

	[image: cover image]



CONTENTS

Issue #1

Issue #2

Issue #3

Issue #4



	[image: cover image]



CONTENTS

A Brief History of PICO-8

Squashy

Let’s Make Some Music!

Toy Train

Geodezik

Smoke Particle

Welcome to PICO-8!

[image: image]

PICO-8 is a fanzine made by and for PICO-8 users.

The title is used with permission from Lexaloffle Games LLP.

For more information: www.pico-8.com

Contact: @arnaud_debock

Cover Illustration by @dotsukiHARA


A Brief History of PICO-8

Greetings, zine readers. My name is zep, or Joseph White in real life. I’m the author of PICO-8, and was naturally very pleased to find out about this publication! As this is issue #1, I thought it might be fitting to give you a look into how PICO-8 came about in the first place.

Early Influences

It might not come as much of a surprise that I grew up with classic home computers like the Apple IIe, C64 and BBC Micro. Although my family didn’t own one, I spent plenty of time crashing friends’ houses and camping out in my father’s psychology lab, where he used Beebs to control hardware for conducting memory experiments on pigeons. This is how I learned to program -- typing in snippets of code from the BBC manual and trying to construct anything evenly remotely resembling a playable video game.

The feeling of creating programs for those machines is a visceral childhood memory ranking right up there with the smell of the macrocarpa tree I climbed with my first girlfriend, or the metallic taste of blood after crashing my bike on a gravel path when I was 8.

There was something about plotting large colourful pixels and punching in programs on a large clunky keyboard that resonated with my 8-year-old brain. The idea of turning on the computer and seeing anything except a prompt inviting the beginning of a new program would have seemed absurd -- it was meant to be just you, the program, and the inky black canvas.

[image: image]
Look at this little fellow!
Where will he go? What will he do?

Tools and Editors

As I began to set about the task of creating whole games, I didn’t know what kind of tools existed for making graphics, and it didn’t occur to me to look. It became a kind of ritual at the start of each project to improve or rewrite a sprite editor, mapper, sound editor, or any other tools I needed to make each game.

This habit ended up manifesting itself as poido (“Pointy Dough”) -- a general purpose in-house editor created at the beginning of Lexaloffle. It has editing modes for sprites, palettes, models, uv maps, skeletal animation, audio, and later a modular sound synthesizer and voxel modeler.

[image: image]

The feature of poido I am most fond of is quite simple: a collection of mixed resources can be edited and stored in a single file (a “pod”, shown above), eliminating the need to jump between different editors or to manage sprite sheets or individual asset files.This became the model for Voxatron and PICO-8 editors.

LEX500

Fast forward to 2004. I’d been doing Lexaloffle for a couple of years -- released a few puzzle games that didn’t sell very well, and was making small things for fun to stay sane while I did contract work to stay afloat. One of them was a project called LEX500 which was named after the Amiga 500, but was really more like a Beeb. It had a resolution of 240x240, a fixed 16 colour palette, and booted up into a BASIC interpreter environment.

[image: image]

LEX500 remained a bunch of design notes and mockups -- I regarded it at the time as a design exercise. There wasn’t much that separated it from simply firing up a BBC Micro emulator, although it did have an integrated sprite editor. One quirky feature of LEX500 was that sprites would show up directly in the code editor when you referenced them.

Visual Formats

Apart from LEX500, I started playing with other simulated display formats that would give anything made with them their own particular visual style.

The first one was inspired by a combination of Ken Silverman’s Voxlap demo, and some happy ray-tracing accidents that led to a 64x64x32 block of voxels rendered as cubes. I used it to mock up an adventure game called ‘Felix and the Firebird’ (below), which eventually became the basis for Voxatron and Voxatron Story.

[image: image]

The other display was vector based with a 2-channel colour format: one channel for hue and another for intensity. Polygons would be rendered into the channels separately and then converted into RGB at the end of each frame. I was using this for a prototype of Conflux (2008) and Swarm Racer 3000.

Working with these formats in conjunction with complementary tools gave me a taste for creating something that I vaguely understood as platforms or mediums; in the same way that games made for retro computers had a particular look and feel, the underlying platform could be treated as a separate design problem that would drive the identity of games made with them.

Voxatron

Voxatron started in 2010 as a way to do something small with my voxel display. It was initially only a Robotron-style shooter (hence the name), but after a preview trailer blew up on YouTube, I ditched the job I was doing at the time to go all in on the opportunity to expand it to include the original adventure game I had envisioned. Because of the unusual format, I also saw it as a chance to offer a general platform so that other users could try making and sharing their own voxelly work.

These varied goals created a design problem. How should all these parts be presented to the player without awkwardly slotting them into commonly understood game vocabulary? Game modes, mini-games, DLC, mods, levels, user-made levels; each one comes with a set of expectations that messes with how the content is perceived.

This was especially problematic for user-made content.

I wanted authors to have authorship; to be making their own thing on a platform rather than making a level or mod for an existing game. Some work might not even resemble levels or games at all, but toys or curiosities or visual demos.

It wasn’t until half-way through the project that I stumbled into the cartridges analogy. Instead of having all of these separate types of content along with their semantic baggage and expectations, I could instead present them all as cartridges.

The notion of a cartridge could be used in a way that was general enough to capture what was needed: a standard shareable unit of expression.

[image: image]

PICO-8

PICO-8 began as a resurrection of LEX500 in 2012. I needed to add a general scripting component to Voxatron at some stage, but I didn’t have much experience with that kind of thing. If I made LEX500, it would be a good way to get a grip on scripting, and perhaps later on it would become an accessible way to introduce Voxatron users to programming.

Another driving factor was opening the Lexaloffle office to the public several days a week as a shared workspace in the form of Pico Pico Cafe (which PICO-8 was partly named after). One of the early regulars there was Julien Quint, an all-round language theory and implementation guy, who shares my fondness for offbeat side-projects and inspired me to write a first pass at a BASIC interpretor for LEX500.

We started doing a monthly show-and-tell for designers called Picotachi (again with the Pico) and it turned out PICO-8 was a good thing to hack on so that I had something to show when nothing visually accessible was happening with Voxatron.

It gradually became apparent that the two projects had more in common than I had anticipated.

Because Voxatron has a complete set of design tools integrated with it, it seemed natural to do the same for PICO-8, and I could finally see why that was important.

I had been mocking up Voxatron graphics in 2D at a low resolution, and eventually went with 128x128 for PICO-8 so that it would fit into a single slice of Voxatron’s volumetric display, making it a viable host platform. PICO-8 also shared Voxatron’s goals of operating as a platform that could leverage the Lexaloffle BBS for distribution and collaboration. PICO-8 had become a minimal 2D distillation of Voxatron.

[image: image]

An early screenshot of a PICO-8 test when I was trying to estimate how many tiles a game might need to be fun to design but not laborious to implement. It initially had a 160x120 screen with a separate 320x240 text mode layer for the code editor because I thought it wouldn’t be possible to fit a readable text editor in at the native graphics resolution. Perhaps I was right about that.

The first iteration included a BASIC interpretor that was implemented by translating from BASIC to Lua internally in order to use the Lua vm.

I was gradually enamoured by Lua during this process, and ditched the BASIC facade altogether.

Although it was fun to think about what a real PICO-8 might look like, I never felt it would benefit from having an official physical form. Choosing specs was more about encouraging a certain design culture and development experience rather than being realistic or plausible. This was also true of the choice to limit controls to DPAD and 2 buttons, but a nice side effect is that users might be able to build their own PICO-8s with integrated controllers more easily one day.

Fantasy Console

So, I had all of these things going on that pointed at the concept of a “fantasy console”: Cartridges, dev tools, a community platform, display formats and abstracted controls.

But I still couldn’t see it! PICO-8 initially had “disks” and “programs” instead of cartridges -- for a while it was more of a fantasy home computer, which didn’t sit quite right.

And Voxatron was still a game that happened to have carts and an editor included. If I tried to explain to anyone that Voxatron was actually more of a platform than anything else, they would look at me with lifeless eyes. Like a doll’s eyes.

PICO-8 had grown into something that stood by itself, and looking at it next to Voxatron helped to more clearly see both of them. I don’t remember how I made the final step into console territory, but by that stage there were many elements pushing in that direction. It gave Voxatron a good reason to have cartridges, offered a cute and approachable way to present these two otherwise abstract projects, and gave PICO-8 a focused identity to design around. Ideas like having a fixed 32k memory layout mapped onto the cartridge data layout would have been hard to see otherwise.

It might have been much easier if I started with the question “What would it be like to create a fictional console?” and work forwards from that. Instead I went backwards though a forest of fuzzy ideas and at the end realised: oh, these things are just consoles.

-- zep


SQUASHY

Let’s make a game of squash, in the style of the classic game PONG!

[image: image]

Getting around in PICO-8

When you boot PICO-8, you start in Command Mode.

From here, you can press the Escape (or ESC) key on the keyboard to go into Editor Mode, where you can create your games.

When you want to run your game, press ESC to return to Command Mode, and then type run and press RETURN (↵).

To get back to Command Mode again, just press ESC at any time in your game!

[image: image]

When you’re in Command Mode, you can also save your game by typing SAVE GAME-NAME ↵.

To load your game up again when you come back next, type LOAD GAME-NAME ↵.

If you forget what you called it, type DIR ↵ and PICO-8 will give you a list of all the games it knows about!

For this game, you might want to use the name SQUASHY, so to save it you’d type SAVE SQUASHY

Now we’re ready to get started making our first game in PICO-8!

1. A Moving Paddle

Let’s make a bat move about!

Press the ESC key to go into editor mode, and then type this. It’s worth pressing SPACE at the start of lines within IF and FUNCTION blocks, because it makes it much easier to read later. It’s also worth putting in comments -- these are lines that are started with --, and the computer ignores them, so they’re like little notes just for you!


	--PADDLE

	PADX=52

	PADY=122

	PADW=24

	PADH=4

	

	FUNCTION MOVEPADDLE()

	IF BTN(0) THEN

	PADX-=3

	ELSEIF BTN(1) THEN

	PADX+=3

	END

	END

	

	FUNCTION _UPDATE()

	MOVEPADDLE()

	END

	

	FUNCTION _DRAW()

	--CLEAR THE SCREEN

	RECTFILL(0,0, 128,128, 3)

	

	--DRAW THE PADDLE

	RECTFILL(PADX,PADY, PADX+PADW,PADY+PADH, 15)

	END



Hit the ESC key and type RUN. When you press ← or → the bat should move!

See how we’ve made a function called MOVEPADDLE(). That’ll make it easier to find what code does what later.

### The commands we used


	FUNCTION _UPDATE() --THIS GETS CALLED 30 TIMES EVERY SECOND. IT’S WHERE WE WILL UPDATE EVERYTHING IN THE GAME

	

	FUNCTION_DRAW() --THIS IS CALLED AFTER UPDATE IT’S WHERE WE DRAW THE GAME

	

	BTN(B) --CHECK TO SEE IF A BUTTON IS DOWN. THE NUMBER B MEANS THIS:
0 IS ←, 1 IS → , 2 IS ↑ , 3 IS ↓ , 4 IS Z AND 5 IS X

	

	RECTFILL(X1,Y1, X2,Y2, COL) --DRAW A RECTANGLE IN THE COLOUR
X1,Y1 SHOULD BE THE COORDINATES OF THE TOP-LEFT CORNER
X2,X2 SHOULD BE THE BOTTOM-RIGHT CORNER



2. Now let’s add a ball

Press ESC twice to get back to the code editor.

Add some new variables at the top of the file so we know where to put the ball:


	--BALL

	BALLX=64

	BALLY=64

	BALLSIZE=3

	BALLXDIR=5

	BALLYDIR=-3



And then add the following to the _DRAW() function at the bottom of the file:


	FUNCTION_DRAW()

	--CLEAR THE SCREEN

	RECTFILL(0,0, 128,128, 3)

	

	--DRAW THE PADDLE

	RECTFILL(PADX,PADY, PADX+PADW,PADY+PADH, 15)

	

	--DRAW THE BALL

	CIRCFILL(BALLX,BALLY,BALLSIZE,15)

	END



Press ESC to get out of the editor and type RUN to see the ball appear!

### The new commands we used


	CIRCFILL(X,Y,SIZE,COL) --DRAW A CIRCLE WITH A CENTRE AT X,Y



3. A still ball is a boring ball

Press ESC until you’re back to the code editor, then add a new function above the _UPDATE() function:


	FUNCTION MOVEBALL()

	BALLX+=BALLXDIR

	BALLY+=BALLYDIR

	END



And then make sure to call it in _UPDATE() like this:


	FUNCTION_UPDATE()

	MOVEPADDLE()

	MOVEBALL()

	END



RUN what you have, and you should have a ball that flies off to the top-right of the screen.

4. Keep it on the pitch

The ball needs to bounce off the top & sides of the screen. That’s not too complicated -- we just need to check the X and Y positions of the ball.

Remember that the top-left of the screen is 0,0 and the bottom-right of the screen is 127,127.

To make the ball bounce off a side, we just have to flip the sign of the direction of the ball -- if the speed is greater than zero, the ball moves to the right & if the speed is less than zero, the ball moves to the left.

Make a great sound for when the ball hits the edge of the screen; something like this works!

[image: image]

Add a new function to do that after the end of the MOVEBALL() function:


	FUNCTION BOUNCEBALL()

	--LEFT

	IF BALLX < BALLSIZE THEN

	BALLXDIR=-BALLXDIR

	SFX(0)

	END

	

	--RIGHT

	IF BALLX > 128-BALLSIZE THEN

	BALLXDIR=-BALLXDIR

	SFX(0)

	END

	

	--TOP

	IF BALLY < BALLSIZE THEN

	BALLYDIR=-BALLYDIR

	SFX(0)

	END

	END



And then call it from _UPDATE():


	FUNCTION _UPDATE()

	MOVEPADDLE()

	BOUNCEBALL()

	MOVEBALL()

	END



RUN what you have, and you should have a ball bouncing up the screen and then down again until it falls off the bottom of the screen.

### The new commands we used


	SFX(NUMBER) --PLAY A SOUND



5. HIT THAT BALL!

Figuring out whether the ball has hit the paddle is the fiddliest part of the whole game, so bear with it!

We need to check to see if the ball’s x position is within the width of the paddle, and whether the ball has gone into the paddle.

We do that using the special AND word in pico8, the same as you would in English.

Add a BOUNCEPADDLE function after the BOUNCEBALL function:


	--BOUNCE THE BALL OFF THE PADDLE

	FUNCTION BOUNCEPADDLE()

	IF BALLX>=PADX AND BALLX<=PADX+PADW AND BALLY>PADY THEN

	SFX(0)

	BALLYDIR=-BALLYDIR

	END

	END



If you like, you can make a different sound for when the ball hits the paddle and play that instead!

Don’t forget to call it from _UPDATE()


	FUNCTION _UPDATE()

	MOVEPADDLE()

	BOUNCEBALL()

	BOUNCEPADDLE()

	MOVEBALL()

	END



If you RUN that, you should be able to keep the ball in the screen by moving the paddle (though it’ll still disappear when it goes off the bottom!)

6. Can we have our ball back?

When the ball flies off the bottom of the screen, we have to put it back in the middle of the screen. We should really lose a life too -- we’ll get to that later though!

Add a new function, after MOVEBALL():


	FUNCTION LOSEDEADBALL()

	IF BALLY>128 THEN

	SFX(3)

	BALLY=24

	END

	END



Make sure to call it from _UPDATE():


	FUNCTION _UPDATE()

	MOVEPADDLE()

	BOUNCEBALL()

	BOUNCEPADDLE()

	MOVEBALL()

	LOSEDEADBALL()

	END



And make a fun sound for it falling off the screen.

Something like this works well:

[image: image]

When you RUN this, you should have the best part of a game! Now we need to move on to…

7. Scoring!

Obviously as we have a game, we want to be able to have a hi-score! We’ll need a new variable at the top of the program:


	SCORE=0



Then, every time the ball bounces off the paddle, we’ll increase the score. Add a line to the the BOUNCEPADDLE function:


	--BOUNCE THE BALL OFF THE PADDLE

	

	FUNCTION BOUNCEPADDLE()

	IF BALLX>=PADX AND BALLX<=PADX+PADW AND BALLY>PADY THEN

	SFX(0)

	SCORE+=10 --INCREASE THE SCORE ON A HIT!

	BALLYDIR=-BALLYDIR

	END

	END



Then draw the score on the screen by adding a line to the _DRAW() function:


	FUNCTION _DRAW()

	--CLEAR THE SCREEN

	RECTFILL(0,0, 128,128, 3)

	

	--DRAW THE SCORE

	PRINT(SCORE, 12, 6, 15)

	

	--DRAW THE PADDLE

	RECTFILL(PADX,PADY, PADX+PADW,PADY+PADH, 15)

	

	--DRAW THE BALL

	CIRCFILL(BALLX,BALLY,BALLSIZE,15)

	END



RUN that and Bob’s your uncle!

### The new commands we used


	PRINT(MESSAGE,X,Y,COL) --WRITE A MESSAGE ON THE SCREEN. X,Y IS THE BOTTOM-LEFT OF THE FIRST LETTER



8.HEARTS

The next piece of the puzzle is limiting the number of lives the player has. We’ll need to make a sprite (a small picture) to show a heart, so open up the Sprite Editor in PICO-8 and make a sprite like this one:

[image: image]

Remember the sprite number 004 in this case!

Now you can add a new variable at the top of the file: LIVES=3

And the code to draw it in _DRAW():


	FUNCTION _DRAW()

	--CLEAR THE SCREEN

	RECTFILL(0,0, 128,128, 3)

	

	--DRAW THE LIVES

	FOR I=1,LIVES DO

	SPR(004, 90+I*8, 4)

	END

	

	--DRAW THE SCORE

	PRINT(SCORE, 12, 6, 15)

	

	--DRAW THE PADDLE

	RECTFILL(PADX,PADY,PADX+PADW,PADY+PADH, 15)

	

	--DRAW THE BALL

	CIRCFILL(BALLX,BALLY,BALLSIZE,15)

	END



(Make sure the number after spr matches the number of the sprite you made!)

The last bit we need to add loses a life when the ball goes off the bottom, and ends the game when the player runs out of lives.

We need to make the LOSEDEADBALL function a bit more complicated - change it to this:


	FUNCTION LOSEDEADBALL()

	IF BALLY>128-BALLSIZE THEN

	IF LIVES>0 THEN

	--NEXT LIFE

	SFX(3)

	BALLY=24

	LIVES-=1

	ELSE

	--GAME OVER

	BALLYDIR=0

	BALLXDIR=0

	BALLY=64

	END

	END

	END



You can make a fun sound for game over too! Play it with the SFX() function in the section marked game over.

### The new commands we used


	SPR(NUMBER,X,Y) --DRAW A SPRITE ONTO THE SCREEN WITH THE TOP-LEFT AT X,Y



----ALEX MOLE

@TheRealMolen


Let’s Make Some Music!

When working with the PICO-8 tracker, there are two tools you should get yourself comfortable with.

1. The Sfx Editor

[image: image]

With this, you’ll create the individual components of your songs as well as sound effects. Let’s break it down! From top left to bottom right, we got:


		The currently selected sequence.

		The speed the sequence will be played at.

		The loop start and end point.

		The octave a new note will be set at.

		The Instrument a new note will be played with.

		The Volume a new note will be played at.

		With this, you’ll create the individual components of your songs as well as sound effects.



The bottom half shows your notes, with four columns holding eight notes each. Each note holds the following information:


		a letter, indicating the note’s frequency.

		a dot or hash, indicating if it’s a half or full tone.

		a grey number indicating the octave.

		a red number, indicating the instrument.

		a blue number, indicating the volume.

		a dark grey number, indicating an effect.



[image: image]

Notes are entered via a standard musical keyboard layout. The pictured sequence shows all available notes in two octaves.

The corresponding keys are:


		Column 1: 2, 3, 5, 6, 7

		Column 2: q, w, e, r, t, y, u, i

		Column 3: s, d, g, h, j

		Column 4: z, x, c, v, b, n, m



Available effects are:

0 none
1 slide

2 vibrato

3 drop

4 fade_in

5 fade_out

6 arp fast

7 arp slow

1.1 The Sfx Editor-Graph Mode

By clicking on the little icon in the top left, you can switch to the sequencer mode of the sfx editor. The main difference of this mode is that each note is represented graphically instead of numerically, as it would be in a sequencer. Furthermore, you can use your mouse to create notes, adjust note frequencies, octaves, volume and so on.

[image: image]

Personally, I don’t use this mode due to it’s lack of precision over the hard numbers of the tracker, so I can’t tell you much about it.

2. The Pattern Editor

In the pattern editor, you arrange the sequences you made in the sfx editor into songs. All functionalities from the sfx editor are retained in the pattern editor.

[image: image]

Additionally, there is:


		A list of patterns with four colored dots each representing the selected sequences there in.

		The behaviour of the current pattern. Loop start, loop back & stop.

		The individual sequences of the currently selected pattern. Each pattern can hold up to four.



In your code, you select a pattern number to be played with MUSIC(NUMBER). The appropriate pattern will then play once. Depending on the pattern behaviour set in the top right of each pattern, it will then either play the next pattern in sequence, loop the current pattern indefinitely or stop.

You can edit the notes of your sequence in the same way as in the sfx editor.The only functionalities not present in the pattern editor are the speed and loop point settings.

3. Making Music

Now that you know the functionalities of the PICO-8 tracker, you can start making some sick chiptune!

Here is a list of hotkeys that might be useful:


		Play / Stop: Space

		Enter note: q2w3er5t6y7ui zsxdcvgbhnjm

		Delete note: Backspace(Alternatively, set volume to 0)

		Increase / decrease pattern, speed etc. by 4: Shift + left click / right click

		Sfx editor - set all notes to instrument / effect: Shift + click instrument / effect

		Release looping sequence : A



Here’s a couple tips to get you going:


		The drop effect, 3, is good for bassdrums

		The noise instrument, 6, is good for snares and hihats

		A full song should consist of at least an intro, a main loop a and a final, surprising, loop back pattern.

