders (VCS game) 66, 86, 96, 104

sprites, 70-71, 72, 73-74
Space shooter games, 65
Space Shuttle: A Journey into Space, 34, 17ind
Spacewar (PDP-1), 5, 7, 8, 31, 51-52, 84-86
Space Wars (Cinematronics), 84
Spectravision’s Chase the Chuckwagon, 124
Spider-Man (VCS game), 123
Sports-themed games, 65
Sprite graphics, 106-107
Sprites, 70-75

colors of, 72
definition of, 70
differences in, 70-72
in early games, 107-108
flicker technique, 73
multicolor, 105-106
on-screen legibility, 108
resetting graphics multiple times, 73-74

Star Castle, 82, 83, 85, 88-92
Star Ship, 123
Star Trek, 125
Star Wars: Jedi Arena, 123
Star Wars: The Empire Strikes Back(VCS game),

119-135
description of, 16-17
development of, 128-129

Imperial walkers, technology for, 128-131
inspiration for, 119-120
licensing and, 123
music, in-game, 131-133
screen image, 115
versions of, 128

Star Wars licenses, 119
Stella, 13. See also Television Interface Adapter

(TIA)
Stella emulator, 140-141
Stella Programmers Guide, 28-30, 33, 52
Stewart, Brad, 85, 88
Strachey, Christopher, 38
Strawberry Shortcake Musical Matchups, 123
Street Racer, 123
Superman, 108, 112, 123-124
Super Mario Bros., 95
Super Mario 64, 4
Supra Cobra, 123
Surround, 123
Synthcart, 142
Tandy TRS-80, 13
Tank (arcade game) 15, 65

influence of, 70
influence on TIA, 51-53
mask ROM, 20-23
playing field, 47
success of, 11, 104

Tarzan, 109
Tavern games, 6-9, 65
Teiser, Don, 135
Television

display characteristics of, 27-30, 83
as display for coin-op games, 8-9, 14
as display for home games, 68, 71, 72, 74, 115

Television cathode ray tube, 27, 34, 142
Television Interface Adapter (TIA)

clock cycles, 28, 36
collision detection, 48, 54
color clock, 28-29, 50, 52
constraints of, 141-142
designers of (see Decuir, Joe; Miner, Jay)
eight-bit registers, 50
flicker technique, 73
frequency generation, 131
game design and, 4, 13, 27
graphics registers, 28, 59, 77, 103, 114-115
horizontal motion registers, 72
paddle controllers and, 24
playfield graphics, 46-48, 70
sprite colors, 72
sprite graphics, 103, 106

Telstar Combat!, 22, 25
Tempest, 83, 91
Tennis, 48
Tennis for Two, 8, 9, 31

Terraforming, 110-111
Text adventures, 43-45. See also Adventure

illumination in, 58
riddle or puzzle solving, 54
rooms in, 46
solving spacial puzzles in, 55-56

Texas Chainsaw Massacre, The, 128
Third-party developers, 116-117, 122, 134, 143. See

also Activision
Thornton, Adam’s Lord of the Rings: The

Fellowshiindp of the Ring (VCS game), 62
Thrust, 142
TIA. See Television Interface Adapter
Tic-tac-toe computer, 38-39
Tomb Raider, 4
Tony Hawk Pro Skater, 51
Tooth Protectors, 124
Touch Me arcade game, 121
Toy industry, video games and, 123
Track & Field, 138
Tron, 124
Troutman, Greg, 62
TRS-80, 14
Turkle, Sherry, 85-86, 145
Twentieth Century Fox’s Porky’s (VCS game), 138
Ultima game series, 49, 51
Ultra Pong Doubles, 37
Vavasour, Jeff, 40-41

VCS. See Atari VCS
VCS-to-arcade port, 94
Vector graphics, 83-84

vs. raster graphics, 84
scaling capabilities, 84-85
typeface characteristics, 86

Vectrex, 121
Vendel, Curt, 141
Venetian blinds demo, 132
Vertical blank period, 28, 29, 33
Vertical positioning, 50, 73
Vertical scroller, 6
Vertical sync, 29
VES. See Fairchild Video Entertainment System
Video Checkers, 15
Video Chess, 38, 88
Video Cube, 15
Video game crash of 1982-1983, 76, 78, 133
Video game design

at Activision, 104-107
at Atari, 4, 12-15
at Imagic, 102

Video game industry
antecedents to, 14-15
arcade games and, 20
home games and, 76