		A continuous loop should consist of at least 4 different patterns to not sound samey. The more, the better!

		When making your music, keep in mind that you only have four channels to play your music+ sound effects on.

		A bass with octave 0-1, a middle to high lead with octave 1-3 and drums are a good basis for a full sound.

		Play around with many combinations of effects, instrument, octaves, volume and frequencies!

		Change the default speed of your songs. You can make sick drum loops by having a high speed and far apart notes.



Playing Music


	PLAYING =0

	MUSIC(0)

	

	FUNCTION _UPDATE()

	END

	

	FUNCTION _DRAW()

	CLS()

	PRINT("TRACK"..PLAYING)

	END



In order to play the music you’ve made inside of your game, all you need to do is type MUSIC(N), where n represents the number of the pattern, shown as element (1) in the Pattern Editor screenshot in section 2 of this tutorial. You can play any pattern you want, just note that empty patterns won’t play anything back, of course. The rest of the code shown is added because PICO-8 would otherwise assume this an empty program and quit it instantly.

To avoid this, we have added a little code to clear the screen and show us which track is playing. Line by line:

PLAYING = 0 is set as a variable that is 0.

MUSIC(0) is called once to start playing our music.

FUNCTION _UPDATE() and FUNCTION _DRAW() cause otherwise our game had nothing to do and wouldn’t run.

You can actually just add both of these functions, leave them empty, and PICO-8 will play your music just fine. The rest is just extra.

CLS() clears the screen every frame, so the code in the next line will only be visible once.

PRINT("TRACK"..PLAYING) writes TRACK to the screen along with the variable PLAYING, which holds our Track number.

Pattern behaviour:

Depending on the pattern behaviour set in the Pattern Editor, shown as element (2) in the before mentioned screenshot, the

MUSIC function will either play the next pattern in sequence once your selected pattern was played in full once if you’ve selected neither loop start, loop back or end. If you’ve selected the third symbol, end, the music will stop after the pattern was played. If you’ve selected loop back, the second symbol, the last pattern before the currently played pattern that had loop start activated will be played next. That way you can loop bigger sets of patterns, by giving the last in sequence a loop back, and the first a loop start. If you set both loop back and loop start on any pattern, it will repeat until it is stopped. That’s it! Now combine this knowledge with other tutorials and make some great PICO-8 programs!

Thanks for reading, I hope I could help you understand trackers a bit better. If you have any more questions, tweet at me @pizzamakesgames.

--Feliks Balzer


[image: image]


TOY TRAIN

I always loved watching my grandpa’s toy trains zip around their tracks, and I’m working on a complicated train game right now, but I decided to try and contribute something simpler to this zine, in the same vein.

This is not so much a game as a little toy - a train that zips around its little track, perfectly negotiating right-angle turns. Very impressive engineering on the part of the toymakers!

[image: image]
The map

We’re going to start with an _INIT() method, which is called whenever you use the RUN command (or CTRL-R, or CMD-R).

Think of it as the setup for the game.


	FUNCTION _INIT()

	CLS()

	SWITCH_STATE=0

	TRAIN={{64,8},{72,8},{80,8}}

	END



The really handy thing about _INIT() is that you can run it again at any time and it will seem like the game was reset. So try to put all your important setup stuff in there. In this case I just have two variables, SWITCH_STATE and TRAIN. SWITCH_STATE just tells me whether the switch for the train is on( 1) or off ( 0). We always want to start with the train off so the player gets the satisfaction of turning it on. And then TRAIN is a table, which is basically a list of lists. Each pair of values is a two-element list, representing a segment of the train. The first value is the X position, and the second value is the Y position. You can see at a glance there will be three segments in this train, but you can add as many as you like. Just be careful where you’re positioning them. We’ll see why in a moment.


	FUNCTION MOVE_SEGMENT(S,DIR)

	SPD=DIR*2

	IF(S[2]==8) --TOP SIDE THEN

	IF(S[ 1]==112) --TOP RIGHT

	THEN

	S[2]+=SPD

	ELSE

	S[1]+=SPD

	END

	ELSE

	IF(S [ 1]==112) --RIGHT SIDE

	THEN

	IF(S [2]==112) --BOTTOM RIGHT

	THEN

	S[1]-=SPD

	ELSE

	S[2]+=SPD

	END

	ELSE

	IF(S[2]==112) --BOTTOM SIDE

	THEN

	IF(S[1]==8) --BOTTOM SIDE

	THEN

	S[2]-=SPD

	ELSE

	S[1]-=SPD

	END

	ELSE

	IF(S[1]==8) --LEFT SIDE

	THEN

	IF(S[2]==8) --TOP LEFT

	THEN

	S[1]+=SPD

	ELSE

	S[2]-=SPD

	END

	END

	END

	END

	END

	END



The MOVE_SEGMENT function will let us advance one segment of the train (which we call S) along the track, taking into account the turns it will need to make along the way.

It does this by checking the co-ordinates of S and deciding whether it needs to move in the X direction or the Y direction at this time. At the beginning, S has a Y/vertical position of 8, and an X/horizontal position NOT matching 112.

Therefore when the SWITCH_STATE is 1, we will be increasing the X position of S by 2 every execution until X reaches 112 (indicating the top-right corner).

When S reaches the top-right corner, its Y/vertical position is 8, and its X/horizontal position is 112. Now we are executing slightly different parts of the code. Instead of increasing the X position (moving right), we must move down. So the train’s Y position is increased, sending it down the screen until it reaches the next corner. We repeat this method for the other three corners, and the result is that the train segment is moved along in one dimension until it reaches a limit, at which point it begins moving in the other dimension, and so on.


	FUNCTION ADV_SWITCH()

	IF(SWITCH_STATE<1) THEN

	SWITCH_STATE+=1

	ELSE

	SWITCH_STATE=0

	END

	END



This function moves the switch to the next position (ADV-ances it). You can use this to manage as many switch states as you like, just by increasing the number in the IF statement. Having 1 in that IF statement allows us to have two switch states, 2 would allow three states, etc. Different states could do very different things!


	FUNCTION MOVE_TRAIN()

	

	FOR T IN ALL(TRAIN)

	DO

	MOVE_SEGMENT(T,SWITCH_STATE)

	END

	

	END



In the MOVE_TRAIN function, we do something very simple: loop through all the train segments, and move each one. FOR T IN ALL(SOME_

LIST) will let you do some operations (inside the DO…END) on each element, temporarily referred to as T. In this case, we’ve already done the hard work, so we’re just going to call that other function, MOVE_SEGMENT, for each. We pass in SWITCH_STATE as well, because if SWITCH_STATE is 0, we don’t want the train moving. Alternatively we could just check SWITCH_STATE and only do the FOR loop if its value is 1, but this way we could potentially add more stuff to the MOVE_SEGMENT function later (see below).


	FUNCTION _UPDATE()

	IF(BTNP(4))

	THEN

	ADV_SWITCH()

	END

	MOVE_TRAIN()

	END



The _UPDATE function, as you have already seen in a previous lesson, is called every time the game updates itself (30 times a second). The BTNP function checks if a given button has *just* been pressed, this very frame, and will wait a few frames before activating again if the button is held down. So you can use it very neatly for switches. Pressing Player 1’s button 4 (usually Z) will call the ADV_SWITCH method shown above, and turn the switch. MOVE_TRAIN is something we want to call whether a button is being pressed or not, so we put that outside the IF…END block.


	FUNCTION DRAW_TRAIN()

	LOCAL LEN=COUNT(TRAIN)

	FOR T=1,LEN

	DO

	IF(T==1)

	THEN

	SPRITE=11

	ELSE

	IF(T==LEN)

	THEN

	SPRITE=13

	ELSE

	SPRITE=12

	END

	END

	SPR(SPRITE,TRAIN[T][1],TRAIN[T][2])

	END

	END



Now we have to actually draw the train. This is usually the easy part, it’s just a little less neat because I wanted to have special starting and ending segments. This time we use a different sort of FOR loop, which starts out with T set to 1, and continues, adding one each time, until T is equal to the length of the TRAIN list. This allows us to not only do things with each segment, but also know where in the list we are easily. In this case, the first segment/element of the list is the last segment of the train, so we want to put a slightly more boring sprite there. The last element of the list is the first segment of the train, so we want to make that one more interesting. And all the ones in between will have the same sprite for each of them.


	FUNCTION DRAW_SWITCH()

	IF(SWITCH_STATE==1)

	THEN

	SSPR(0,16,16,16,56,56,16,16)

	ELSE

	SSPR(64,16,16,16,56,56,16,16)

	END

	END



This function checks the SWITCH_STATE and picks the correct switch image to draw based on that. The switch images are two sprites wide by two sprites high (16x16px). We use the SSPR (‘stretch sprite’) function to make this work easily, although we could also just draw each sprite one by one. The first two arguments tell the program where to start drawing (x=0, y=16 if the switch is on). The next two arguments tell the program how big the area we want to pull from the sprite sheet is. As we saw above, that’s going to be 16 across and 16 down from the original point. Then we have to give an X and Y coordinate to start drawing the sprite, and again the size of the area we want to fill. If you doubled the last two arguments, to (32, 32), you would draw the switch twice as large.

SSPR is fun to play around with, but it’s also useful even if you don’t stretch sprites at all.


	FUNCTION _DRAW()

	MAP(0,0,0,0,16,16)

	DRAW_SWITCH()

	DRAW_TRAIN()

	END



[image: image]

Sprites

This function is called every time _UPDATE is called (unless PICO-8 is running slowly). It uses the MAP function to pull a big section of the map data and display it on screen. The first two arguments are where to start drawing on the PICO-8 screen (where 0,0 is the top left corner), the second pair of arguments tell it where in the map data to start, and the third pair of arguments tell it how many sprites in each direction to draw. One full screen is 16x16 sprites, or 128x128 pixels. So it pulls out 16x16 sprites, based on the map data, and draws them to the screen before doing anything else. Then it calls the DRAW_SWITCH and DRAW_TRAIN functions which we looked at above. (These things are drawn in ordered layers, so if, for example, you wanted to draw a little bridge over the train, you would draw it *after* the train.)

We saw above that MAP draws sprites based on map data, but it might not be clear what is actually going on. The ‘map’ which you can see in the first screenshot is only a long list of numbers, telling the program which sprite to put where. So the first row of sprites in the map data would look something like “02 03 19 18 03 02” and so on. It just goes to the sprite sheet (second screenshot) and picks out the sprite at that position. This is particularly cool because you can at any time change your sprite 02 and you will instantly see the change in all your maps.

Mapping and sprite stuff is a whole thing in itself, but I enjoy playing with it very much. It’s a fun way to be kind of working on your game without getting too technical.

Homework:


		There is at LEAST one way to neaten up the MOVE_SEGMENT function. Try to make it smaller. - Now you’ve neatened something up, make things messier by trying to make the train go the other way.

		You could probably add a third switch position to make the train go, stop, and reverse.

		For serious cool points, try to make the train slow down after it’s turned off, rather than stopping dead. You could even make it ‘chuff’ up to speed when turned on.

		- Change any (or all) of the sprites to change the feel of the game, or just to make it look better! What other things could use the same mechanics but with different visuals?



Thanks for reading! I hope this has been somewhat educational for you. Let me know if you enjoyed this and especially if you made anything sweet using my game as a base! Cheers,

James (PROGRAM_IX)

You can find the original version here: http://www.lexaloffle.com/bbs/?tid=2253


GEODEZIK

@aliceffekt

http://xxiivv.com

[image: image]


	FRAME = 0

	

	FUNCTION _UPDATE()

	FRAME += 1

	

	--LOOP AT F127

	

	IF FRAME > 127 THEN

	FRAME = 0

	END

	END

	

	FUNCTION _DRAW()

	

	RECTFILL(0,0,127,127,0)

	I = 0

	WHILE(I < 20) DO

	E = (I * 0.5)

	LINE(0,(FRAME*E),127-(FRAME*E),0,7)

	LINE((FRAME*E),127,0,(FRAME*E),7)

	LINE(127,127-(FRAME*E),(FRAME*E),127,7)

	LINE(127-(FRAME*E),0,127,127-(FRAME*E),7)

	I += 1

	END

	

	END




SMOKE PARTICLE

By Mozz http://mozz.itch.io/

This tutorial assumes that you know the basics of a PICO-8 program, including the functions _INIT(), _UPDATE() and _DRAW(). Particle effects are the most popular method to create dust and smoke and sparkles in a game: they allow for game worlds to feel more alive.Basically, a particle effects system is one which creates a series of individual particles that have some sort of physics applied to them. In this tutorial, the particles will be a series of circles, that will grow based on the life of the particle, emulating the dissipation of smoke and clouds.

For this effect we will need to write three functions: one to make the smoke; one to move the smoke; and one to draw the smoke.

1. Making the Particle

When you make the smoke you want to think about what variables you might need to have in the future and what you want to have control over when you create the smoke. For this example I decided I wanted to set the initial x-y values, color of the smoke and the starting size of the smoke particle.

These variables go in the function parameters. The rest of the variables in the function will hold the current x and y value of the particle, as well as variables that will control the physics later in the program. the letter D in front of a variable is mathematical shorthand for delta, or “a change in”. So DX would be “the change in X” and will set the velocity of the particle in that direction. This will help us remember what the variable is for later.

Variable T and MAX_T set how long a particle lasts in seconds, WIDTH and WIDTH_FINAL will make the particle start out a certain size and grow over time and ddy is the change in DY, and will simulate acceleration on the Y axis.

We then add the list “S” to a list “SMOKE” that will contain every particle we create in the game. So in the end we will have a list named “SMOKE” that contains a number of lists that holds the data for each instance of smoke particle.


	FUNCTION MAKE_SMOKE(X,Y,INIT_SIZE,COL)

	LOCAL S = {}

	S.X=X

	S.Y=Y

	S.COL=COL

	S.WIDTH = INIT_SIZE

	S.WIDTH_FINAL = INIT_SIZE + RND(3)+1

	S.T=0

	S.MAX_T = 30+RND(10)

	S.DX = (RND(.8).4)

	S.DY = RND(.05)

	S.DDY = .02

	ADD(SMOKE,S)

	RETURN S

	END

	

	FUNCTION _INIT()

	SMOKE = {}

	CURSORX = 50

	CURSORY = 50

	COLOR = 7

	END



2. Moving the particle

Now that we have a function that will add a smoke particle to the game, we need to define how it moves. In MOVE_SMOKE, we will change the X and Y values of the particle based on variables we set when we created it. With each step of MOVE_SMOKE, we will first check to see if the particle has reached its max life, and if it has we remove it from “SMOKE”. Then we grow the width of the particle if we are within 15 steps of the end of its life (not to exceed the WIDTH_FINAL variable). Then we apply the DX and DY values as well as DDY (which stands in for gravity) to future calls of DY.

In _UPDATE I decided just to create a smoke particle each step by calling MAKE_SMOKE, just for testing. The program also check to see if you have pressed one of the arrow keys and changes the “CURSORX” and “CURSORY” values based on the player’s input. We use those values to determine where we create new particles. Color is set randomly when you press “BUTTON 1”.


	FUNCTION MOVE_SMOKE(SP)

	IF (SP.T > SP.MAX_T) THEN

	DEL(SMOKE,SP)

	END

	IF (SP.T > SP.MAX_T15) THEN

	SP.WIDTH +=1

	SP.WIDTH = MIN(SP.WIDTH,SP.WIDTH_FINAL)

	END

	SP.X = SP.X + SP.DX

	SP.Y = SP.Y + SP.DY

	SP.DY= SP.DY + SP.DDY

	SP.T = SP.T + 1

	END

	

	FUNCTION _UPDATE()

	FOREACH(SMOKE, MOVE_SMOKE)

	IF BTN(0,0) THEN CURSORX=1 END

	IF BTN(1,0) THEN CURSORX+=1 END

	IF BTN(2,0) THEN CURSORY-=1 END

	IF BTN(3,0) THEN CURSORY+=1 END

	IF BTN(4,0) THEN COLOR = FLR(RAND(16)) END

	MAKE_SMOKE(CURSORX,CURSORY,RND(4),COLOR)

	END



3. Drawing the particle

Ok, we’ve created a particle and it can move but we will need to get it to draw to the screen before we can see it. The method for this is fairly simple: Each time the _DRAW function is called, FOREACH() will call the function DRAW_SMOKE for each entry in the list “SMOKE”. DRAW_SMOKE will then use the values of the current particle to draw a filled circle at its current x and y values, with its current width and color.


	FUNCTION DRAW_SMOKE(S)

	CIRCFILL(S.X, S.Y,S.WIDTH, S.COL)

	END

	

	FUNCTION _DRAW()

	CLS()

	FOREACH(SMOKE, DRAW_SMOKE)

	END



4. Further Steps

You can now play with different variables to change the effect by increasing the velocity and gravity of spawned particles to create a different feeling. You can also create an emitter that creates different kinds of particles for complicated layered effects. And if you would like the particle to be something more interesting than just a circle, replace CIRCFILL() with SPR() and use your own sprites.

[image: image]

For more examples of what you can do with particles, check out the Advanced Particle System Library, posted by Viza, which you can find through this QR code http://www.lexaloffle.com/bbs/?tid=1920

[image: image]


Welcome to PICO-8!

@terrycavanagh

New to PICO-8? Here are a few carts that are a great place to start:

CELESTE

[image: image]

Author’s comment:

“We used pretty much all our resources for this. 8186/8192 code, the entire spritemap, the entire map, and 63/64 sounds. Let us know what you think!”

PICO-8’s killer app. If you only play one PICO-8 game, make it this one.

http://www.lexaloffle.com/bbs/?tid=2145

Stories at the Dawn

[image: image]

A minimal story platformer with four endings. A great example of what can be done really well in PICO-8’s constraints.

http://www.lexaloffle.com/bbs/?tid=1919

PAT Shooter

[image: image]

Author’s comment:

when asked “What does P.A.T. stand for?”: “Nothing. Actually I was hoping nobody will ask.”

http://www.lexaloffle.com/bbs/?tid=1867

Transdimensional Butterfly

[image: image]

There are loads of carts like this on the BBS, a bit like 90s graphics demos with music. This one, by PICO-8 creator Lexaloffle, is gorgeous, and has a great soundtrack too.

http://www.lexaloffle.com/bbs/?tid=2109

The Tower of Archeos

[image: image]

Author’s comment:

“Reach the 8th floor to fight Archeon.”

A fantastically crafted puzzle game, by the prolific Benjamin Soule (who also wrote PAT Shooter along with several other PICO-8 games).

http://www.lexaloffle.com/bbs/?tid=1907

Tempest

[image: image]

Author’s comment: “Not much of a game yet, but working on a little adventure/sim/survival game. Having a lot of fun!”

Build a shelter and find food to survive. Still a work in progress, but very promising!

http://www.lexaloffle.com/bbs/?tid=2186

WORMWORMWORMWORM

[image: image]

Author’s comment:

“INSPIRED BY DIARY OF UNSPOKEN TRUTHS, ARTIST, AND I, ROBOT BY NIALL, MICHAEL, AND PERSON”

PICO-8 has been a pretty great source for glitch art. This one is particularly good!

http://www.lexaloffle.com/bbs/?tid=2006

mtrx

[image: image]

Author’s comment:

“an endless running painting with noise”

Enjoyed WORM, but found it had too much interaction and vowels? Try jph’s mtrx!

http://www.lexaloffle.com/bbs/?tid=1936

Delia Mute in Grave Grotto

[image: image]

Author’s comment:

“small grid roguelike. each inventory slot can only be used in the direction it is picked up in.”

http://www.lexaloffle.com/bbs/?tid=2166

The Adventures of Jelpi (with Corrupt mode)

[included demo game]

Author’s comment:

“I thought it might be nice to have a glitch monster who pokes random values into core memory -- you have to get out before the level is no longer completable. Although -- there’s always the chance it will poke an exit index into the map right in front of you. Or: a superhero game set in a city riddled with corruption. (wakawaka)”

Everyone with PICO-8 should try this - load up Lexaloffle’s included demo game, The Adventures of Jelpi. Right at the start of code, look for the variable corrupt_mode, and set it to true. How many times you can get across the stage?

[image: image]


Some other cool stuff to check out:

=-=-=-

Stray Shot

http://www.lexaloffle.com/bbs/?tid=1923

Random Sound Generator

http://www.lexaloffle.com/bbs/?tid=1965

Piano Simulator

http://www.lexaloffle.com/bbs/?tid=2208

Thopter Escape

http://www.lexaloffle.com/bbs/?tid=2196

Puzzle Cave:

Raiders of the Lost Potato:

http://www.lexaloffle.com/bbs/?tid=2039

Endless Train

http://www.lexaloffle.com/bbs/?tid=2122

Video Poker

http://www.lexaloffle.com/bbs/?tid=2020

Duangle 2015 intro

http://www.lexaloffle.com/bbs/?tid=1984

Bounce

http://www.lexaloffle.com/bbs/?tid=1947

Sumo Pico

http://www.lexaloffle.com/bbs/?tid=2191

[image: image]
PICO-8



	[image: cover image]



CONTENTS

Hello everyone

Game of Life

3d demo

Shrinking your code

Shodo

Water Waves

Screensaver

PicoJump 

Color palette

[image: image 1image]

PICO-8 is a fanzine made by and for PICO-8 users.

The title is used with permission from Lexaloffle Games LLP.

For more information: www.pico-8.com

Contact: @arnaud_debock

Cover Illustration by @johanvinet

Special thanks to @nerial, @dan_sanderson and @lexaloffle


Hello everyone,

The first Pico-Zine was an incredible, unexpected success. People from all over the world downloaded the PDF and I have had to repeatedly flood my local mailing office with hundreds of paper copies. This is an amazing achievement for the Pico-8 community, both the newcomers and those who shared their knowledge and code.

In Pico-8, there is no real reason to make a distinction between the player, the consumer and the maker. If you can play, you can also make: the source and assets are always a single image you can share and change as much as you want to.

Through its well-thought-out constraints and limits, Pico-8 breaks a lot of frontiers, and that is what is amazing about it. It’s a tool to make games in the largest and most inclusive way possible.

You know what? I have never been very knowledgeable about coding. I messed around with BASIC when I was younger, but since then code has lost most of its appeal to me, it became obfuscated, complicated and not-so-logical. From an outsider’s point of view, code is very similar to magic. It’s an arcane formulae rendering the most amazing interactions and stories. It’s necessarily encrypted, protected and out of reach. It’s the sacred language of an illuminated cast, the developers.

Pico-8 has broken that feeling. For the first time, I have had this amazing ability to “follow the trail” of code, directly and instantaneously. For example, I am able to look at a piece of code made by a well-known developer and change the way a character jumps.

Compared to other game engines, Pico-8 has a very specific philosophy: it’s a “Fantasy console” and a walking utopia of making. This is because of two features : it’s an all-in-one swiss army knife style of game-making (everything is done within the space of the engine, no plug-in, no dependencies) and it’s an extremely shareable format (if you can make you can share). This means that Pico-8 is the best tool to build an open community around a shared knowledge of making for the sake of making. Thanks for reading !

ARNAUD DE BOCK

[image: image 2]
@lucyamorris handheld mockup


GAME OF LIFE

Mathematician John Conway published a description of his “Game of Life” in the October 1970 issue of Scientific American, spawning cellular automata as a field of research. Ever since, Game of Life has been a staple of recreational mathematics and computation. Let’s build one for PICO-8!

The Rules of the Game

The Game of Life takes place on a grid of cells, where each cell is either alive or dead. Given an arrangement of alive cells, the next generation of cells is computed from simple rules.


		A cell has eight neighbors on the grid, including the diagonal directions.

		If an alive cell has either two or three alive neighbors, then the cell survives to the next generation. Otherwise, it becomes a dead cell (due to “starvation” or “overcrowding”).

		If a dead cell has exactly three alive neighbors, then the cell becomes alive in the next generation (“reproduction”). Otherwise, it remains a dead cell.



[image: image 3]
The rules of the Game of Life.

These simple rules produce a wide variety of patterns over multiple generations.

Some patterns, such as the “block,” are stable, and do not change from one generation to the next. Some patterns oscillate over a period, such as the “blinker”. Some patterns repeat themselves but in a different position, giving the appearance of a moving organism.

[image: image 4]
The “block” pattern is stable from one generation to the next.

[image: image 5]
The “blinker” pattern oscillates in place over two generations

Even simple patterns can have unpredictable behavior. The “r-pentomino” starts with five alive cells, then explodes in all directions, refusing to stabilize until 1,103 generations have elapsed.

Storing and Drawing the Board

Let’s start with an implementation that’s easy to understand. We store the current state of the board in a two-dimensional array, where each element is a cell that is either alive (1) or dead (0). We store numbers (instead of, say, Booleans) to make it easy to count a cell’s neighbors by adding up the values.

We need two boards, one to represent the current state and another to represent the next generation. We can represent this as two arrays, and switch which one is considered to be the current board at the end of each generation.

The following code sets up the boards, draws a blinker on the first board, then draws the first board repeatedly:


	ALIVE_COLOR = 7

	WIDTH = 128

	HEIGHT = 128

	

	BOARD_I = 1

	BOARDS = {{},{}}

	

	FOR Y=1,HEIGHT DO

	BOARDS[1][Y] = {}

	BOARDS[2][Y] = {}

	FOR X=1,WIDTH DO

	BOARDS[1][Y][X] = 0

	BOARDS[2][Y][X] = 0

	END

	END

	

	--DRAW A BLINKER

	BOARDS[1][60][64] = 1

	BOARDS[1][61][64] = 1

	BOARDS[1][62][64] = 1

	

	CLS()

	

	WHILE TRUE DO

	FOR Y=1,HEIGHT DO

	FOR X=1,WIDTH DO

	PSET(X-1, Y-1, BOARDS[BOARD_I][Y][X] * ALIVE_COLOR)

	END

	END

	FLIP()

	END



Run this code. A blinker appears, but does not evolve.

The while true loop runs forever. It walks over the entire board and draws a single pixel for each cell at the corresponding location on the screen. The  flip() function call tells PICO-8 to copy its screen data to the actual display.

(When using the _update() and _draw() special functions to implement a game loop, flip() is called automatically after _draw().)

The Next Generation

To calculate the next generation, we iterate over the cells of the current board. For each cell, we count the neighbors by reading from the board array, then set the corresponding cell on the next board according to the rules.

We have a small problem on the edges of the board. Consider what happens when we try to read the top neighbor for a cell on the top edge, like this:


	CELL = BOARDS[BOARD_I][0][1]



PICO-8 arrays have indexes starting at 1, not 0. In PICO-8, when you access an array index out of range, the value is nil. Because boards[board_i][0] is nil , treating that value like an array by trying to access an element ( [1] ) is a runtime error.

In this implementation, we’ll treat the cells past the edges as dead cells. Let’s use a helper function to read cells from the board that returns 0 for coordinates that are out of range:


	FUNCTION GET(BI,X,Y)

	IF ((X < 1) OR (X > WIDTH) OR (Y < 1) OR (Y > HEIGHT)) THEN

	RETURN 0

	END

	RETURN BOARDS[BI][Y][X]

	END



At the end of the while true loop, add the following code to calculate the next generation:


	OTHER_I = (BOARD_I % 2) + 1

	FOR Y=1,HEIGHT DO

	FOR X=1,WIDTH DO

	NEIGHBORS = (

	GET(BOARD_I,X-1,Y-1) +

	GET(BOARD_I,X,Y-1) +

	GET(BOARD_I,X+1,Y-1) +

	GET(BOARD_I,X-1,Y) +

	GET(BOARD_I,X+1,Y) +

	GET(BOARD_I,X-1,Y+1) +

	GET(BOARD_I,X,Y+1) +

	GET(BOARD_I,X+1,Y+1))

	IF ((NEIGHBORS == 3) OR ((BOARDS[BOARD_I][Y][X] == 1) AND NEIGHBORS == 2)) THEN

	BOARDS[OTHER_I][Y][X] = 1

	ELSE

	BOARDS[OTHER_I][Y][X] = 0

	END

	END

	END

	BOARD_I = OTHER_I



board_i is the index of the current board in the boards array, either 1 or 2. other_i is the index of the other board. The expression (board_i % 2) + 1 means “take the remainder of dividing board_i by 2, then add 1,” which does what we want: if board_i is 1, then other_i is 2, and vice versa.

Run this code. The blinker evolves, oscillating between its two states.

For a more interesting display, replace the code that draws the blinker with the following code, then run the program:


	--DRAW AN R PENTOMINO

	BOARDS[1][60][64] = 1

	BOARDS[1][60][65] = 1 BOARDS[1][61][63] = 1

	BOARDS[1][61][64] = 1 BOARDS[1][62][64] = 1



The Line Buffer Method

The implementation above stores two boards and copies the active board to the screen for each iteration. The purpose of the second board is to keep a record of the neighbors around the current cell as we go down the board calculating updates. If we only had one board, changing a cell would interfere with the calculation for the cells immediately beneath and to the right of it. But we don’t need to keep the entire previous board to avoid this. Instead, we could just remember the original state of the previous line and the current line as we walk down the board. This technique uses less memory than storing two boards.

We can save more memory and some time by using the screen itself as storage for the board data. The pset() and pget() functions can set and read pixels on the screen. Combined with the two-line buffer, this technique requires no additional storage, and does not require copying a board array to the screen because updates are written to the screen directly.

Here is a version that uses the line buffer method and writes directly to the screen:


	ALIVE_COLOR = 7

	WIDTH = 128

	HEIGHT = 128

	

	PREV_I = 1

	LINE_I = 2

	LINES = {{}, {}}

	

	CLS()

	

	--DRAW AN R PENTOMINO

	PSET(64,60, ALIVE_COLOR)

	PSET(65,60, ALIVE_COLOR)

	PSET(63,61, ALIVE_COLOR)

	PSET(64,61, ALIVE_COLOR)

	PSET(64,62, ALIVE_COLOR)

	

	FUNCTION GET(X,Y)

	IF ((X < 1) OR (X > WIDTH) OR (Y < 1) OR (Y > HEIGHT)) THEN

	RETURN 0

	END

	RETURN PGET(X,Y) 

	END

	

	FUNCTION GETB(I,X)

	IF ((X < 1) OR (X > WIDTH)) THEN

	RETURN 0

	END

	RETURN LINES[I][X] 

	END

	

	WHILE TRUE DO

	FLIP()

	

	--CLEAR LINE BUFFER

	FOR X=1, WIDTH DO

	LINES[1][X] = 0

	LINES[2][X] = 0

	END

	

	FOR Y=1,HEIGHT DO

	--SWAP LINE BUFFERS

	PREV_I = LINE_I

	LINE_I = (LINE_I % 2) + 1

	

	--COPY CURRENT LINE TO BUFFER

	FOR X=1,WIDTH DO

	LINES[LINE_I][X] = PGET(X,Y)

	END

	

	FOR X=1,WIDTH DO

	NEIGHBORS = (

	GETB(PREV_I,X-1) +

	GETB(PREV_I,X) +

	GETB(PREV_I,X+1) +

	GETB(LINE_I,X-1,Y) +

	GETB(LINE_I,X+1,Y) +

	GET(X-1,Y+1) +

	GET(X,Y+1) +

	GET(X+1,Y+1))

	IF ((NEIGHBORS == ALIVE_COLOR * 3) OR ((PGET(X,Y) == ALIVE_COLOR) AND

	NEIGHBORS == ALIVE_COLOR * 2))

	THEN

	PSET(X,Y,ALIVE_COLOR)

	ELSE

	PSET(X,Y,0)

	END

	END

	END

	END



Notice that because we’re reading cell data directly from the screen, our neighbor count is now expressed as a multiple of alive_color, which happens to be 7 (white). We could tell the get() and (new) getb() functions to convert from the color value returned by pget() to 0 or 1, but that’s CPU time we can save just by using the multiple.

In my unscientific timing tests, I noticed a savings of about 5 seconds over 50 generations with this new method compared to the two-board version.

Toroidal Game Boards?

Our implementation considers the cells beyond the edges to be dead cells. Another option is to have the board “wrap around” as if it were a torus shape, so the cells on the bottom are adjacent to the cells on the top, and the left edge is similarly adjacent to the right edge. In the two-board version, this would be easy to implement with a small modification to the get() function. Give it a try!

[image: image 6]
Try this pattern with a toroidal game board.

More Information

Wikipedia:
https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

The Game of Life wiki:
http://www.conwaylife.com/wiki/Main_Page

My Game of Life for PICO-8, including a built-in map editor:
http://www.lexaloffle.com/bbs/?tid=2158

by dddaaannn (@dan_sanderson)


3d demo

simple 3d demo by @NoahRosamilia


	--HERE IS THE DATA FOR THE 3D MODEL

	--THE FIRST SECTION IS THE 3D LOCATION

	--OF EACH POINT ON THE CUBE, AND THE

	--SECOND SECTION IS THE LINES THAT

	--CONNECT THE POINTS

	CUBE = {{{-1,-1,-1}, --POINTS

	{-1,-1,1},

	{1,-1,1},

	{1,-1,-1},

	{-1,1,-1},

	{-1,1,1},

	{1,1,1},

	{1,1,-1},

	{-0.5,-0.5,-0.5}, --INSIDE

	{-0.5,-0.5,0.5},

	{0.5,-0.5,0.5},

	{0.5,-0.5,-0.5},

	{-0.5,0.5,-0.5},

	{-0.5,0.5,0.5},

	{0.5,0.5,0.5},

	{0.5,0.5,-0.5}},

	{{1,2}, --LINES

	{2,3},

	{3,4},

	{4,1},

	{5,6},

	{6,7},

	{7,8},

	{8,5},

	{1,5},

	{2,6},

	{3,7},

	{4,8},

	{8+1,8+2}, --INSIDE

	{8+2,8+3},

	{8+3,8+4},

	{8+4,8+1},

	{8+5,8+6},

	{8+6,8+7},

	{8+7,8+8},

	{8+8,8+5},

	{8+1,8+5},

	{8+2,8+6},

	{8+3,8+7},

	{8+4,8+8},

	{1,9},

	{2,10},

	{3,11},

	{4,12},

	{5,13},

	{6,14},

	{7,15},

	{8,16}}}

	

	FUNCTION _INIT()

	CAM = {0,0,-2.5} --INITIALISE THE CAMERA POSITION

	MULT = 64 --VIEW MULTIPLIER

	

	A = FLR(RND(3))+1 --ANGLE FOR RANDOM ROTATION

	T = FLR(RND(50))+25 --TIME UNTIL NEXT ANGLE CHANGE

	END

	

	FUNCTION _UPDATE()

	--HANDLE THE INPUTS

	IF BTN(0) THEN CAM[1] -= 0.1 END

	IF BTN(1) THEN CAM[1] += 0.1 END

	IF BTN(2) THEN CAM[2] += 0.1 END

	IF BTN(3) THEN CAM[2] -= 0.1 END

	IF BTN(4) THEN CAM[3] -= 0.1 END

	IF BTN(5) THEN CAM[3] += 0.1 END

	T -= 1 --DECREASE TIME UNTIL NEXT ANGLE CHANGE

	IF T <= 0 THEN --IF T IS 0 THEN CHANGE THE RANDOM ANGLE AND RESTART THE TIMER

	T = FLR(RND(50))+25 --RESTART TIMER

	A = FLR(RND(3))+1 --UPDATE ANGLE

	END

	CUBE = ROTATE_SHAPE(CUBE,A,0.01) --ROTATE OUR CUBE

	END

	

	FUNCTION _DRAW()

	CLS() --CLEAR THE SCREEN

	PRINT("T="..T,0,6*0) --PRINT TIME UNTIL ANGLE CHANGE

	PRINT("X="..CAM[1],0,6*1) --PRINT X, Y, AND Z LOCATION OF THE CAMERA

	PRINT("Y="..CAM[2],0,6*2)

	PRINT("Z="..CAM[3],0,6*3)

	DRAW_SHAPE(CUBE) --DRAW THE CUBE

	END

	

	FUNCTION DRAW_SHAPE(S,C)

	FOR L IN ALL(S[2]) DO --FOR EACH LINE IN THE SHAPE...

	DRAW_LINE(S[1][L[1]], S[1][L[2]], C) --DRAW THE LINE

	END

	END

	

	FUNCTION DRAW_LINE(P1,P2,C)

	X0, Y0 = PROJECT(P1) --GET THE 2D LOCATION OF THE 3D POINTS...

	X1, Y1 = PROJECT(P2)

	LINE(X0, Y0, X1, Y1, C OR 11) --AND DRAW A LINE BETWEEN THEM

	END

	

	FUNCTION DRAW_POINT(P,C)

	X, Y = PROJECT(P) --GET THE 2D LOCATION OF THE 3D POINT...

	PSET(X, Y, C OR 11) --AND DRAW THE POINT

	END

	

	FUNCTION PROJECT(P)

	X = (P[1]-CAM[1])*MULT/(P[3]-CAM[3]) + 127/2

	--CALCULATE X AND CENTER IT

	Y = -(P[2]-CAM[2])*MULT/(P[3]-CAM[3]) + 127/2

	--CALCULATE Y AND CENTER IT

	RETURN X, Y --RETURN THE TWO POINTS

	END

	

	FUNCTION TRANSLATE_SHAPE(S,T)

	NS = {{},S[2]}

	--COPY THE SHAPE, BUT ZERO OUT THE POINTS AND KEEP THE LINES

	FOR P IN ALL(S[1]) DO --FOR EACH POINT IN THE ORIGINAL SHAPE...

	ADD(NS[1],{P[1]+T[1],P[2]+T[2],P[3]+T[3]})

	--ADD THE DISPLACEMENT TO THE POINT AND ADD IT TO OUR NEW SHAPE

	END

	RETURN NS --RETURN THE NEW SHAPE

	END

	

	FUNCTION ROTATE_SHAPE(S,A,R)

	NS = {{},S[2]}

	--COPY THE SHAPE, BUT ZERO OUT THE POINTS AND KEEP THE LINES

	FOR P IN ALL(S[1]) DO --FOR EACH POINT IN THE ORIGINAL SHAPE...

	ADD(NS[1], ROTATE_POINT(P,A,R))

	--ROTATE THE POINT AND ADD IT TO THE NEW SHAPE

	END

	RETURN NS --RETURN THE NEW SHAPE

	END

	

	FUNCTION ROTATE_POINT(P,A,R)

	--FIGURE OUT WHICH AXIS WE’RE ROTATING ON

	IF A==1 THEN

	X,Y,Z = 3,2,1

	ELSEIF A==2 THEN

	X,Y,Z = 1,3,2

	ELSEIF A==3 THEN

	X,Y,Z = 1,2,3

	END

	_X = COS(R)*(P[X]) - SIN(R) * (P[Y])

	--CALCULATE THE NEW X LOCATION

	_Y = SIN(R)*(P[X]) + COS(R) * (P[Y])

	--CALCULATE THE NEW Y LOCATION

	NP = {}

	--MAKE NEW POINT AND ASSIGN THE NEW X AND Y TO THE CORRECT AXES

	NP[X] = _X

	NP[Y] = _Y

	NP[Z] = P[Z]

	RETURN NP --RETURN NEW POINT

	END

	

	



[image: image 78]


SHRINKING YOUR CODE

Here are some tips to help you squeeze every last byte out of PICO-8. Not only will this allow you to fit more code in your game, but it will reduce the amount of scrolling you have to do in the PICO-8 editor.

a word on token-counting

Starting with version 0.1.1, PICO-8 uses a token-counting system rather than simply counting characters. This allows developers to fit more code on a cartridge, but it’s also a little bit complicated. Here’s how it works.

First, PICO-8 counts tokens. Variables, functions, and operators (=, +, -, [, ], ( , ) , etc.) are one token each. Strings are also one token. Comments are ignored. Each cartridge has room for 8192 tokens.

There is also a limit on the number of characters (32768), but tokens are usually the bottleneck.

 Note: You don’t have to use the default PICO-8 editor. You can load your `.p8` file in any text editor you like!

use PICO-8’s built-in shorthands

if


	--7 TOKENS, 31 CHARACTERS

	IF VALUE THEN

	DO_THING()

	END

	

	--7 TOKENS, 20 CHARACTERS

	IF(VALUE) DO_THING()

	

	--SAVINGS: 0 TOKENS, 11 CHARACTERS



foreach


	--13 TOKENS, 43 CHARACTERS

	FOR E IN ALL(ENEMIES) DO

	TAKE_DAMAGE(E)

	END

	

	--6 TOKENS, 29 CHARACTERS

	FOREACH(ENEMIES, TAKE_DAMAGE)

	

	--SAVINGS: 7 TOKENS, 14 CHARACTERS



operator


	--6 TOKENS, 19 CHARACTERS

	SIZE = COUNT(TABLE)

	

	--4 TOKENS, 13 CHARACTERS

	SIZE = #TABLE

	

	--SAVINGS: 2 TOKENS, 6 CHARACTERS

	math

	--5 TOKENS, 9 CHARACTERS

	A = A + 3

	

	--3 TOKENS, 6 CHARACTERS

	A += 3

	

	--SAVINGS: 2 TOKENS, 3 CHARACTERS



use single-character variable and function names

You can reduce your character count by using shorter variable names, at the cost of readability. Note that variable names take up the same number of tokens regardless of length.


	--3 TOKENS, 20 CHARACTERS

	LONGVARIABLENAME = 3

	

	--3 TOKENS, 5 CHARACTERS

	A = 3

	

	--SAVINGS: 0 TOKENS, 15 CHARACTERS



If you run out of letters, you can also use an underscore (_) as a single-character name. After that, you’ll have to start using two characters per name.

reduce spaces

Although it looks pretty, you don’t need to include spaces between operators in Lua.


	--3 TOKENS, 5 CHARACTERS

	A = 3

	

	--3 TOKENS, 3 CHARACTERS

	A=3

	

	--SAVINGS: 0 TOKENS, 2 CHARACTERS



Similarly, you can save on characters (at the cost of readability) by removing indentations.

Since grouping symbols also count as operators in Lua, spaces before and after grouping symbols can be omitted.

For example, you don’t need spaces after the parentheses in a PICO-8 shorthand if:


	--7 TOKENS, 20 CHARACTERS

	IF(VALUE) DO_THING()

	

	--7 TOKENS, 19 CHARACTERS

	IF(VALUE)DO_THING()

	

	--SAVINGS: 0 TOKENS, 1 CHARACTER



remove comments

Comments don’t use up any tokens, but they still count as characters! Remove them to gain some space.

set constants

If there’s a particular value or function you find yourself using a lot, you can assign it to a single-character variable and save characters every time you refer to it.

Initially, this will cost you an additional 3 tokens, but you will save characters over the course of your program.


	--COSTS 3 TOKENS, BUT SAVES 7 CHARACTERS EVERY TIME RECTFILL IS USED

	R = RECTFILL

	

	T = TRUE

	F = FALSE

	--ETC.



use multiple returns

You can return more than 1 value from a function by separating them by commas.


	FUNCTION MD(A, B)

	RETURN A * B, A / B

	END



In certain situations, this can allow you to call one function instead of two. You can also choose how many of these values you want to use.


	--TAKE BOTH VALUES

	A, B = MD(8, 4)

	

	--TAKE ONLY ONE VALUE

	A = MD(8, 4)



If you’re calling a function with multiple returns as an argument to another function (or as part of a `return` statement), it will automatically expand to use all its return values. You can prevent this by surrounding it with parentheses.