Video games, 14, 15. See also specific video games
ability to play against person, 5

based on promotional characters, 124
capitalizing on films, 94
development practices, 101-104
early, evolution of, 4-6
genres, 5
manufacturers of, 76
movie-based, 123-124
with single-screen playing field, 5
social and cultural context of, 78-79
two-player head-to-head challenges, 5
U.S. market for, 76

Video Jogger, 138
Video Olympics, 5, 15, 36-41, 123
Video Pinball, 37
Video Reflex, 138
Virtual space, 45-48

boundaries for, 46
obfuscation of, 56

Wagner, Larry, 20
Warcraft, 59
Warcraft III: Reign of Chaos, 5
War games, 58, 65. See also specific war games
Warlords, 41
Warner Communication, 11
Warshaw, Howard Scott, 82-83

innovations of, 92, 94, 96-97
video games for the VCS (see Raiders of the

Lost Ark; Yars’ Revenge)

Whitehead, Bob, 60, 88, 99, 103, 137
Williams, Roger, 33
Wizard Video Games’ Halloween and The Texas

Chainsaw Massacre, 127-128
Woods, Don, 43, 44, 56
World of Warcraft, 4, 51
Wozniak, Steve, 12, 13
Wright, Will, 61
XY graphics, 83
Yars’ Revenge (Nintendo Game Boy Color game),

94-95
Yars’ Revenge (VCS game), 81-97

aesthetics, 95
code, 93-94
description of, 16
development of, 82-84
Easter egg, 92
graphic innovations, 89-92, 95
Intellivision controller, 96
kernel, 93-94
movement in, 88-89
naming of, 89
neutral zone, 89, 92-96, 103
Nintendo Game Boy port, 94-95
objective in, 89
pausing, 92
Qotile, 89, 92
ROM, 93, 94

score, 87
shield attacks, 91-92
sound in, 95-96
sprites in, 88-89
vs. Star Castle, 89-91
Zorlon Cannon, 91

Yars’ Revenge: The Qotile Ultimatum, 94
Yars’ Revenge album, 94
Zavagli, Fabrizio, 142
Zelda, 51
Zilog Z80 CPU, 67
Zork, 44-45

	Cover
	Halftitle
	Bookinfo
	Booktitle
	Copyright
	Contents
	Foreword
	Acknowledgment
	Timeline
	Stella 1
	Types of Platforms
	The Roots of Video Gaming
	Cartridge Games for the Home
	Design of the Atari VCS
	Plan of the Book

	Combat 2
	The Use of ROM in Video Games
	Joysticks and Other Controllers
	How the System Computes
	Where VCS Meets TV
	For Two Players
	Combat’s Code
	Game Variations
	Paddles, Video Olympics, and AI
	Revisiting Combat

	Adventure 3
	Text Adventure into Action Adventure
	Virtual Space
	Movement
	I Am a Ball
	Handling Items
	Getting Lost
	The Easter Egg
	The Graphical Turn

	Pac-Man 4
	Chasing the Blinking Coin-Ops
	Bitmaps and Mazes
	Sprites
	VITAMINS
	Bank Switching and Ms. Pac-Man

	Yars’ Revenge 5
	A Yar Is Born
	Through the Wandering Rocks
	Building on Star Castle
	The Code Zone
	Into Fiction; On to the Future

	Pitfall! 6
	Third-Party Games from Activision
	Development Practices
	Design Philosophies and Styles
	Pitfall! Crosses the Road
	Cultural Inspiration
	Jungle Generation
	Adventuring at Home
	Attention to Detail
	Creativity and Control

	Star Wars: The Empire Strikes Back 7
	Bounced from the Toy Store
	License to Program
	Attack of the Movie-Game
	Imperial Technology
	The Players Are Listening
	The Sun Sets on Atari’s Empire

	After the Crash 8
	Playing On

	Afterword on Platform Studies
	Notes
	Bibliography
	Index