	--CALLS F WITH 3 ARGUMENTS: THE 2 VALUES RETURNED BY MD, AND THE CONSTANT 3

	F(MD(8, 4), 3)

	

	--CALLS F WITH 2 ARGUMENTS: THE FIRST VALUE RETURNED BY MD, AND THE CONSTANT 3

	F((MD(8, 4)), 3)



don’t use parentheses for strings or tables

If you’re passing a string or table to a function, the parentheses are optional.


	--4 TOKENS, 15 CHARACTERS

	PRINT(“STRING”)

	

	--2 TOKENS, 13 CHARACTERS

	PRINT”STRING”

	

	--SAVINGS: 2 TOKENS, 2 CHARACTERS



Note that this only works if the string or table is the only argument to the function.

take advantage of logic (and/or)

and returns the left argument if it is false (or nil). Otherwise, it returns the right argument.

or returns the left argument if it is not false (or nil).

Otherwise, it returns the right argument.

You can use these in conjunction to create a ternary operator.


	--ONLY OPEN LOCK IF MULTIPLE CONDITIONS ARE SATISFIED

	LOCK_OPEN = HAS_KEY AND COLLIDE(PLAYER, CHEST)

	

	--USE DEFAULT VALUE FOR VARIABLE

	NAME = PLAYER_NAME OR “JOE”

	

	--WILL PRINT “DEAD” IF DEAD, “ALIVE” OTHERWISE

	PRINT(DEAD AND “DEAD” OR “ALIVE”)

	

	--SETS SPEED

	SPEED = (FALLING AND -1 OR 1) * ACCELERATION

	

	--YOU CAN DO IT FOR FUNCTIONS TOO!

	(FROZEN AND THAW OR MOVE)()

	

	--DON’T FORGET ABOUT NOT!

	STAND_STILL = NOT MOVING



- Jonathan Stoler @jonstoler


SHODO

@oinariman

I introduce a painting tool that I made with PICO-8, Shodo (書道). This is a demake of the 80’s Macintosh software, Mac 書道 (MacCalligraphy in U.S.) that simulates Japanese traditional ink-dipped brush calligraphy. Since you cannot use a mouse with PICO-8 when it runs a program, it may appear to be ridiculous to imitate brush drawings using only D-pad and AB buttons. However, it can draw brush-like lines unexpectedly well.

In this article, I describe how to implement the brushlike line drawings, and the memory processing needed to make a painting tool.

[image: image 9]

The brush movements

To draw lines that dynamically change their thickness, I added inertia to the brush. When you press an arrow key, the brush will move in the direction. When you release the key, the brush will gradually slow its speed, and then will stop. Pressing the Z button will cause the line to grow thick.

The line will decrease its thickness after you release the button. Operating these controls at the same time will allows you to draw brushlike lines.

[image: image 10]

The memory processing

Painting tool must save its drawing data somewhere in the memory. Because the PICO-8’s screen resolution is 128 x 128, we need to find space to store 128 x 128 = 16,384 pixels. Although you may save this data in a Lua array, this is not recommended idea.

I think that it will cause complications and run slowly. So, I use memset() and memcpy() . These PICO-8 API functions allow you to access continuous memories immediately.

The space to save your picture

According to PICO-8.txt, memset() and memcpy() may only access the 32k memory area called “base ram.” The list below from PICO-8.txt describes the layout of the base ram.


	0X0 GFX

	0X1000 GFX2/MAP2 (SHARED)

	0X2000 MAP

	0X3000 GFX_PROPS

	0X3100 SONG

	0X3200 SFX

	0X4300 USERDEFINED

	0X5F00 DRAW STATE [,CART DATA] (192 BYTES INCL. UNUSED)

	0X5FC0 (RESERVED FOR PERSISTENT DATA IN DEVELOPMENT)

	0X6000 SCREEN (8K)



The area that begins with 0x4300 is the “user-defined” area. That is what programmers can use freely. The area occupies 896 bytes (0x4300 to 0x5eff). Because the PICO-8’s color format is 2 pixels per byte, we need 16,384 / 2 = 8,192 bytes (4 kilobytes) of memory area to save all of the pixels on the screen.

The userdefined area is not sufficient at all. So, I use the area from 0x1000 to 0x2fff. This area is basically for sprites and maps copied from a cart. I don’t need it because Shodo uses just five sprites, and the first gfx area (from 0x0 to 0x0fff) has enough memory to store them.

[image: image 11]
The sprites used in Shodo

The screen updating

I named the 4k area from 0x1000 “paper area.” PICO-8 displays the pixel data in the “screen area” (beginning at 0x6000) to the screen. So, in order to display the userdrawn picture, we should just copy the data that is stored in the paper area to the screen area.

The list below is the procedure to update the screen in the _draw() function which is called every 1/30 seconds.


		Copy whole data in the paper area to the screen area (using memcpy())

		Add the changes made by the user to the screen

		Copy all of the data in the screen area to the paper area (using memcpy())

		Draw an image of a brush on the screen



[image: image 12]

In order to keep the only user-drawn content in the paper area, it is important to follow these instructions in the order in which they are listed.

The entire program appears below. It’s not very long or complicated. I didn’t implement any undo/redo functionality or eraser tool to respect the Japanese shodo tradition. However, it might be fun to add these things or a color palette.

Ryosuke Mihara


	--SHODO 1.0.1

	--BY RYOSUKE MIHARA

	

	--BRUSH ATTRIBUTES

	--

	--X  : X-COORDINATE

	--Y  : Y-COORDINATE

	--VX : X COMPONENT OF VELOCITY

	--VY : Y COMPONENT OF VELOCITY

	--DOWN : WHEN TRUE, THE BRUSH IS PUT DOWN TO THE PAPER

	--R : BRUSH THICKNESS

	BRUSH = {}

	BRUSH.X = 64

	BRUSH.Y = 64

	BRUSH.VX = 0

	BRUSH.VY = 0

	BRUSH.DOWN = FALSE

	BRUSH.R = 0

	

	--BRUSH CONSTANTS

	--

	--BRUSH_ACC : ACCELERATION

	--BRUSH_BRAKE : BRAKE VALUE

	--BRUSH_MUL : SPEED MAGNIFICATION WHEN THE BRUSH IS DOWN

	--BRUSH_RMAX : MAXIMUM THICKNESS

	--BRUSH_RACC : ACCERELATION OF THICKNESS CHANGES

	BRUSH_ACC = 0.175

	BRUSH_BRAKE =- 0.1

	BRUSH_MUL = 0.65

	BRUSH_RMAX = 3

	BRUSH_RACC = 0.2

	

	--PAPER ATTRIBUTES AND CONSTANTS

	PAPER = {}

	PAPER.Y = 0

	PAPER.VY = 0

	PAPER_INIT_VY = 5

	PAPER_ACC = 0.3

	----

	

	FUNCTION REPLACE_PAPER ()

	IF PAPER.Y > 0 THEN

	RECTFILL ( 0 , 0 , 127 , 127 , 7 )

	LOCAL Y = FLR (PAPER.Y)

	MEMCPY ( 0 X6000, 0 X1000 + Y * 64 , 64 * ( 128 - Y))

	LINE ( 0 , 127 - Y - 1 , 127 , 127 - Y - 1 , 6 )

	

	PAPER.Y += PAPER.VY

	PAPER.VY += PAPER_ACC

	IF PAPER.Y >= 127 THEN

	MEMSET ( 0 X1000, 0 X0077, 128 * 64 )

	PAPER.Y = 0

	END

	END

	END

	

	FUNCTION DRAW_BRUSH ()

	IF BRUSH.DOWN THEN

	SPR ( 3 ,BRUSH.X,BRUSH.Y - 23 , 1 , 3 )

	SPR ( 2 ,BRUSH.X,BRUSH.Y)

	ELSE

	SPR ( 3 ,BRUSH.X,BRUSH.Y - 24 , 1 , 3 )

	SPR ( 1 ,BRUSH.X,BRUSH.Y)

	END

	END

	

	FUNCTION DRAW_LINE ()

	IF BRUSH.R > 0 THEN

	CIRCFILL (BRUSH.X + 4 ,BRUSH.Y + 6 ,BRUSH.R, 0 )

	END

	END

	

	----

	FUNCTION MOVE_BRUSH ()

	--WHEN THE BRUSH IS PUT DOWN TO THE PAPER, SLOW ITS SPEED

	LOCAL MUL = 1

	IF BRUSH.DOWN THEN

	MUL = BRUSH_MUL

	END

	

	BRUSH.X += BRUSH.VX * MUL

	BRUSH.Y += BRUSH.VY * MUL

	

	--BRAKE THE BRUSH

	--STOP THE BRUSH WHEN ITS X/Y COMPONENT OF VELOCITY IS INVERTED

	LOCAL PREV

	IF BRUSH.VX ~= 0 THEN

	PREV = BRUSH.VX

	BRUSH.VX += BRUSH.VX * BRUSH_BRAKE

	IF PREV * BRUSH.VX < 0 THEN BRUSH.VX = 0 END

	END

	IF BRUSH.VY ~= 0 THEN

	PREV = BRUSH.VY

	BRUSH.VY += BRUSH.VY * BRUSH_BRAKE

	IF PREV * BRUSH.VY < 0 THEN BRUSH.VY = 0 END

	END

	

	--STOP THE BRUSH WHEN IT REACHES THE EDGE OF THE SCREEN

	IF BRUSH.X <- 4 THEN BRUSH.X =- 4 END

	IF BRUSH.X > 123 THEN BRUSH.X = 123 END

	IF BRUSH.Y <- 6 THEN BRUSH.Y =- 6 END

	IF BRUSH.Y > 123 THEN BRUSH.Y = 123 END

	END

	

	FUNCTION UPDATE_LINE_WIDTH ()

	IF BRUSH.DOWN THEN

	BRUSH.R += BRUSH_RACC

	ELSE

	BRUSH.R -= BRUSH_RACC

	END

	

	IF BRUSH.R < 0 THEN BRUSH.R = 0 END

	IF BRUSH.R > BRUSH_RMAX THEN BRUSH.R = BRUSH_RMAX END 

	END

	

	----

	FUNCTION INPUT ()

	BRUSH.DOWN = BTN ( 4 )

	IF BTN ( 0 ) THEN BRUSH.VX -= BRUSH_ACC END

	IF BTN ( 1 ) THEN BRUSH.VX += BRUSH_ACC END

	IF BTN ( 2 ) THEN BRUSH.VY -= BRUSH_ACC END

	IF BTN ( 3 ) THEN BRUSH.VY += BRUSH_ACC END

	

	IF PAPER.Y == 0 AND BTNP ( 5 ) THEN

	SFX ( 0 )

	PAPER.Y = 1

	PAPER.VY = PAPER_INIT_VY

	END

	END

	

	----

	FUNCTION _INIT ()

	MEMSET ( 0 X1000, 0 X0077, 128 * 64 )

	END

	

	FUNCTION _UPDATE ()

	INPUT ()

	MOVE_BRUSH ()

	UPDATE_LINE_WIDTH ()

	END

	

	FUNCTION _DRAW ()

	IF PAPER.Y > 0 THEN

	REPLACE_PAPER ()

	ELSE

	--COPY WHOLE PIXELS IN THE PAPER TO THE SCREEN

	MEMCPY ( 0 X6000, 0 X1000, 128 * 64 )

	--ADD CHANGES MADE BY THE USER TO THE SCREEN

	DRAW_LINE ()

	--COPY WHOLE PIXELS IN THE SCREEN TO THE PAPER

	MEMCPY ( 0 X1000, 0 X6000, 128 * 64 )

	END

	DRAW_BRUSH ()

	END




Water Waves

Add some visual flair to your game with a wave distortion.

1. Assumptions

This tutorial makes use of a sprite flag to know where to warp the screen pixels. It assumes the whole available area of the tilemap is draw to the screen at the 0,0 coordinate. If you draw your tilemaps in a different manner, you will need to adjust the code accordingly.

Three variables are required to determine the warp effect, t is for time, which is updated by 1 each _update(), and cam_x & cam_y which are used to offset the camera position in the _draw() function.

2. Tiles

Draw some sprites to use in your game, I drew a light blue square, a solid block and a ball. The blue square will be the tile that waves apply to; the lines and dots in the blue square will help accentuate the wave’s ripple. Set the 5th (light blue) sprite flag to be true for each sprite that you want to ripple (sprite flags are set with the little circles below the color palette).

[image: image 13]

Draw a tilemap which includes areas of the ripple tiles, as well as non-wavy tiles.

[image: image 14]

3. The Warp Function

This is the meat of our exercise, I’ll show the whole function, then explain line by line what is going on. You should be able to add this to existing games, as you can add this to your _draw() function.


	FUNCTION WARP_W()

	LOCAL WAVE_SPEED=0.1667

	LOCAL DISPLACE_DIST=0.5

	

	FOR Y=MAX(0, FLR(CAM_Y/8)), MIN(FLR(CAM_Y/8)+16, 16*2) DO

	FOR X=MAX(0, FLR(CAM_X/8)), MIN(FLR(CAM_X/8)+16, 16*8)  DO

	LOCAL VAL=MGET(X,Y)

	IF (FGET(VAL,4)) THEN

	FOR Y1=0,7 DO

	LOCAL LINE={0,0,0,0,0,0,0,0,0}

	FOR X1=0,8 DO

	LINE[X1]=PGET(X*8-FLR(CAM_X)+X1, Y*8-FLR(CAM_Y)+Y1)          

	END

	LOCAL NEWX=SIN((T*WAVE_SPEED+Y1)/8) * DISPLACE_DIST

	FOR X1=0,8 DO

	PSET(X*8+X1+NEWX,Y*8+Y1,LINE[X1])

	END

	END

	END

	END

	END

	END



What does all this code do then? Let’s start at the top.


	LOCAL WAVE_SPEED=0.1667

	LOCAL DISPLACE_DIST=0.5



Here we define two variables which affect the displacement effect. wave_speed affects how fast the ripples go, displace_dist changes how far the pixels are moved in either direction. The value of 0.5 allows a pixel to be moved from -0.5 to 0.5, a max distance of 1 total pixel. Change these numbers to see the different effects they can have, but I would suggest keeping the numbers quite small.


	FOR Y=MAX(0,FLR(CAM_Y/8)),MIN(FLR(CAM_Y/8)+16,16*2) DO

	FOR X=MAX(0,FLR(CAM_X/8)),MIN(FLR(CAM_X/8)+16,16*8) DO



The next two lines begin loops, starting at the current camera position (or zero if negative), and end a screen later. Since we are using tilemaps (remember the sprite flag?) to mark the effect, we only need to check a maximum of 16 tiles in either direction (one tile is an 8 pixel image, screen res of 128, 128/8=16)


	LOCAL VAL=MGET(X,Y)



This line gets the number of the sprite used at the position of x,y which we will use in the next line


	IF (FGET(VAL,4)) THEN



where we check if the sprite has the light blue flag selected. If it does, then we will continue


	FOR Y1=0,7 DO

	LOCAL LINE={0,0,0,0,0,0,0,0,0}



The first line starts a loop where we are going to iterate through each vertical slice of our 8x8 tile. The second line creates a collection of values for the pixels we are going to move.


	FOR X1=0,8 DO

	LINE[X1]=PGET(X*8-FLR(CAM_X)+X1,Y*8-FLR(CAM_Y)+Y1)

	END



These lines loop through the horizontal pixels, recording the not-yet-manipulated values to the line collection. Notice that we subtract the value of cam_x (or y) from our current x (or y) values. This is because we are grabbing the current pixels from the frame buffer and need the values to be within 0-127. Our code will affect anything already drawn to the screen, and it will not affect anything we draw after applying this effect.


	LOCAL NEWX=SIN((T*WAVE_SPEED+Y1)/8)*DISPLACE_DIST



Now we need a new x offset for our line of pixels. We use a wave formula to smoothly adjust our offset back and forth as time (t) increases. The wave formula is: value = sin(angle) * range. Our formula has a slight adjustment in the angle, as we add y1 and then divide by 8. The reason for that is to make a smooth transition between each of our 8 vertical pixels, each one offset by 1/8th the angle of the previous pixel. This also makes it so multiple wavy tiles above and below each other will all appear to seamlessly match motion.


	FOR X1=0,8 DO

	PSET(X*8+X1+NEWX,Y*8+Y1,LINE[X1])

	END



This last loop then sets the screen pixels to the values at the newx position.

4. Other code

As I mentioned earlier, we need to have some variables in our game for this to work. At the top of your code, outside of any functions, add these lines:


	T=0

	CAM_X=0

	CAM_Y=0



These will initialize our variables, and start each at default values of zero.

At the very end of our _update() function, we need to be sure that time is increasing. If you started a project from an example like Jelpi, this may already be in there.


	FUNCTION _UPDATE()

	T+=1

	--ALL YOUR UPDATE CODE GOES HERE

	

	--EXAMPLE CODE, MOVES CAMERA

	IF (BTN(0,0)) CAM_X-=0.4

	IF (BTN(1,0)) CAM_X+=0.4

	IF (BTN(2,0)) CAM_Y-=0.4

	IF (BTN(3,0)) CAM_Y+=0.4



The last bit of code is that our _draw() function needs to call warp_w() at the appropriate time. Most likely, you want to call it after all tilemaps and sprites have been drawn, but before any HUD elements, such as scores or lives have been drawn. Below is an example _draw() function, yours will most likely have more.


	FUNCTION _DRAW()

	--CLEAR SCREEN

	RECTFILL (0,0,127,127,0)

	

	--MOVE CAMERA

	CAMERA(CAM_X,CAM_Y)

	--DRAW WHOLE TILEMAP

	MAP (0,0,0,0,16*8,16*2,0)

	

	--DRAW BALL, WAVE POSITION UP/DOWN

	LOCAL Y_WAVE=(CAM_Y+8*8)+SIN(T*0.0025)*32

	SPR(3,CAM_X+8*8,Y_WAVE,1,1)

	

	--WARP

	WARP_W()

	

	--RESET CAMERA

	CAMERA (0,0)

	

	--DRAW HUD ABOVE WARP, IT WILL NOT DISTORT

	PRINT("SCORE: 000",8,8,7)

	END



I added some code to this which will help show how the affect works.


	--DRAW OBJECTS

	LOCAL Y_WAVE=(CAM_Y+8*8)+SIN(T*0.0025)*32

	SPR(3,CAM_X+8*8,Y_WAVE,1,1)



These lines make use of the wave function again, this time as a way of moving our object up and down. spr() is the drawing call for drawing a sprite (#3 in this case) to the screen. Since it is drawn before calling warp_w(), the ripple effect will apply to it when over one of the marked tiles.


	--DRAW HUD ABOVE WARP, IT WILL NOT DISTORT

	PRINT(“SCORE: 000”,8,8,7)



This line adds some text to the screen, a score counter that does nothing at the moment. It will not be affected when placed over a marked tile, since its drawn after the ripple effect occurs.

5. Taking it further

You can use this effect to show different needs, such as water, lava, heat, gravity or whatever you would like. The effect looks really great when you add vertical elements to your drawings such as seaweed or pipes. Try changing the code so the ripple effect is vertical instead of horizontal, or maybe change the speed based on objects inside the tile area.

I’d love to see what cool things you make with this code. Send me some gif’s on twitter to @mattfox12. Happy coding!

Matthew Klundt

[image: image 15]


Screensaver


	POINT1 = {}

	POINT1.X = 64

	POINT1.Y = 64

	POINT1.A = 90

	POINT1.S = 2

	

	POINT2 = {}

	POINT2.X = 64

	POINT2.Y = 64

	POINT2.A = 270

	POINT2.S = 2

	

	POINT3 = {}

	POINT3.X = 64

	POINT3.Y = 64

	POINT3.A = 180

	POINT3.S = 2

	

	POINT4 = {}

	POINT4.X = 64

	POINT4.Y = 64

	POINT4.A = 0

	POINT4.S = 2

	

	POINT5 = {}

	POINT5.X = 64

	POINT5.Y = 64

	POINT5.A = 0

	POINT5.S = 2 

	

	FUNCTION _UPDATE()

	POINT1 = ANIMATE(POINT1)  

	POINT2 = ANIMATE(POINT2)  

	POINT3 = ANIMATE(POINT3)  

	POINT4 = ANIMATE(POINT4)  

	POINT5 = ANIMATE(POINT5) 

	END

	

	FUNCTION ANIMATE(POINT)

	ANGLEOFFSET = ((POINT.A) % 360) / 360

	POINT.X = POINT.X + POINT.S * COS(ANGLEOFFSET)

	POINT.Y = POINT.Y + POINT.S * SIN(ANGLEOFFSET)

	--COLLISION DETECTION

	IF POINT.X > 128 THEN

	POINT.A = 135 + FLR(RND(90))

	END

	IF POINT.X < 0 THEN

	POINT.A = 45 - FLR(RND(90))

	END

	IF POINT.Y > 128 THEN

	POINT.A = 45 - FLR(RND(90))

	END

	IF POINT.Y < 0 THEN

	POINT.A = 225 + FLR(RND(90))

	END

	RETURN POINT

	END

	

	FUNCTION _DRAW()

	RECTFILL(0,0,127,127,0)

	

	--MAIN PRISM

	LINE(POINT1.X,POINT1.Y,POINT3.X,POINT3.Y,8)

	LINE(POINT2.X,POINT2.Y,POINT4.X,POINT4.Y,8)

	LINE(POINT3.X,POINT3.Y,POINT5.X,POINT5.Y,8)

	LINE(POINT4.X,POINT4.Y,POINT1.X,POINT1.Y,8)

	LINE(POINT5.X,POINT5.Y,POINT2.X,POINT2.Y,8)

	

	--RED LINES

	LINE(POINT1.X,POINT1.Y,POINT2.X,POINT2.Y,7)

	LINE(POINT2.X,POINT2.Y,POINT3.X,POINT3.Y,7)

	LINE(POINT3.X,POINT3.Y,POINT4.X,POINT4.Y,7)

	LINE(POINT4.X,POINT4.Y,POINT5.X,POINT5.Y,7)

	LINE(POINT5.X,POINT5.Y,POINT1.X,POINT1.Y,7)

	END



[image: image 16]

Devine Lu Linvega @aliceffekt


PicoJump

Platformers have appeal. They are quite literally the pixel-manifestation of the Hero’s Journey and have shaped the gaming landscape over for decades. I grew up with an Amiga 500 and games like Turrican, Prince of Persia and The Shadow of the Beast! Well, and let’s not forget about Sonic and Super Mario, right? This tutorial assumes you know the basics of PICO-8 programming, how to draw sprites, the _INIT(), _UPDATE() and _DRAW() functions and how to write simple programs with them.

At first it is always good to think about what we want the character (I think I will name him Tutorial-Bob) in our platformer game will be able to do. For the time being, let’s start with walking, jumping, falling and being idle. To model this behaviour, we will make use of a mechanism generally used in computing and engineering. We will build a finite state machine or in short FSM. And in our case it looks like this: the boxes represent the states out player can be in. The arrows between them are the transitions, which - when a certain condition is met - will point to the next state Bob will be in.

[image: image 17]

For example, if Bob walks along and suddenly there is no more ground, he will start falling. Once he hits ground again, he will stop falling and be idle. Or if the user presses the left or right arrow, Bob will start walking. When we have made up our state machine, it is very straightforward to start writing code.

Before we begin, here some sprites and a little world in preparation for the game. Any map sprite that we want to use as a ground Bob can stand on, is tagged with the first sprite flag being set to True . This way we can easily determine with what to collide using FGET() on the map tile.

Lets start writing the program. Here the player initialization and drawing routines for the game.


	[image: image 18]
	[image: image 19]



	FUNCTION _INIT()

	PX=20 --X-POSITION

	PY=64 --Y-POSITION

	PSTATE=0 --CURRENT PLAYER STATE

	PSPR=0 --CURRENT SPRITE

	PDIR=0 --CURRENT DIRECTION

	PAT=0 --PLAYER STATE TIMER

	END

	

	FUNCTION _DRAW()

	--DRAW THE WORLD

	MAP(0,0,0,0,16,16)

	--DRAW THE PLAYER, WE USE DIR TO MIRROR SPRITES

	SPR(PSPR,PX,PY,1,1,PDIR==-1)

	END



In the  _init() method we are setting a whole lot of variables to keep track of Bob.

We have PX and PY for the world position in pixel,  PDIR is for the direction we are looking at, we have PSPR to store the current sprite and a PSTATE for the active state itself. Look at the state machine graph again. See the numbers in the corner of the boxes? This is the identifier for each state which will be assigned to  PSTATE.

We also hold a variable called PAT , which is the state counter or sometimes called state clock. Every time we run  _update() that counter will increase by one. On every change of state, the counter will be reset to zero. This way we always know how long bob has been in his current state and use that information for animation and movement calculations. Before we write the state machine behaviour, we need one more helper function to tell us, if Bob is hovering in the air ( True) or standing on the ground ( False).

Be aware that  MGET() wants map coordinates, so we have to divide the player position by 8.


	FUNCTION CANFALL()

	--GET THE MAP TILE UNDER THE PLAYER V=MGET(FLR((PX+4)/8),FLR((PY+8)/8))

	--SEE IF IT’S FLAGGED AS WALL

	RETURN NOT FGET(V,0)

	END



Now we get to the state machine part.

Each time we move from one state to another, we have to set the PSTATE variable to the new state id and also reset the PAT counter. Let’s do this in a dedicated function. Later on, when things get more complex, we could also implement state OnEnter behaviour in here. For now, this is beyond the scope of this tutorial and our function just looks like this.


	FUNCTION CHANGE_STATE(S)

	PSTATE=S

	PAT=0

	END



Our _update() function will deal with all the actual state behaviour and starts like this


	FUNCTION _UPDATE()

	B0=BTN(0) --BUTTON0 STATE

	B1=BTN(1) --BUTTON1 STATE

	B2=BTN(2) --BUTTON2 STATE

	

	PX=(PX+128)%128 --NO BOUNDS LEFT AND RIGHT

	PAT+=1 --INCREMENT STATE CLOCK



We capture what buttons are pressed by the user and also make sure that when Bob leaves the screen on one side, he will come back in on the other. Also notice, that we increment the PAT on every call of _update() 

Next, we gonna implement the four states, one by one.

For each state we will write what is happening to Bob while he is in the state, as well as define the conditions under which we are transitioning into another behaviour.


	--IDLE STATE

	IF PSTATE==0 THEN

	PSPR=0

	IF (B0 OR B1) CHANGE_STATE(1)

	IF (B2) CHANGE_STATE(3)

	IF (CANFALL()) CHANGE_STATE(2)

	END



If Bob is in the Idle state, we set the current sprite to idle. This is pretty much all that happens here.

The three if-statements check for user input and send Bob into the walking, jumping or falling state according to our diagram above.


	--WALK STATE

	IF PSTATE==1 THEN

	IF (B0) PDIR=-1

	IF (B1) PDIR=1

	PX+=PDIR * MIN(PAT,2)

	PSPR=FLR(PAT/2) % 2

	IF (NOT (B0 OR B1)) CHANGE_STATE(0)

	IF (B2) CHANGE_STATE(3)

	IF (CANFALL()) CHANGE_STATE(2)

	END



The walk state is a little more elaborate. Based on what button the user pressed, we set the sprite direction. We also increment or decrement Bobs x position PX . Note that we are using PAT to make him move just one pixel inthe first tick of the state and then two in any following, to create a sense of acceleration. We also set the current sprite alternating between 0 and 1 based on the PAT again. See that I also have dividedthe PAT by 2 two to slow down the sprite change to not get too flickery. This - again - is followed by the transitions into falling, jump and idle.

The state implementation for falling looks a bit more complicated, as it has to deal with collisions and intersections.


	--FALL STATE

	IF PSTATE==2 THEN

	PSPR=2

	IF (CANFALL()) THEN

	IF (B0) PX-=1 --STEER LEFT

	IF (B1) PX+=1 --STEER RIGHT

	PY+=MIN(4,PAT) --MOVE THE PLAYER

	IF (NOT CANFALL()) PY=FLR(PY/8)*8 --CHECK GROUND CONTACT

	ELSE

	PY=FLR(PY/8) * 8 --FIX POSITION WHEN WE HIT GROUND

	CHANGE_STATE(0)

	END

	END



Inside the fall state, we check for ground contact - which is the only transition out of here into the idle state.

If we are falling, we allow the player to move left and right to steer the fall. Like in the real world, with every tick falling, we accelerate to fall a little bit faster. This is done by adding the PAT to the y-position of Bob, that speed is capped at a terminal velocity of 4.

In case Bob is hitting a ground tile, we need to make sure to fix his position back on top of a tile.

The mechanism used here is kept rather simple, but works. We just round the y-position back to the tile under Bob. That way we cannot get stuck halfway inside the ground

The last state is the JUMP state. It works similar to the FALL state.


	--JUMP STATE

	IF PSTATE==3 THEN

	PSPR=2

	PY-=6-PAT

	IF (B0) PX-=2

	IF (B1) PX+=2

	IF (NOT B2 OR PAT>7) CHANGE_STATE(0)

	END



And let’s not forget about this one


	END --END OF THE UPDATE FUNCTION



Now you have a character driven by a simple state machine. The movement is still a bit jerky and we can’t run, shoot, duck or slide.

But the biggest benefit of an FSM is, it is easy to add other states and transitions and also more complicated math to smoothen out the animation of the character later on. Happy Coding!

Johannes Richter

http://www.lexaloffle.com/bbs/?tid=2520

[image: image 20]


PICO-8 Colour Palettes

PICO-8’s limited colour palette creates an interesting challenge when creating art for your games/cartridges. Here are some of my favourite examples of colour palettes used in PICO-8.

Gabby DaRienzo


	[image: image 21]

	“Baron Figs” by zep



	[image: image 22]

	Unnamed project by Christina Antoinette



	[image: image 23]

	“Across the River” by Benjamin Soule



	[image: image 24]

	“Naughty Painters” by oinariman



	[image: image 25]

	“Mortuary Simulator” by gabdar



	[image: image 26]

	“Celeste” by Noel Berry and Matt Thorson




	[image: cover image]



CONTENTS

Minimalism Pays Double

Notes on Creating Succer

Dom8verse

Minigame Collection

Blasteroids

Sumo Pico


[image: image 1image]

PICO-8 is a fanzine made by and for PICO-8 users.

The title is used with permission from Lexaloffle Games LLP.

For more information: www.pico-8.com

Contact: @arnaud_debock

Cover illustration by @JUSTIN_CYR

Special thanks to @dan_sanderson and @lexaloffle


MINIMALISM PAYS DOUBLE

What do you love most about PICO-8?

For me, it’s the constraints. A blank canvas can be paralyzing. It’s easy to feel the love with which PICO-8 limits you. When we “play” this wonderful little console, we hope to pass some of that love over to our audience. It’s counter-intuitive, but it seems to me that enabling creativity is as much about setting smart constraints as it is about breaking down barriers.

When we started my local multiplayer project TowerFall, I chose a lot of constraints to help focus our work. For example, I decided we would work with Game Boy Advance inputs (A, B, L, R, and d-pad) and resolution (320x240). In those early days I didn’t know what “the point” of TowerFall was. I was asking myself a lot of big questions, like “Why do I love local multiplayer, and how do I explore those concepts with my game’s design?” Digging like this through your prototype and yourself is tough work. Constraints force you to confront tough decisions about what deserves to live in the limited design space you have.

[image: image 2]

Some amount of enforced simplicity can help us create more effectively, but more importantly this approach bleeds into the player’s experience. In a local multiplayer game you often want people to feel comfortable jumping in with very little ceremony or introduction - worse yet, with spectators! - so minimalism pays double. Our goal with TowerFall became facilitating creative play, giving players the confidence to experiment with very little knowledge.

If you’re using PICO-8, you probably know this. You must already love the colorful fence that circles its playground. I just want to confirm that the minimal design philosophy of the console extends beautifully to local multiplayer design, perhaps more than most genres. Have fun (:

-Matt

www.mattmakesgames.com

@MattThorson

[image: image 3]

@JctWood


NOTES ON CREATING SUCCER

Succer (http://www.lexaloffle.com/bbs/?tid=2614) is an old-school soccer game inspired by Kick-off and Sensible Soccer.

Making a local multiplayer sport game

How to decide which player is human controlled? Simple: take the one closer to the ball. A better method may be to take the ball’s velocity into account.

sidenote: measuring distance in a fixed float 16 bits format can be quite painful… My solution: use Manhattan distance to avoid the power and sqrt when precision is not necessary… It was suggested to me that I could use smaller units when doing such computations, but I’m not that smart :D


	FUNCTION MANHATTAN(A,B)

	RETURN ABS(B.X-A.X)+ABS(B.Y-A.Y)

	END



It may be a good idea to be able to locate the controlled player when he is outside the screen. In an earlier version of the game when there was no AI to move uncontrolled players, that was still possible. At that time, I used an indicator drawn on the border of the screen in the direction of the controlled player. The size of the indicator was relative to the distance to the border of the screen: the closer the bigger.

To avoid having to draw too many sprites, use pal to change the player's jersey colors.

Controls

I really wanted the game to feel like Kick-Off and Sensible Soccer. That’s the reason the game only uses one button for all actions. I have fond memories of me and my friends running around the ball trying to control it without much success. So at first, I made the ball not sticky at all. The only way to control it was pushing it (or kicking it.)

But as I let people play early versions of the game, the feedback was clear: Control was a nightmare.

So, I spent a little time playing the original Sensible Soccer to reflect on the control scheme, and surprisingly as I rediscovered the game after so many years, controls were much more friendly than I remembered! So, I added ball stickiness by lerping the ball position to be in front of the player that controls it by a small amount (20%). After that change, the game was much more enjoyable. Even the AI became less stupid as it was able to recover a ball running to the touch when it would have just pushed it to the exit before.

[image: image 4]

AI

Even in two player mode, a soccer game needs AI to control all the other little footballers around!

The AI is made of simple rules:

The closest player to the ball is the main player.

The main player AI is:


		Try to get the ball.

		If he has the ball, try to shoot to the goal.

		If he is too far away, try to pass the ball to a teammate.

		If he can't pass, just dribble to the goal.



This high level behavior is implemented using simpler functions like RUN_TO which makes a player run to a specified position. This function acts like a gamepad input adding to the velocity of the player in the wanted direction until it reaches the maximum speed value.

It is called each frame until it returns TRUE when the player is within a minimum distance to the desired location.

The other ones are just supporting, trying to get to a helpful position. There are two formations in the game that define the wanted location of each player in one team. The first formation contains the positions to use during the kick-off. These are offset for the team with the ball in order to align the players with the middle of the field. The other formation contains the positions the players try to reach relative to the ball. Those positions are clamped to avoid players wandering outside the field.

There are special cases for the other phases of the game such as playing a throw-ins, goal-kicks or corners. The positions are offset and the point of interest moved from the ball to ensure a better placement (in the center of the field for a goal-kick, near the goal for a corner and halfway between the position of a throw-in and the median vertical line.

Finite-State Machine (FSM)

(see picozine 2 for an introduction or just google it!) FSM are everywhere! The game state management uses them. They're put to use to control the match phases. The little men running all over the place use them.

Here is the game FSM:

Boxes are the states, arrows are the transitions between states. Each of this states defines an Init and Update function. The Init function is called whenever the game changes state to prepare the state execution.

The update function is called each frame to apply the state’s behavior. For example in the “Goal Marked” state, the Init function resets a timer and the Update function handles the timer increment and checks if its limit has been reached in which case it transitions to the “To Kick Off” state.

[image: image 5]

Note: Throw-in, corner kick and goal kick share the same state. It’s not the cleanest way to handle those situations, but they are similar enough to re-use the same state and it saves a lot of tokens.

The player can be in these states depending if it is a goal keeper or field player: Only the down state is common to both. A player state is made of 4 functions:


		A Start function called whenever a player enters this state to setup things like the timer for example.

		An AI function is used to specify what the behavior of the player will be when considered the main player.

		An Input function is used to specify which player should respond to the player's input (when considered the main player).

		All the other players use a more generic behavior which just tries to give them an interesting position and takes into account the game state.



The Corner state and the GoalKick state are exactly the same.

But they’re kept separate as they are used to define what kind

[image: image 6]

of ball exit has happened. I don’t think I could have saved a lot of tokens by not duplicating these states as the logic involved surely would have added more tokens and the duplicated parts are already defined in functions, so there is not so much duplication after all.

General notes

8192 tokens isn't that much… Cramming in all soccer's rules and all that AI is very tricky…

Here are a few hints: Leveraging global/object variables: example: if an object variable needs to be referred to using the object, make it a global:


	MATCH.TIMER = 0

	...

	LOCAL FIRST_HALF = MATCH.TIMER<45

	MATCH.TIMER+=1

	LOCAL SECOND_HALF = MATCH.TIMER>=45



becomes:


	MATCHTIMER = 0

	...

	LOCAL FIRST_HALF = MATCHTIMER<45

	MATCHTIMER+=1

	LOCAL SECOND_HALF = MATCHTIMER>=45



and saves 8 tokens!

On the opposite, having variables embedded into object can also save tokens: For example, 2D coordinates are stocked into objects and these objects are passed around to some vector math functions. If those functions are called several times it becomes token saving efficient and worth the cost of the function declaration:


	A = {X=0,Y=0,...}

	DOT(A,B)



instead of


	AX=0 AY=0 BX=0 BY=0

	AX*BX+AY*BY



Finally, a good way to save tokens is to just cut what is not useful. One of the first things I did in the game was a particle system that spawned puffs of smoke whenever a player kicked the ball. It was fun and all, but as the camera system took shape, the particles became hardly visible. I could have made them more present by changing their size, colors, lifetime, whatever, but I think it would not have helped the action’s readability. So, I just squeezed them.

Conclusion

That’s all! But, remember: There's no fault system implemented so don't hesitate to tackle other players! Have fun!

Laury MICHEL

@RylauChelmi

[image: image 7]


DOM8VERSE

In this tutorial, you will learn how to shoot bullets, those bullets will move and detect collision to be destroyed by a wall.

1 Define the bullet skeleton

First of all, we define a function that creates a bullet. We won't define a global variable at the start of the program for the bullets, because they will be created on the fly when the player shoots. To do that, let's define a function that creates an object that represents a newly created bullet with all the attributes that this bullet will need.


	BULLETCONSTRUCT = FUNCTION(X, Y)

	

	LOCAL OBJ = {}

	--AN ARRAY CONTAINING X AND Y POSITION

	OBJ.POSITION = {X=X, Y=Y}

	--THE SPRITE NUMBER USED TO DRAW THE BULLET

	OBJ.SPRITE = 3

	

	--DEFINE AN ‘UPDATE’ FUNCTION THAT WILL BE CALLED BY THE PROGRAM

	OBJ.UPDATE = FUNCTION(THIS)

	--MOVE THE BULLET TO THE RIGHT

	THIS.POSITION.X += 1

	END

	

	--RETURN THE BULLET

	RETURN OBJ

	END



2 Shoot the bullets

This code is just a definition, you have to call it in order to create a bullet, let’s say that the player has to hit a button to create a new bullet.


	--ARRAY WITH ALL OBJECTS PRESENT IN THE GAME

	OBJECTS = {}

	FUNCTION _UPDATE()

	--FIRST PLAYER PRESS THE SHOOT BUTTON

	IF BTNP(5, 0) THEN

	--CREATE A NEW BULLET AND ADD IT IN THE ‘OBJECTS’ OF THE GAME

	--WE PASS THE PLAYER POSITION AS A PARAMETER, SO THE BULLET WILL

	--APPEAR AT THE PLAYER POSITION

	ADD(OBJECTS, BULLETCONSTRUCT(PLAYER1.POSITION.X, PLAYER1.POSITION.Y))

	END

	END



But the program will also need to update this bullet. Add a loop into the _UPDATE function to update all the objects present in the game.


	FUNCTION _UPDATE()

	--LAUNCH UPDATE() METHOD ON EACH OBJECT FOREACH(OBJECTS, FUNCTION(OBJ)

	OBJ.UPDATE(OBJ)

	END

	END



This FOREACH special syntax allow to loop into the objects of an array. Here we define an anonymous function that executes code direction on the object received (here named OBJ). We will do exactly the same kind of thing to draw all the objects of the game.


	FUNCTION _DRAW()

	FOREACH(OBJECTS, FUNCTION(OBJ)

	SPR(OBJ.SPRITE, OBJ.POSITION.X, OBJ.POSITION.Y)

	END

	END



3 Adding a hitbox to the bullet

Now we can shoot bullets, and they will be automatically updated and drawn. But we need them to be destroyed on a wall or to kill another player on hit. To do that, we will need to complete the BULLETCONSTRUCT by adding collision detection.

First of all, we do not want the whole sprite size (8x8) to collide. The bullet is much smaller, so let's define a hitbox for the bullet:


	BULLETCONSTRUCT = FUNCTION( X, Y)

	...

	OBJ.HITBOX = {X=2, Y=4, W=4, H=3}

	...

	END



This hitbox array defines a rectangle on the sprite that will be used to detect collision. X and Y define the top left corner position of the rectangle. W and H define the width and the height. See image for a better understanding.

[image: image 8]

4 Mark the wall sprite

The game must know which sprites are walls. To do that, we will use the sprite flags in PICO-8. This allow us to manage different kinds of sprite in the game. To do that, simply check one or more of the little circles in the sprite editor. Here we will check only the first circle, this means that the flag selected is 0. I suggest you to check the FGET documentation on PICO-8 manual in order to understand how the flag number is calculated.

[image: image 9]

So we will just define a global variable determining the WALL flag:


	FWALL = 0



5 Detect collision

Now the difficult part: we want to detect if this hitbox hit a wall, so on each frame we will execute a function that detects if each corner of the bullet is positioned inside a wall. If at least one of the corner is in, then the bullet is considered on the wall and we destroy it. First, we create a global function that will detect if an object is on a wall, this object will of course need to have the ‘position’ and ‘hitbox’ attributes. The function MGET is a PICO-8 builtin function allowing us to get a sprite on the map. This function will check on the map at X and Y position and returns the sprite number. The function FGET is another builtin function that return the flag value of a sprite, so coupled with MGET, you can know if there is a wall at a X

and Y position. The code of the top left corner is simplified for a better understanding. We will of course check other corners only if previous one are not detected as walls.


	--DETECT IF HITBOX OF OBJECT 'O' DOES HIT THE A WALL MAP SPRITE FUNCTION CHECKWALL(O)

	--DETECT EACH CORNER OF THE HITBOX ONE BY ONE IF IT COLLIDE

	--THE <SKIN> ALLOW TO NOT DETECT FLOOR ON THE SIDE IF WE ARE

	--STANDING ON THE GROUND

	--TOP LEFT CORNER

	--POSITION OF THE TOP LEFT CORNER OF THE HITBOX IS CALCULATED

	--BY ADDING THE X POSITION OF THE OBJECT AND HIS HITBOX THIS

	--NUMBER IS DIVIDED BY 8, BECAUSE 'MGET' USE SPRITE POSITION AND

	--NOT PIXEL POSITION, AND ALL SPRITE IN PICO-8 ARE 8 PIXELS WIDE

	--FLR() ALLOW TO GET A INTEGER WITHOUT DECIMAL

	LOCAL XPOS = FLR((O.POSITION.X + O.HITBOX.X)/8)

	LOCAL YPOS = FLR((O.POSITION.Y + O.HITBOX.Y)/8)

	--GET THE SPRITE AT THE CALCULATED POSITION

	LOCAL FOUNDSPRITE = MGET(XPOS, YPOS)

	--STOCK IN 'D' VARIABLE IS THE FOUND SPRITE IS A WALL OR NOT

	LOCAL D = FGET(FOUNDSPRITE , FWALL)

	--TOP RIGHT CORNER

	IF D == FALSE THEN

	D = FGET(MGET(FLR((O.POSITION.X + O.HITBOX.X + O.HITBOX.W)/8),FLR((O.POSITION.Y + O.HITBOX.Y)/8)),FWALL)

	END

	--BOTTOM LEFT CORNER

	IF D == FALSE THEN

	D = FGET(MGET(FLR((O.POSITION.X + O.HITBOX.X)/8),FLR((O.POSITION.Y + O.HITBOX.Y + O.HITBOX.H)/8)),FWALL)

	END

	--BOTTOM RIGHT CORNER

	IF D == FALSE THEN

	D = FGET(MGET(FLR((O.POSITION.X + O.HITBOX.X + O.HITBOX.W)/8),FLR((O.POSITION.Y + O.HITBOX.Y + O.HITBOX.H)/8)),FWALL)

	END

	RETURN D

	END



6 If you want more...

To complete the code, you can tell the bullet the direction you are shooting it, or even which player is shooting. You can also write a function that will detect collisions between objects instead of sprites on the map. To do that, simply loop on all the objects of the game, and check both hitboxes. Ok ok, I already made it, check this out!


	--DETECT IF 2 OBJECTS WITH HITBOX ARE COLLIDING

	FUNCTION COLLIDE(OBJ, OTHER)

	IF OTHER.POSITION.X+OTHER.HITBOX.X+OTHER.HITBOX.W > OBJ.POSITION.X+OBJ.HITBOX.X AND
	
OTHER.POSITION.Y+OTHER.HITBOX.Y+OTHER.HITBOX.H > OBJ.POSITION.Y+OBJ.HITBOX.Y AND
	
OTHER.POSITION.X+OTHER.HITBOX.X < OBJ.POSITION.X+OBJ.HITBOX.X+OBJ.HITBOX.W AND
	
OTHER.POSITION.Y+OTHER.HITBOX.Y < OBJ.POSITION.Y+OBJ.HITBOX.Y+OBJ.HITBOX.H THEN

	RETURN TRUE

	END

	END



@schminitz

http://hauntedtie.be

[image: image 10]


MINIGAME COLLECTIONS

Deep, skill-driven games such as Street Fighter, Starcraft or Crusader Kings are great, but they’re not always the best choice for a Friday night with friends. As a general rule, the more complex a game is, the steeper the barrier to entry is going to be. If you’re looking for something more inclusive, you can’t get much more accessible than a minigame collection - think Pokémon Stadium, WarioWare, Sega Superstars, Mario Party, etc.

They’ve been around since pretty much the dawn of video games - the Video Action machines made by Universal Research Labs in the '70s (clearly a time when SEO was not important!) allowed four players to choose from a range of Pong-like sports including Hockey, Volleyball and Soccer. Typically the games in these collections are very simple, consisting of a single mechanic and a few inputs. This means that anyone can join in - even people that don’t usually play video games! They also have the benefit of still being entirely playable after a few beers.

1. Design

Over the last few weeks I’ve been working on my own minigame collection inspired by the minigames of Pokémon Stadium. Even now, we still brush the dust off the N64 every now and again to revisit such classics as ‘Clefairy Says!’, ’Snore War’ and ‘Rock Harden’! Looking at the systems behind these games, I was able to identify a few common mechanics that form the ‘building blocks’ of a good minigame. Search the examples on YouTube if you want to see them in action!

Timing

• Rock Harden, Snore War

Memory

• Clefairy Says

Dexterity

• Ekans’ Hoop Hurl, Sushi-Go-RoundButton

Mashing!

• Dig! Dig! Dig!, Thundering Dynamo

This is by no means an exclusive list - pretty much anything goes in a minigame, just keep it simple and bitesize. Combining these mechanics can be great too, for instance ‘Run, Rattata, Run!’ uses both button-mashing and timing to great effect. As a rule of thumb, if you can explain how to play in a single sentence you’re probably on the right track!

2. Implementation - Players

So let’s get building! As of 0.1.2, PICO–8 supports up to eight players using gamepads (or getting very cosy around a keyboard!). I designed my minigames for four players, but I wanted to make sure that my code was flexible to allow two, three or four players to use the same application. We’re going to use a table to store the game values we need for each player (e.g. colour, position), then another table to store all of our players. Here’s a simple example that you can run in PICO–8:


	--CONFIG

	N_PLAYERS = 2

	START_POS = {8, 40, 72, 104}

	COLOURS = {8, 11, 12, 10}

	ALT_COLOURS = {2, 3, 1, 9}

	

	--CORE FUNCTIONS

	FUNCTION _INIT()

	INIT_ONE()

	END

	

	FUNCTION _UPDATE()

	FOR P IN ALL(PLAYERS) DO

	UPDATE_ONE(P)

	END

	END

	

	FUNCTION _DRAW()

	CLS()

	FOR P IN ALL(PLAYERS) DO

	DRAW_ONE(P)

	END

	END

	

	FUNCTION INIT_ONE()

	CLS()

	CREATE_PLAYERS(N_PLAYERS)

	END

	

	FUNCTION UPDATE_ONE(P)

	--VERTICAL MOVEMENT, ALTER THE PLAYER POSITION

	IF BTN(2, P.NUM-1) THEN

	P.POS[2] -= 1

	ELSEIF BTN(3, P.NUM-1) THEN

	P.POS[2] += 1

	END

	END

	

	FUNCTION DRAW_ONE(P)

	--DEFINE LOCAL VARIABLES

	LOCAL X = P.POS[1]

	LOCAL Y = P.POS[2]

	LOCAL COLOUR = COLOURS[P.NUM]

	LOCAL ALT_COLOUR = ALT_COLOURS[P.NUM]

	

	--DO SOMETHING WITH THE VALUES STORED IN THE PLAYER TABLE

	RECTFILL(X-5, Y-15, X+5, Y+15, 0) --CLEAR SCREEN!

	CIRCFILL(X, Y, 5, COLOUR) --DRAW!

	PRINT(P.NUM, X-1, Y-12, ALT_COLOUR) --PRINT!

	END

	

	FUNCTION CREATE_PLAYERS(N)

	PLAYERS = {}

	FOR I=1,N DO

	P = {}

	P.NUM = I

	P.POS = {START_POS[I], 64}

	ADD(PLAYERS, P)

	END

	END

	



This is all made possible because of the ALL iterator. This piece of code lets us call a function for every player in our players table, regardless of how many players we have:


	FOR P IN ALL(PLAYERS) DO

	SOMETHING(P)

	END



This particular program is valid for a maximum of four players, though, as I’ve only specified four possible positions and colours in the config section. If you wanted to support more players, you’d just need to increase the number of items in those tables (or don’t use them, or have duplicate colours, etc). From a design perspective, you’d also need to think about how you partition the screen space!

3. Implementation - Structure

So now you’ve got your program receiving input and drawing players. But we want more than one game in our collection, of course! There are lots of ways to structure a minigame collection, but the simplest approach I’ve found is to create each game as its own discrete application and then to have a management layer above the games that handles scoring, game selection, etc. However, in PICO–8 this isn’t a viable option, so we have to get a bit clever! :]

As you know, PICO–8 has three main functions that form the game loop, _init, _update and _draw. When we’re making a minigame collection, we want those functions to do different things depending on whether we’re in the menu or in one of multiple different games. We can achieve this by creating a table that holds references to versions of these core functions for each of the games. Our menu then simply needs to set a variable that tells the game loop which of these sets of functions it should call. We can alter our existing program (above) to support this approach. First, let’s set up our function tables in the _init function, and call init_menu to start the menu running:


	FUNCTION _INIT()

	CLS()

	GAMES = {

	"GAME 1",

	"GAME 2"

	}

	INIT_FUNCTIONS = {

	INIT_ONE,

	INIT_TWO

	}

	UPDATE_FUNCTIONS = {

	UPDATE_ONE,

	UPDATE_TWO

	}

	DRAW_FUNCTIONS = {

	DRAW_ONE,

	DRAW_TWO

	}

	INIT_MENU()

	END



Next, let’s alter our core _update and _draw functions to point at our function tables instead of calling a function directly. We’ll also use the menu boolean to control whether we run menu or game functions, and the complete boolean to return to the menu:


	FUNCTION _UPDATE()

	IF MENU THEN

	UPDATE_MENU()

	ELSEIF COMPLETE THEN

	INIT_MENU()

	ELSE

	FOR P IN ALL(PLAYERS) DO

	UPDATE_FUNCTIONS[SELECT_GAME](P)

	END

	END

	END

	

	FUNCTION _DRAW()

	IF MENU THEN DRAW_MENU()

	ELSE

	FOR P IN ALL(PLAYERS) DO

	DRAW_FUNCTIONS[SELECT_GAME](P)

	END

	END

	END



This is all we need to alter in the core program loop. Next, we will define the specific init, update and draw functions we’re using for our menu. The menu functions allow the first player to view & select from our list of games:


	FUNCTION INIT_MENU()

	CLS()

	MENU = TRUE

	COMPLETE = FALSE

	SELECT_GAME = 1

	END

	--IF BUTTON IS PRESSED, MENU IS FALSE AND THE INIT FUNCTION FOR THE

	--SELECTED GAME IS RUN. OTHERWISE CHANGE SELECTED GAME, IF VALID.

	FUNCTION UPDATE_MENU()

	IF BTNP(4, 0) THEN

	MENU = FALSE

	INIT_FUNCTIONS[SELECT_GAME]()

	ELSEIF (BTNP(2, 0) AND SELECT_GAME > 1) THEN

	SELECT_GAME -= 1

	ELSEIF (BTNP(3, 0) AND SELECT_GAME < #GAMES) THEN

	SELECT_GAME += 1

	END

	END

	

	--PRINT OUT ALL OF THE GAMES IN OUR LIST

	FUNCTION DRAW_MENU()

	LOCAL Y = 32

	FOR I=1, #GAMES DO

	IF I == SELECT_GAME THEN

	PRINT(GAMES[I], 52, Y, 12)

	ELSE

	PRINT(GAMES[I], 52, Y, 6)

	END

	Y += 16

	END

	PRINT("SELECT A GAME!", 37, Y, 7)

	END



Next up, we need to create specific init, update and draw functions for the games we want to include. In this example, we need to add definitions for init_two, update_two and draw_two. For now, you can copy the code from the existing init_one, update_ one and draw_one functions.

Finally, we need to add a way to return to the menu from the running game. To achieve this, we can add the following snippet to our update_one & update_two functions:


	--WHEN PLAYER ONE PRESSES BUTTON ONE, WE'LL RETURN TO THE MENU.

	IF BTNP(4, 0) THEN

	COMPLETE = TRUE

	END



In this example I’ve included two games, but there’s really no limit to how many games you could include this way (apart from the line/token count on the cart!). Persistent variables (such as player scores) can be created in the core _INIT function and altered by the game-specific functions as you go along.

4. Implementation - Dig! Dig! Dig!

[image: image 11]

I hope you’re still with me! I thought I’d show you how I used these lessons in the development of an actual game. Building on our previous program once more, I’ll create a clone of the classic Pokémon Stadium game ‘Dig! Dig! Dig!’. To keep things simple, I’ve avoided using any additional assets (e.g. sprites, sfx) outside of the code shown in this article.

First, we’re going to make some alterations to our generic create_players function. The game requires some additional player variables, but it’s pretty simple to add these in.


	FUNCTION CREATE_PLAYERS(N)

	PLAYERS = {}

	FOR I=1,N DO

	P = {}

	P.NUM = I

	P.POS = {START_POS[I], 0}

	P.LAST = {FALSE, FALSE}

	P.TIMER = 0

	ADD(PLAYERS, P)

	END

	end



Next up, we’ll create another generic function that draws coloured borders around each player’s section of the screen. These functions are great and should be used wherever possible, as they can be used across multiple games to save tokens!


	FUNCTION DRAW_BORDERS()

	FOR I = 0, 3, 1 DO

	RECT(I*32, 0, (I*32)+31, 127, COLOURS[I+1])

	END

	END



Next up, we’ll rewrite our init_one function to set up the new game:


	FUNCTION INIT_ONE()

	CLS()

	--GAME DESIGN PARAMETERS

	PENALTY_TIME = 20

	FINISH_LINE = 107

	

	--SIMPLE BACKGROUND, REPLACE WITH A NICE MAP IN YOUR GAME!

	RECTFILL(0, 16, 127, FINISH_LINE+16, 4)

	RECTFILL(0, FINISH_LINE+16, 127, 127, 9)

	

	CREATE_PLAYERS(N_PLAYERS)

	DRAW_BORDERS()

	END



The update_one function is where all of our game logic sits. As before, it’s called once for each player and we pass the player p to it.

First, we check for the win condition - has a player moved down below the ‘finish_line’ distance that we set in init_one? If so, we store the winning player number and mark the game as complete.

If not, we check whether the player is on timeout. In Dig! Dig! Dig!, clumsy mashers are penalised with a short timeout if they press the same button twice. If they are on timeout, we reduce the timer but don’t let them move. Otherwise, we check the input received from that player and compare it with the last accepted input. If it’s a repeat, we apply the timeout penalty, otherwise we increase the player’s vertical position (let them dig!) and update the last accepted input.


	FUNCTION UPDATE_ONE(P)

	--CHECK IF FINISHED

	IF P.POS[2] >= FINISH_LINE THEN

	COMPLETE = TRUE

	--IF ON TIMEOUT, REDUCE TIMEOUT

	ELSEIF P.TIMER > 0 THEN

	P.TIMER -= 1

	--IF NOT ON TIMEOUT, CHECK FOR INPUT AND DIG

	ELSEIF P.TIMER == 0 THEN

	LOCAL BTNS = {BTNP(4, P.NUM-1), BTNP(5, P.NUM-1)}

	IF (BTNS[1] OR BTNS[2]) THEN

	--IF IT'S A REPEAT INPUT, APPLY PENALTY, ELSE DIG!

	IF (BTNS[1] == P.LAST[1] AND BTNS[2] == P.LAST[2]) THEN

	P.TIMER = PENALTY_TIME

	P.LAST = {FALSE, FALSE}

	ELSE

	P.POS[2] += 1

	P.LAST = BTNS

	END

	END

	END

	END



Drawing is relatively simple - instead of drawing circles as before, we’re drawing rectangles. If the player is on timeout, we draw a flattened rectangle with the alternative colour.


	FUNCTION DRAW_ONE(P)

	--DEFINE LOCAL VARIABLES (THIS ISN'T NECESSARY, BUT IT MAKES

	--OUR CODE CLEARER)

	LOCAL X = P.POS[1]

	LOCAL Y = P.POS[2]

	LOCAL COLOUR = COLOURS[P.NUM]

	LOCAL ALT_COLOUR = ALT_COLOURS[P.NUM]

	

	--SIMPLE BLOCK GRAPHICS - REPLACE WITH SPRITES IN YOUR GAME!

	RECTFILL(X+1, Y+2, X+14, Y+15, 0) --CLEAR SCREEN!

	

	IF P.TIMER > 0 THEN

	RECTFILL(X+3, Y+12, X+12, Y+15, ALT_COLOUR)

	ELSE

	RECTFILL(X+4, Y+10, X+11, Y+15, COLOUR)

	END

	END



At this point the game works, but it quits back to the menu as soon as a player reaches the finish line. Ideally, we’d want a short break to celebrate their win before moving on to the next game! We can implement this by creating a new variable, postgame_timeout, in our config section. Here, we will define the number of frames to wait after a player has won before returning to the menu (I’ve found 180, which is about 6 seconds, to be a good amount). In our core _init function, we will define another new variable, GLOBAL_TIMER. In our UPDATE_ONE function, as well as setting COMPLETE = TRUE we will set the GLOBAL_TIMER equal to our POSTGAME_TIMEOUT value. We’ll also record the winning player number in the winner variable.


	--CHECK IF FINISHED

	IF P.POS[2] >= FINISH_LINE THEN

	COMPLETE = TRUE

	GLOBAL_TIMER = POSTGAME_TIMEOUT

	WINNER = P.NUM



Now, in our core _UPDATE function, we’ll make a small change to make use of the GLOBAL_TIMER. Instead of calling INIT_MENU as soon as complete becomes true, it now has to decrement the GLOBAL_TIMER down to zero first.


	FUNCTION _UPDATE()

	IF MENU THEN

	UPDATE_MENU()

	ELSEIF COMPLETE AND GLOBAL_TIMER > 0 THEN

	GLOBAL_TIMER -= 1

	ELSEIF COMPLETE AND GLOBAL_TIMER == 0 THEN

	INIT_MENU()

	ELSE

	FOR P IN ALL(PLAYERS) DO

	UPDATE_FUNCTIONS[SELECT_GAME](P)

	END

	END

	END



We’ll also define a function to display the winning player on a banner:


	FUNCTION VICTORY_BANNER()

	RECTFILL(0, 56, 127, 72, 0)

	RECTFILL(0, 58, 127, 70, 7)

	PRINT("PLAYER " .. WINNER .. " WINS!", 36, 62, 0)

	END



All that remains is to add the following line to the core _draw function!


	IF (COMPLETE) VICTORY_BANNER()



That’s it! You’ve got a working minigame and a loop that allows you to jump into successive games from a single menu. Pretty cool! If you want to see what a more complex implemetation of this looks like, you can check out my full game here:

http://www.lexaloffle.com/bbs/?tid=2782

It includes four different minigames, complete with music, sfx and art! I hope you’re inspired to make your own weird, eclectic minigame collections for you & your friends. Please share them with me if you do!

--Jack Harrison

--@jhrrsn


BLASTEROIDS

Hey folks, I'm Lulu Blue.

I've made a bunch of games (even some for the PICO-8) and you can check them out at bluesweatshirt.itch.io if you want. More importantly, I'm here to guide your hand in creating a little game I've came up with called Blasteroids. Imagine Asteroids, if you're familiar with that, except it's two-player and you're trying to blast each other.

If you're not familiar with it, Asteroids is one of those “classic games”, it originally came out in the arcades in '79. The gist of it is that you're a lone spaceship in a field of floating asteroids, and your goal is to shoot down all of them while not being hit by the errant debris. Check out a video of it or something if you're curious, it's super neat.

Our goal here is not just going to be adding a multiplayer layer on top of Asteroids, it's to explore what it's like to design a multiplayer game. Adding an extra layer on top of something familiar is a perfect place to start. I arbitrarily consider this an intermediate-advanced guide, so you should be pretty comfortable with PICO-8 and a code editor before tackling this, just to get the most out of it. Instead of focusing on the act of construction we're going to be focusing on how each bit we add contributes to the design of the game.

1. FROM NOTHING TO SOMETHING: THE PLAYER

[image: image 12]

The first thing we should do to have our game is to have the thing we're controlling. From there, we can design all the other game's mechanics around that. To start off, we need to first write a bit of initializing code.


	FUNCTION P_MAKE(X, Y, R)

	RETURN {

	X=X,--POSITION

	Y=Y,

	VX=0,--VELOCITY

	VY=0,

	ROT=R,--ROTATION

	COL=14,--COLOR

	P=0--CONTROLLER INDEX

	}

	END



We need to track the player's position, velocity, rotation, color and player index - we'll use that for identifying whether you're Player 1 or Player 2 and for input handling. We're using tables here to define players instead of writing out variables manually, such as “p1_x”. It saves us from writing all the same player code twice over when they're going to behave the same anyway. We can initialize our players like this:


	FUNCTION _INIT()

	P1=P_MAKE(32,64,0)

	P2=P_MAKE(96,64,0.5)

	P2.COL=12

	P2.P=1

	END



In addition to being a lot cleaner, it also saves cartridge space. If this were made outside the PICO-8 though, it would easily allow for supporting more than 2 players if you stored their tables in an index.

Before moving on, let's write some constants the player will use. Just stick this at the top of your code.


	P_LEN = 7 --LENGTH, FRONT TO BACK, OF THE PLAYER'S SHIP.

	P_WID = 3 --WIDTH, FROM CENTER TO SIDE, OF THE PLAYER'S SHIP.

	P_SPD = 1 --MAX SPEED THE PLAYER CAN TRAVEL.

	P_ACL = 0.075 --HOW MUCH TO INCREASE VELOCITY EVERY FRAME

	P_DRG = 0.025 --HOW MUCH FRICTION TO ACT ON THE PLAYER EVERY FRAME

	P_RAD = 2.5 --PLAYER HITBOX RADIUS



This is all pretty simple stuff, but it's going to get more complex from here on out. There's some vaguely involved math we'll be using to calculate drag for very purposeful ends. In competitive games, the nuance of every little action becomes important. It's not just the fact things move, but the way they move that makes the difference. We'll go deep into all the game's minutia and see how they contribute to the whole.

Before jumping headfirst into play though, let's get our ships drawing:


	FUNCTION P_DRAW(P)

	--HOW MUCH THE SHIP EXTENDS IN FRONT

	LOCAL LENX = COS(P.ROT)*P_LEN

	LOCAL LENY = SIN(P.ROT)*P_LEN

	--HOW MUCH THE SHIP EXTENDS TO THE SIDE

	LOCAL SIDEX = COS(P.ROT+0.25)*P_WID

	LOCAL SIDEY = SIN(P.ROT+0.25)*P_WID

	--POINT AT FRONT OF SHIP

	LOCAL PFX=P.X+LENX*0.6 --60% OF THE SHIP'S LENGTH IS IN FRONT OF ITS CENTER

	POINT (X,Y)

	LOCAL PFY=P.Y+LENY*0.6

	--POINT AT LEFT OF SHIP

	LOCAL PLX=P.X-LENX*0.4+SIDEX --40% OF THE SHIP'S LENGTH IS BEHIND ITS CENTER

	POINT (X,Y)

	LOCAL PLY=P.Y-LENY*0.4+SIDEY

	--POINT AT RIGHT OF SHIP

	LOCAL PRX=P.X-LENX*0.4-SIDEX

	LOCAL PRY=P.Y-LENY*0.4-SIDEY

	--THATS A LOT OF MATH! EASY PART NOW!

	LINE(PFX,PFY,PLX,PLY,P.COL)

	LINE(PFX,PFY,PRX,PRY,P.COL)

	LINE(PLX,PLY,PRX,PRY,P.COL)

	END



Quite a bit just for a little triangle, huh? But that's not just any triangle, it's our triangle. And it rotates. Most importantly, it rotates around roughly the center of the triangle, which will let us fit a circular hitbox inside it pretty snugly. Let's get it on screen:


	FUNCTION _UPDATE()

	--EMPTY :)

	END

	

	FUNCTION _DRAW()

	RECTFILL(0,0,127,127,1) --CLEAR THE SCREEN

	RECTFILL(0,0,127,8,0) --DRAW THE STATUS BAR

	P_DRAW(P1)

	P_DRAW(P2)

	END



Now run it, and you should see an image that resembles the image at the top of this chapter. Wonderful! Seeing the first few things appear on the screen in a game never stops being exciting for me. Now let's write update code:


	FUNCTION P_UPDATE(P)

	--TURNING

	IF BTN(0,P.P) THEN

	P.ROT+=0.0125

	END

	IF BTN(1,P.P) THEN

	P.ROT-=0.0125

	END

	--ACCELERATION

	IF BTN(2,P.P) THEN

	P.VX+=COS(P.ROT)*P_ACL

	P.VY+=SIN(P.ROT)*P_ACL

	--VELOCITY CAPPING

	IF ABS(P.VX)+ABS(P.VY) > 1 THEN

	LOCAL D=ATAN2(P.VX,P.VY)

	P.VX=COS(D)

	P.VY=SIN(D)

	END

	END

	--DRAG

	LOCAL VEL=(ABS(P.VX)+ABS(P.VY))/P_SPD

	LOCAL SX=SGN(P.VX)

	LOCAL SY=SGN(P.VY)

	P.VX-=P_DRG*P.VX*VEL

	P.VY-=P_DRG*P.VY*VEL

	IF(SX != SGN(P.VX))P.VX=0

	IF(SY != SGN(P.VY))P.VY=0

	--MOVEMENT

	P.X+=P_SPD*P.VX

	P.Y+=P_SPD*P.VY

	--WRAPPING

	P.X=P.X%127

	IF(P.Y>127)P.Y=8

	IF(P.Y<8)P.Y=127

	END



And then add it to the update loop:


	FUNCTION _UPDATE()

	P_UPDATE(P1)

	P_UPDATE(P2)

	END



While writing this you probably got a good idea of what this code's doing, but let's go through it anyway. As you saw in the draw function, we're using COS and SIN to rotate our coordinates. You'll see more of these as we go on.

The first thing we do after accelerating is cap the velocity. This serves two functions: It keeps the ships from accelerating to light speed, and it keeps the velocity capped the same no matter which direction you're moving or facing.

Next is drag. First, we're taking a proportional readout of the ship's speed, where 0 is still and 1 is maximum velocity. We use this to apply more drag as the ship speeds up, giving a nice curve to the acceleration and sparing us the logistics of applying more drag than acceleration at any given moment —then we couldn't move! Next we take the sign, “SGN()”, of each velocity component, which is whether the given number is positive, negative, or zero, expressed as 1, -1, or 0. First we use this to make sure drag is always reducing the velocity value, whether it's positive or negative, then we use it to check if the drag has completely decelerated the ship. If the sign has crossed a threshold, then it's done its work.

To wrap it all up, we're using a couple simple statements to loop the ship around the screen, so that when you leave it from one end you come out the other. The differing Y looping is to account for the health bar display we'll be making later on. Looping contextualizes the space in a really interesting way, and it gives room for some really tricksy competitive strategies.

This is a lot of backbone for just flying around space, right? You could omit all the velocity and acceleration and drag stuff and just leave it at moving forward when you press forward. I think it's worth it though, a little effort in the right places can go a long way. The core of this game is maneuvering; you're dodging asteroids and the other player while positioning yourself for the best shot. To really flesh that out, the game needs interesting movement mechanics. Here, it's very floaty. And while there's a lot of inherent fun to that, it also adds to the feeling of flying a ship in space and adds another layer to the game's strategy: A key part of multiplayer games is being able to read your opponents, (the fighting game community calls this “yomi”) to get in their head, predict them, and ultimately outwit one or the other. Floatiness adds a predictable trajectory to your ship's motions, and this creates a dynamic of being able to mislead and juke your opponents as well. These kinds of mind-games are the backbone of competitive games, and we'll add more elements to the game to flesh this out as we go on.

If you haven't already, run the game. Revel in the fun movement mechanics you just made! Get a real feel for them, and then start thinking about the sorts of things you could add to make an interesting versus game. Grab a nice warm beverage, chill out, and get ready for the next chapter.

2. AGENTS OF CHAOS: THE ASTEROIDS

Most multiplayer games have some element of chaos to keep things interesting play-to-play. For a game like Street Fighter it's the sheer size of the possibility space. For a card game like Magic: The Gathering it's the randomness of which card you and your opponent will draw next. (and also the sheer size of the possibility space. Magic is a lot.) Think of the possibility space as the total range of theoretical outcomes produced from your game's mechanics interacting with each other. Learning to keep the possibility space of your game in mind is kind of like seeing the Matrix.

But more importantly, what possibility spaces and card draws have in common is impredictability, and that is your chaos element. Impredictability does not necessarily mean randomness, though it can. Many consider too much randomness counter-productive for a competitive game because it makes the outcome of the game more dependent on luck. The key here is flavor. Interest. Variety. Pizazz. In some multiplayer games, this might mean having different stages with different level geometry, or a roster of characters to play as, or a million-and-one different cards which all have unique mechanics associated with them. (terrifying!).

In our game, that chaos element is the asteroids themselves. Not only do they enter the play field differently each game, they break apart into smaller chunks that get sent flying around.

For the sake of competitiveness, you'll notice we take specific measures to add a deterministic element to rocks splitting apart, adding a layer of complexity that skilled players may harness competitively. Competitive scenes often call this a “skill ceiling”, where the higher the ceiling is the more potential there is to harness the game's mechanics competitively. Games with high skill ceilings are things like Chess, Street Fighter and League of Legends, where games with low skill ceilings are ones like Tic-Tac- Toe and Rock, Paper, Scissors.

[image: image 13]

Let's dive into some code:


	FUNCTION A_NEW(A,X,Y,S,VX,VY)

	A = A OR {}

	A.ON=TRUE

	A.X=X

	A.Y=Y

	A.S=S

	A.VX=VX

	A.VY=VY

	RETURN A

	END



You'll notice we're handling asteroids a bit differently—you can pass in a pre-existing table.

Here's why:


	FUNCTION A_INIT()

	--INITIALIZE ASTEROID POOL

	--WE DO THIS FOR CONSISTENT PERFORMANCE

	ROCKS={}

	FOR I=1,20 DO

	LOCAL ROCK=A_NEW(NIL,-16,-16,5,0,0)

	ROCK.ON=FALSE

	ROCKS[#ROCKS+1]=ROCK

	END

	ROCKS_ON=0

	END



Here, we're using a pool of asteroids. There will always be at least 20 in memory, but it will expand the collection if necessary. Rather than initializing a new table when we want to put a new asteroid on the screen, we reuse old ones first. This way we're not constantly initializing and freeing data at the whims of the garbage collector, the part of Lua that cleans up no-longer used data now and then. It's good not to lean on the garbage collector too much, activating it comes with a performance overhead and memory is so limited on the PICO-8. It's important for competitive games to run smoothly and consistently.


	FUNCTION A_RECYCLE(X,Y,S,VX,VY)

	--RECYCLE AN OLD PIECE OF DATA

	--BEFORE MAKING A NEW ONE

	FOR A IN ALL(ROCKS) DO

	IF A.ON == FALSE THEN

	A = A_NEW(A,X,Y,S,VX,VY)

	ROCKS_ON+=1

	RETURN A

	END

	END

	ROCKS[#ROCKS+1]=A_NEW(NIL,X,Y,S,VX,VY)

	ROCKS_ON+=1

	RETURN ROCKS[#ROCKS+1]

	END



Now we have a really convenient way to recycle asteroids. Instead of using A_NEW() to add an asteroid into the play field, we'll be using A_RECYCLE()


	FUNCTION A_UPDATE()

	IF ROCKS_ON < 4 THEN --KEEP THE PLAY FIELD FROM BEING EMPTY

	LOCAL R=RND(1)

	LOCAL X=64+COS(R)*100 --CHOOSE A POINT OUTSIDE THE SCREEN, RADIALLY

	LOCAL Y=64+SIN(R)*100

	A_RECYCLE(X,Y,8,COS(R+RND(0.1)-0.05)*-0.6,SIN(R+RND(0.1)-0.05)*-0.6)

	--ADD SOME RANDOM DEVIATION SO THEY DON'T ALL MOVE DIRECTLY TOWARDS THE CENTER

	END

	FOR ROCK IN ALL(ROCKS) DO

	--VERY SIMPLE BEHAVIOUR FOR THE ASTEROIDS

	ROCK.X+=ROCK.VX

	ROCK.Y+=ROCK.VY

	--WRAPPING

	IF(ROCK.X>127 AND ROCK.VX>0)ROCK.X=0

	IF(ROCK.X<0 AND ROCK.VX<0)ROCK.X=127

	IF(ROCK.Y>127 AND ROCK.VY>0)ROCK.Y=0

	IF(ROCK.Y<8 AND ROCK.VY<0)ROCK.Y=127

	END

	END

	

	FUNCTION A_DRAW()

	FOR ROCK IN ALL(ROCKS) DO

	IF ROCK.ON THEN

	CIRCFILL(ROCK.X,ROCK.Y,ROCK.S,4)

	END

	END

	END



That took a bit of scaffolding, but we finally did it. Make sure to add A_INIT(), A_UPDATE() and A_DRAW() into your code, and then give it a run! Asteroids should start barreling in from the edges of the screen.

[image: image 14]

Except there's no collision. Let's fix that right now. First, put this somewhere in your code:


	FUNCTION DIST(X1,Y1,X2,Y2)

	RETURN SQRT((X2-X1)^2+(Y2-Y1)^2)

	END



We'll use this to check the distance between any two entities, and if their circle hitboxes are intersecting (meaning, that distance is less than both of their radius put together) then we'll know they're touching.

Add this to the end of P_UPDATE():


	--COLLIDE ROCK

	FOR R IN ALL(ROCKS) DO

	IF R.ON THEN

	IF DIST(P.X,P.Y,R.X,R.Y) < R.S+P_RAD AND P.INV==0 THEN

	P_HURT(P,10) --HURT THE PLAYER

	P.VX=R.VX*2

	P.VY=R.VY*2

	--CAN ROCK

	R.ON=FALSE

	ROCKS_ON-=1

	--SPLIT ROCKS

	LOCAL SIZE=R.S*0.65 --THE TWO ROCKS THAT COME OUT SHALL BE SMALLER

	IF SIZE > 3 THEN --BUT THEY SHALL ONLY GET SO SMALL

	A_RECYCLE(R.X,R.Y,SIZE,R.VY,-R.VX)

	--ROCKS SPLIT PERPENDICULAR TO THE ROCK'S MOTION VECTOR

	A_RECYCLE(R.X,R.Y,SIZE,-R.VY,R.VX)

	END

	BREAK

	END

	END

	END



As you may have noticed, there's a couple things in here we haven't defined yet. We'll do that in a minute, but first, I want to recall the ship hitbox size. Maybe it occurred to you in passing that it was a bit small. It totally is! A rule I like to follow is to always round down when deciding player hitboxes. Why? Because otherwise getting hit might feel less fair. Human perception is bound to misjudge time to time, especially when our eyes are trained on a screen and not a tangible object in front of us.

Instead of having people make snap judgements on the razor's edge, a little leeway makes everything feel a bit more well-rounded. We make up for the smallness of the player ship by making everything else in the game big. But it's not a zero-sum game. People are experiencing the visual and aural information of the game, and that informs how they understand your game's systems. They will not be acutely aware of the numbers acting behind the scenes like you might. I find it really important to keep this in mind.

Moving on, we've yet to implement damage-taking elements to the player, so let's do that now.

Add this to P_MAKE:


	HP=100

	INV=0



Add this to p_update:


	P.INV=MAX(0,P.INV-1)



Add this to p_draw around the three line() commands:


	IF P.INV % 6 < 3 THEN

	--MAKE SHIP FLASH WHILE INVULNERABLE

	--LINE()

	--LINE()

	--LINE()

	END



And finally:


	FUNCTION P_HURT(P,DMG)

	P.HP-=DMG

	P.INV=45

	END



That's not it though, we need to be able to see the hp, so add this to P_DRAW():


	--HP BAR

	IF P.P==0 THEN

	LOCAL BX1=1

	LOCAL BY1=2

	LOCAL BXW=56

	LOCAL BY2=BY1+4

	RECTFILL(BX1,BY1,BX1+BXW*(P.HP/100),BY2,P.COL)

	ELSE

	LOCAL BX1=126

	LOCAL BY1=2

	LOCAL BXW=-56

	LOCAL BY2=BY1+4

	RECTFILL(BX1, BY1, BX1 + BXW * (P.HP/100), BY2, P.COL)

	END



Now update your _draw():


	FUNCTION _DRAW()

	RECTFILL(0,0,127,127,1)

	A_DRAW()

	RECTFILL(0,0,127,8,0)

	PRINT("VS",60,2,7)

	P_DRAW(P1)

	P_DRAW(P2)

	END



You did it. Now run the game, and you should be able to experience to glory of being smashed by space debris in real-time and observing its effects. This was a big milestone, and that's fantastic! Give your brain a rest before we go into the final part. Everything's about to come together.

3. TOOLS OF WAR: THE SHOOTING

There's two major things you do in this game, move and shoot. We've got the moving, and the big rocks which make you really gotta move, so now we need shooting. We're not just gonna smash a button to shoot though.

We're doing charged shots.

Okay, that isn't a huge enough deal to justify dramatic linebreaks, but it is important! The concept of charging up adds a whole new layer to the competitive dynamic—”When are they going to shoot?” Now shooting becomes a question of taking the time for a well-placed shot, or firing early to catch your opponent offguard, or even barraging them with a hail of weak shots as a distraction mechanism for the big one-two. It creates a definitive line of strategy to think in terms of, and as a consequence, get into each others' heads over.

[image: image 15]


	S_SPD_MIN = 2 --MINIMUM SHOT SPEED

	S_SPD_CHG = 1.5 --SPEED TO ADD AS THE CHARGE GETS HIGHER

	

	FUNCTION S_NEW(T,X,Y,S,D,P)

	T = T OR {}

	T.X=X

	T.Y=Y

	T.S=S --SIZE(0 TO 1)

	T.SZ=1+S*3 --PIXEL SIZE IN RADIUS

	T.D=D --FACING DIRECTION

	T.DST=50--DISTANCE TO TRAVEL BEFORE DISSIPATING

	T.ON=TRUE

	T.P=P --PLAYER WHO SHOT THIS

	T.SPD=S_SPD_MIN+S_SPD_CHG*S

	T.VX=COS(D)*T.SPD

	T.VY=SIN(D)*T.SPD

	RETURN T

	END



And then we'll use the recycling method, just like before with the asteroids:


	FUNCTION S_RECYCLE(...)

	SHOTS_ON+=1

	FOR S IN ALL(SHOTS) DO

	IF S.ON==FALSE THEN

	S = S_NEW(S,...)

	RETURN S

	END

	END

	LOCAL S = S_NEW(NIL,...)

	SHOTS[#SHOTS+1]=S

	RETURN S

	END

	

	FUNCTION S_INIT()

	SHOTS={}

	SHOTS_ON=0

	--INITIALIZE SHOT POOL

	FOR I=1,10 DO

	LOCAL S = S_NEW(NIL,0,0,0,0,0)

	S.ON=FALSE

	SHOTS[#SHOTS+1]=S

	END

	END



You'll notice that our techniques mirror a lot of what we did with the asteroids. In a more complex game, you might even consolidate them into a single cohesive entity system. For this though, we have a very specific idea of what we want to do, so that would just eat up our time and introduce more moving parts than necessary. This is the last big code block there is. And it looks like more than it is! Most of what we're doing here will look familiar.


		function s_update()

	for s in all(shots) do

	if s.on then

	--motion

	s.x+=s.vx

	s.y+=s.vy

	--wrapping

	s.x=s.x%127

	if(s.y>127)s.y=8

	if(s.y<8)s.y=127

	--dissipation

	s.dst-=s.spd

	if s.dst<0 then

	s.on=false

	shots_on-=1

	end

	--collide rock

	for r in all(rocks) do

	if r.on then

	if dist(s.x,s.y,r.x,r.y) < r.s+s.sz then

	sfx(3)

	--remove objects

	s.on=false

	r.on=false

	shots_on-=1

	rocks_on-=1

	--split rocks, just like with ship colliding

	s.vx*=0.3

	s.vy*=0.3

	local size=r.s*0.65

	if size > 3 then

	a_recycle(r.x,r.y,size,s.vy,-s.vx)

	a_recycle(r.x,r.y,size,-s.vy,s.vx)

	end

	break

	end

	end

	end

	--collide player

	local p = nil

	if(s.p==0) p=p2 --enemy player

	if(s.p==1) p=p1

	if dist(s.x,s.y,p.x,p.y) < p_rad+s.sz and p.inv==0 then

	s.on=false

	shots_on-=1

	p_hurt(p,10+15*s.s)

	p.vx+=s.vx*0.4*s.s

	p.vy+=s.vy*0.4*s.s

	end

	--end shot update

	end

	end

	end



There's a couple notable design choices in here. First, when asteroids collide with shots they don't split perpendicular to the asteroid's motion vector, they split perpendicular to the shot's. This adds a layer to the competitive dynamic where players can manipulate crumbling asteroids as an offensive tactic. This adds to the mind-gaming of charged shots and sneaky screen-looping tactics.

We're also making it so that shots push around the ship they hit. Now you can interfere with the other player's maneuvering on a whole other level, possibly pushing them into unfavorable positions or overwhelming them with the mere threat of losing their bearings.

They're such small choices too, yet they can go a long way to expanding the possibility for interesting plays. A little effort in the right places! If I'm getting obnoxious with that phrase it's only because I see a lot of worth in it. Anyway, let's put the shots on-screen now.


	FUNCTION S_DRAW()

	FOR S IN ALL(SHOTS) DO

	IF S.ON THEN

	LOCAL COL=0

	IF(S.P==0)COL=P1.COL

	IF(S.P==1)COL=P2.COL

	CIRCFILL(S.X,S.Y,1+S.S*3,COL)

	CIRCFILL(S.X,S.Y,S.S*3,7)

	END

	END

	END



UPDATE _INIT(), _UPDATE(), and _DRAW() now to incorporate the shot functions. You can go ahead and test it, but we haven't added a way to shoot yet. Let's fix that. This is the last step, and then you have a game.

Add this property to P_INIT():


	CHRG=0



Add this to the top of  P_UPDATE():


	--SHOOTING

	IF BTN(4,P.P) THEN

	P.CHRG=MIN(1,P.CHRG+0.05)

	END

	IF NOT BTN(4,P.P) AND P.CHRG > 0 THEN

	LOCAL S = S_RECYCLE(

	P.X+COS(P.ROT)*P_LEN*0.6, --SHOOT IT FROM THE TIP OF THE SHIP

	P.Y+SIN(P.ROT)*P_LEN*0.6,

	P.CHRG,

	P.ROT,

	P.P

	)

	S.VX+=P.VX--IN ADDITION TO THE SHOT'S OWN VELOCITY

	S.VY+=P.VY--LET IT INHERIT YOURS

	--PUSHBACK

	P.VX-=COS(P.ROT)*P.CHRG*0.8

	P.VY-=SIN(P.ROT)*P.CHRG*0.8

	--SFX

	IF P.CHRG==1 THEN

	SFX(1)

	ELSE

	SFX(0)

	END

	--RESET CHRG

	P.CHRG = 0

	END



And this to the bottom of P_DRAW(), to represent charging a shot:


	--CHARGE GRAPHIC

	IF P.CHRG > 0 THEN

	CIRCFILL(PFX,PFY,P.CHRG*3,10)

	END



We could talk about this, but you could also just play it. You've earned it. Talk can wait. Pull aside a loved one and shout “Hey! I made a versus game and it's probably really cool play it with me NOW” and they shall surely answer your summons.

If it does not live up to their or your hopes, then I challenge you:

Make it better. This is yours, so own it and take it as far as you want it to go. I've shared as much as I can without lecturing your head off (hopefully), so if what I've offered has impacted you, take it forth with everything else you have in you and bring a cool new thing into this world.

4. HERE WE LIE AT JOURNEY'S END

You have a game now. It is Blasteroids, or maybe it is something entirely your own instead. Many would say it's missing things like a “win state” or a “title screen”, but do not listen to them, those are window dressings you may adorn as your please. Your game is only ever what you want it to be, so pay no mind to anyone who presumes your interest in one value system or form of presentation or another.

Here are some additional goals I've thought of that you can pursue if you like:


		Add visual and sound effects to make all the game's little interactions pop

		Tweak the physics around to create an entirely different play dynamic

		Add a new mechanic which takes advantage of btn5 in an interesting way

		Make objects loop around the screen more smoothly

		Create a simple AI for 1-player mode. The trick is to not confine yourself into thinking it has to behave just like a player! Let it exist on its own.

		Do something entirely outside the boundaries of my other suggestions.



Before we part ways, I'd like to offer a closing thought: Multiplayer games are wonderful things that bring people together. Much like a dinner with loved ones, they are never uncomplicated or without squabbles and tension, but that's what makes them special. You bicker, you laugh, your body probably does something gross at some point, and ultimately it brings us closer to one another. We close gaps and wounds we suffer from the frustrations of daily life that sometimes threaten to push us apart. At every opportunity we must hold close these precious rituals which remind us that we love each other.

Yours,

--Lulu Blue

@luluisbluetoo

http://www.lexaloffle.com/bbs/?tid=2458


SUMO PICO

Sumo Pico is actually a demake of a small jam game I made with my partner, Britt, called “Sumo Puckii”. Sumo Puckii is an inertia driven bumper-boat-meets-sumo-wrestling game that we put out to test a bunch of stuff in Game Maker, including how little friction we could put on something and still have the player feel in control, pythagorean distance, exporting to android, and of course, multiplayer. It is funny then that remaking Sumo Puckii has kind of become my benchmark for testing new development environments, especially the multiplayer side of things, particularly with PICO8, which until a recent announcement, hasn’t been branded so much as a local-multiplayer powerhouse.

[image: image 16]

[image: image 17]

Sumo Pico was my very first game made with PICO-8, so as such, if you were to dig through the source code, it would be an utter mess. Because I had essentially made this game before, I knew what to do, just not how to do it. In fact, before this game, I had never even touched Lua before. I will not pretend to be a professional, but the code’s design did have a plan, and works a little like this: A container for information about both players is initialized.

PICO-8 calls them “tables” I believe.


	ACTORS={}



This allows us to treat each object contained in the “ACTORS” table essentially the same, while still being able to refer to each individual one as a separate instance. In the INIT() loop, I initialize a variable for each player, and tell it to run a function that sets up a bunch of necessary variables for them.


	FUNCTION _INIT()

	P1 = CREATE_ACTOR(32,64,2,0)

	P2 = CREATE_ACTOR(96,64,3,1)

	END

	

	FUNCTION CREATE_ACTOR(X,Y,IMG,N)

	LOCAL P = {}

	P.X = X

	P.Y = Y

	P.DX = 0

	P.DY = 0

	P.IMG = IMG

	P.N = N

	P.H = 3

	P.W = 3

	ADD(ACTORS,P)

	RETURN P

	END



The function requires that we pass in an x and y position at which to create the player, an image (or the index of which sprite to use), and “N”, the identifier of which player is in control of the object (0 being player 1). Then, it creates a new table “P”, which will contain all of the variables about the instance of the player, adds a bunch of variables into that table, and then adds that table to our “ACTORS” table, finally returning “P” so that our variable “P1” or “P2” can easily refer to it.

In the UPDATE() loop, I use the “FOREACH” loop, which applies the function to all objects in a table, to call a function “MOVE_ACTOR()” which will check the input from a controller with the id number (N) of each of the players, and then make them move accordingly.


	FUNCTION _UPDATE()

	FOREACH(ACTORS, MOVE_ACTOR())

	END

	

	FUNCTION MOVE_ACTOR(P)

	P.DX += (0- P.DX) * 0.05

	P.DY += (0- P.DY) * 0.05

	IF (BTN(0,P.N)) THEN

	P.DX += (-4-P-P.DX) * 0.1

	END

	IF (BTN(1,P.N)) THEN

	P.DX += (4- P.DX) * 0.1

	END

	IF (BTN(2,P.N)) THEN

	P.DY += (-4-P.DY) * 0.1

	END

	IF (BTN(3,P.N)) THEN

	P.DY += (4- P.DY) * 0.1

	END

	P.X += P.DX

	P.Y += P.DY

	END



For the sake of simplicity, I have removed the collisions from this code example, and because this is about multiplayer in PICO-8, I wanted to focus more on the input here. To get input in PICO-8, you use the built in function “BTN(BUTTON, CONTROLLER#)”.

Because the foreach loop automatically fed the variable “P” (which player) to the function “MOVE_ACTOR”, and because we assigned each “P” a variable “N” to refer to which controller will be in control of them, when querying input, instead of individually checking if player 1’s controller is doing xyz, and player 2’s controller is doing abc, we can just check if p’s controller is doing something, because p contains both the information about who is in control and the velocities and the x and y positions. This is particularly useful for expansion. When PICO-8 adds up to 8 player support, all that I would have to change is how many players I initialize in order to support it! In fact they could add up to an infinite number of possible players and it would still work (in theory). I’ve been making multiplayer games for quite some time now, and I’ve found that the best way to manage multiple player objects and inputs is to make them dynamic, meaning, if the objects are meant to behave the same way and only require a few changes between them, it will make your life easier to have them be the same, and make the changes based on an identifier number. PICO-8 is surprisingly accommodating with this, and I hope that everyone embraces the new multiplayer expansions with love and caring!

--Cullen Dwyer

@cullenddwyer

http://www.lexaloffle.com/bbs/?tid=2191


CHEAT SHEET

System


	load filename

	save filename

	export filename.html

	folder

	ls

	run

	resume

	reboot

	stat x

	info

	flip

	printh str



Graphics


	clip [x y w h]

	pget x y

	pset x y [c]

	sget x y

	sset x y [c]

	fget n [f]

	fset n [f] v

	print str [x y [col]]

	cursor x y

	color col

	cls

	camera [x y]

	circ x y r [col]

	circfill x y r [col]

	line x0 y0 x1 y1 [col]

	rect x0 y0 x1 y1 [col]

	rectfill x0 y0 x1 y1 [col]

	pal c0 c1 [p]

	palt c t

	sspr sx sy sw sh dx dy [dw

	dh] [flip_x] [flip_y]



Collections


	add table val

	del table val

	all table

	foreach table func

	pairs table

	#table

	Input

	btn [i [p]]

	btnp [i [p]]



Audio


	sfx n [ch [offset]]

	music [n [fade [ch_mask]]]



Map


	mget x y

	mset x y v

	map cel_x cel_y sx sy cel_w

	cel_h [layer]



Memory


	peek addr

	poke addr val

	memcpy dest src len

	reload dest src len

	cstore dest src len

	memset dest val len



Math


	max x y

	min x y

	mid x y z

	flr x

	cos x

	sin x

	atan2 dx dy

	sqrt x

	abs x

	rnd x

	srand x

	band x y

	bor x y

	bxor x y

	bnot x

	shl x y

	shr x y



Strings


	#str

	str0..str1

	sub str start [end]



Cartridge Data


	cartdata id

	dget inde x

	dset index val



RAM Layout


		0x0000	gfx

		0X1000	gfx2/map2 (shared)

		0X2000	map

		0X3000	gfx_props

		0X3100	song

		0X3200	sfx

		0X4300	user-defined

		0X5f00	draw state

		0x5f80	persistent cart data

		0x5fc0	(reserved)

		0x6000	screen (8k)



Colour Palette

[image: image 18]


[image: image 19]



	[image: cover image]



CONTENTS

Don’t Wait

AI Move Special Roguelike

A* Pathfinding in PICO-8

Traps for Absolutely Every Imaginable Occasion

Dungeon Walls

Sharing Music Between Carts 

Donut Maze

[image: image 1]

PICO-8 is a fanzine made by and for PICO-8 users.

The title is used with permission from Lexaloffle Games LLP.

For more information: www.pico-8.com

Contact: @arnaud_debock

Cover illustration by @pietepiet

Special thanks to @dan_sanderson and @lexaloffle


DON'T WAIT

I made this to illustrate some of my reasoning behind a particular design decision in the roguelike games I've made. It's probably better to play it before reading this, it only takes a couple of minutes.

posted on the bbs: http://www.lexaloffle.com/bbs/?tid=2991

[image: image 2]

I hope it speaks for itself fairly well but I'll put it in context. In Rogue, and many other games following in its lineage, you could press a key (often ".") to skip a turn. In my games Zaga-33 and 868-HACK (and the unreleased Imbroglio) you can't (at least, not freely - there are ways). This goes against the genre expectations and so I sometimes get complaints - "why can't I wait in place?", "i can't find the wait button", "how do you wait?", "this game is bad because sometimes the enemy hits you", etc.

The three levels of this little game demonstrate three different approaches to "wait".

Level 1: you can't wait. All you can do is take a step or hit an enemy. Both player and enemies die in just one hit - this wouldn't be ideal for a more complex roguelike because a lot of the play in these games is making decisions about which resources to sacrifice ("do I take some damage or do I use up an item?") but it helps make everything very clear for this example. It means if an enemy is an even number of steps away it is guaranteed to get the first hit and kill you, if an odd number you can safely kill it. The twist is that you don't move when you hit an enemy, allowing you to convert those evens to odds if you're careful about the order you meet them in. (See Aaron Steed's Ending for a fully fleshed out game based around this idea.)

Level 2: you can wait. You can just press a key and all the enemies move closer, turn scary evens to nice safe odds. Depending on the order you hit them in you might need to wait a lot or very little, but it doesn't matter because you can complete it either way. The tactics in this level end up being a lot simpler; maybe it makes more sense that you can wait but something interesting has been lost. I'd also say there's a loss in simplicity - an extra control is an extra thing to tell you about, extra text on the screen. But a lot of games have this rule and it works well for them. (In Rogue and many classic roguelikes waiting to get the first hit isn't free the way it is here because there are various timers that tick up each turn even as you wait, governing hunger, enemy spawns, corruption, etc. - you'll starve to death in 100 turns so maybe you don't want to spend one of them standing still. These costs tend to be quite minor compared to being damaged, but still they do sometimes create situations where it's better to take an extra hit than an extra turn. But when you're making a smaller game that doesn't have so many ornate systems counterbalancing each other these costs might need to be made explicit.)

Level 3: the enemies can wait too. I've been told that it's unrealistic to not have a wait button, but if so then it's unrealistic for enemies not to wait as well - very unrealistic for the player to always get the first hit. One of the elements cited in the Berlin Interpretation as a common characteristic of roguelikes is "Rules that apply to the player apply to monsters as well". And of course they do exactly what you've been doing in the previous level - waiting whenever you're two steps away, refusing to get hit first. Maximum realism! This fundamentally doesn't work with the "one hit point" rule, leaving the level impossible, but you can see how unpleasant it would be to have this tactic turned against you in a less strict game too.

Part of the enjoyment of roguelikes is outwitting enemies who outnumber you. The capacity to patiently wait while they blindly charge in can be one expression of this, but I don't think it's a very good one because it's always the right choice. Applying one simple method every time doesn't express much cleverness, better to have to think up new solutions to different situations.

Michael Brough

@smestorp

[image: image 3]


AI MOVE SPECIAL ROGUELIKE

Here's a tutorial on how design a basic AI for monsters moving on a grid.

http://www.lexaloffle.com/bbs/?pid=18367&tid=2986&autoplay=1#pp

[image: image 4]

We will focus on two behaviors:


		fighters: follow hero to hit him

		archers: try to reach a line of sight and aim at hero



In the _INIT() function I read the map information to draw level, spawn hero/monsters and store useful data in a squares collection.

The EXPAND(A,DID) function takes all squares in <A> as a start position (=0) and then computes the distance from all others squares.

You can see the values by pressing (Z) during the test. RUN_MON(E) will move the monster by checking the 4x nearby squares.If it finds a square with a lower distance it will move in this direction.Once they reach a square with a DISTof 0 archer will aim at hero by defining a SHOOT_DIR value.

Benjamin Soule

@benjamin_soule_

[image: image 5]


A* pathfinding in PICO-8

A* pathfinding is an efficient way to find the shortest path from one position to another if possible. It is widely used in video games but also in the transportation and computer networking industries.

We are going to implement A* pathfinding in PICO-8 in a simple single screen application by first implementing a simpler breadth-first pathfinding algorithm then extending it into an A* pathfinding algorithm.

1.The Map

Let's first draw a map in PICO-8 using this code:


	FUNCTION _INIT()

	END

	

	FUNCTION _UPDATE()

	END

	

	FUNCTION _DRAW()

	CLS()

	MAPDRAW(0,0,0,0,16,16)

	END



Next we will draw some basic sprite

[image: image 6]

They include:


		Blank - 000

		Wall - 001

		Goal - 016

		Start - 017

		Path - 018



The Walls block the path from the Start to the Goal, we will draw a path with the Path sprite.

Now we can create a map with a Start and Goal position somewhere and walls that will block the path.

[image: image 7]

2. Breadth-first Pathfinding

Next we want to search through the locations starting from the Start using breadth first search, this will find the neighbours of each location searched and then search the neighbours ignoring the walls. This code doesn’t look for anything just yet, it just iterates through each map position in a kind of expanding circle outward starting at Start.

Update _INIT() with this code.


	FUNCTION _INIT()

	

	START = GETSPECIALTILE(17)

	GOAL = GETSPECIALTILE(16)

	

	FRONTIER = {}

	INSERT(FRONTIER, START)

	CAME_FROM = {}

	CAME_FROM[VECTOINDEX(START)] = "NONE"

	WHILE #FRONTIER > 0 DO

	CURRENT = POPEND(FRONTIER)

	

	LOCAL NEIGHBOURS = GETNEIGHBOURS(CURRENT)

	FOR NEXT IN ALL(NEIGHBOURS) DO

	IF CAME_FROM[VECTOINDEX(NEXT)] == NIL THEN INSERT(FRONTIER, NEXT)

	CAME_FROM[VECTOINDEX(NEXT)] = CURRENT

	END

	END

	END



I’ve added a few helper functions as well. Some of these such as POPEND() and REVERSE() are added because pico-8 uses a subset of the lua language. I won’t go into detail about these because this article is about the A* search.


	--FIND ALL EXISTING NEIGHBOURS OF A POSITION THAT ARE NOT WALLS 

	FUNCTION GETNEIGHBOURS(POS) 

	LOCAL NEIGHBOURS={} 

	LOCAL X = POS[1] 

	LOCAL Y = POS[2]

	IF X > 0 AND (MGET(X-1,Y) != WALLID) THEN 

	ADD(NEIGHBOURS,{X-1,Y}) 

	END

	IF X < 15 AND (MGET(X+1,Y) != WALLID) THEN 

	ADD(NEIGHBOURS,{X+1,Y}) 

	END

	IF Y > 0 AND (MGET(X,Y-1) != WALLID) THEN 

	ADD(NEIGHBOURS,{X,Y-1}) 

	END

	IF Y < 15 AND (MGET(X,Y+1) != WALLID) THEN 

	ADD(NEIGHBOURS,{X,Y+1}) 

	END

	RETURN NEIGHBOURS 

	END

	

	--FIND THE FIRST LOCATION OF A SPECIFIC TILE TYPE

	FUNCTION GETSPECIALTILE(TILEID) 

	FOR X=0,15 DO 

	FOR Y=0,15 DO 

	LOCAL TILE = MGET(X,Y) 

	IF TILE == TILEID THEN 

	RETURN {X,Y} 

	END 

	END 

	END

	PRINTH("DID NOT FIND TILE: "..TILEID) 

	END

	

	--INSERT INTO START OF TABLE 

	FUNCTION INSERT(T, VAL) 

	FOR I=(#T+1),2,-1 DO 

	T[I] = T[I-1] 

	END

	T[1] = VAL 

	END

	

	--POP THE LAST ELEMENT OFF A TABLE 

	FUNCTION POPEND(T) 

	LOCAL TOP = T[#T] 

	DEL(T,T[#T]) 

	RETURN TOP 

	END

	

	FUNCTION REVERSE(T) 

	FOR I=1,(#T/2) DO 

	LOCAL TEMP = T[I] 

	LOCAL OPPINDEX = #T-(I-1) 

	T[I] = T[OPPINDEX] 

	T[OPPINDEX] = TEMP 

	END

	END

	

	--TRANSLATE A 2D X,Y COORDINATE TO A 1D INDEX AND BACK AGAIN 

	FUNCTION VECTOINDEX(VEC) 

	RETURN MAPTOINDEX(VEC[1],VEC[2])

	END

	

	FUNCTION MAPTOINDEX(X, Y) 

	RETURN ((X+1) * 16) + Y 

	END

	

	FUNCTION INDEXTOMAP(INDEX) 

	LOCAL X = (INDEX-1)/16 

	LOCAL Y = INDEX - (X*W) 

	RETURN {X,Y} 

	END



Additionally add this code to the end of GETNEIGHBOURS(), just before the RETURN, to make the paths walk in a diagonal instead of in a square, this is the same distance but it looks shorter when walking a diagonal.


	IF (X+Y) % 2 == 0 THEN

	REVERSE(NEIGHBOURS)

	END



Now we can add some code to stop searching if we find the Goal, add this just below CURRENT = POPEND(FRONTIER) in the WHILE loop.


	IF VECTOINDEX(CURRENT) == VECTOINDEX(GOAL) THEN

	BREAK

	END



This will break out of the WHILE loop if the current map position is the goal, no need to search the rest of the map.

We can now draw a line using the Path tiles along the points in CAME_FROM. We will reverse them so they are drawn from Start to Goal.

Add this below the WHILE loop.


	CURRENT = CAME_FROM[VECTOINDEX(GOAL)]

	PATH = {}

	LOCAL CINDEX = VECTOINDEX(CURRENT)

	LOCAL SINDEX = VECTOINDEX(START)

	WHILE CINDEX != SINDEX DO

	ADD(PATH, CURRENT)

	CURRENT = CAME_FROM[CINDEX]

	CINDEX = VECTOINDEX(CURRENT)

	END

	REVERSE(PATH)

	FOR POINT IN ALL(PATH) DO

	MSET(POINT[1],POINT[2],18)

	END



Now we should see something like this when we run the game.

[image: image 8]

This is great! the path goes straight from the Start to the Goal but if we add a new sprite at position 19 and add this to the WHILE loop.


	LOCAL NEXTINDEX = VECTOINDEX(NEXT)

	IF (NEXTINDEX != VECTOINDEX(START)) AND (NEXTINDEX != VECTOINDEX(GOAL)) THEN

	MSET(NEXT[1],NEXT[2],19)

	END



Then we can see where the algorithm has searched.

You can see the algorithm has expanded outwards until it found the goal, not very efficient.

3. A* Pathfinding

A* Pathfinding will find the shortest path quicker by searching less positions and ranking each position found by how close it is to the goal. This is done with a priority queue data structure.

Since pico-8 doesn’t have a priority queue built in we can make a simple insertion sort function for a lua table. This isn’t the fastest method of sorting but it is fairly simple.


	--INSERT INTO TABLE AND SORT BY PRIORITY

	FUNCTION INSERT(T, VAL, P)

	IF #T >= 1 THEN

	ADD(T, {})

	FOR I=(#T),2,-1 DO

	LOCAL NEXT = T[I-1]

	IF P < NEXT[2] THEN

	T[I] = {VAL, P}

	RETURN

	ELSE

	T[I] = NEXT

	END

	END

	T[1] = {VAL, P}

	ELSE

	ADD(T, {VAL, P})

	END

	END



We also change the return line of POPEND() so we only return the value part.


	RETURN TOP[1]



Then we need to add a heuristic, this is how far away from the goal each point is. A* uses this heuristic to calculate the total cost of traveling to each node as it is searching and will check the lowest cost paths first.

This implementation of a heuristic function simply uses manhattan distance.


	FUNCTION HEURISTIC(A, B)

	RETURN ABS(A[1] - B[1]) + ABS(A[2] - B[2])

	END



Finally we will update the while loop to use a running cost and prioritising the shortest paths. It also updates paths already checked if a faster way through that tile has been found.


	FRONTIER = {}

	INSERT(FRONTIER, START, 0)

	CAME_FROM = {}

	CAME_FROM[VECTOINDEX(START)] = NIL

	COST_SO_FAR = {}

	COST_SO_FAR[VECTOINDEX(START)] = 0

	

	WHILE #FRONTIER > 0 DO

	CURRENT = POPEND(FRONTIER)

	

	IF VECTOINDEX(CURRENT) == VECTOINDEX(GOAL) THEN

	BREAK

	END

	

	LOCAL NEIGHBOURS = GETNEIGHBOURS(CURRENT)

	FOR NEXT IN ALL(NEIGHBOURS) DO

	LOCAL NEXTINDEX = VECTOINDEX(NEXT)

	LOCAL NEW_COST = COST_SO_FAR[VECTOINDEX(CURRENT)]

	IF (COST_SO_FAR[NEXTINDEX] == NIL) OR (NEW_COST < COST_SO_FAR[NEXTINDEX]) THEN

	COST_SO_FAR[NEXTINDEX] = NEW_COST

	LOCAL PRIORITY = NEW_COST + HEURISTIC(GOAL, NEXT)

	INSERT(FRONTIER, NEXT, PRIORITY)

	

	CAME_FROM[NEXTINDEX] = CURRENT

	

	IF (NEXTINDEX != VECTOINDEX(START)) AND (NEXTINDEX != VECTOINDEX(GOAL)) THEN

	MSET(NEXT[1],NEXT[2],19)

	END

	END

	END

	END



We also added a COSTPERMOVE variable, this can be the same for all moves or can be based on different terrain e.g. walking in mud is slower.

And if we run it now the map shows a lot less map checked.

[image: image 9]

Congratulations! You have just implemented A* pathfinding! Get creative and apply it to something amazing and show everybody!

You can find the source for this at article at:

http://www.lexaloffle.com/bbs/?tid=3131

4.What else can we do with A* pathfinding?


		Use a smaller amount of nodes on the map rather than every point e.g. corners.

		Add different costs for different types of terrain, mud, ice etc.

		Try costs in one direction different to another e.g. a conveyer belt.

		Try a moving target!



Further reading

http://www.redblobgames.com/pathfinding/a-star/introduction.html

https://en.wikipedia.org/wiki/A*_search_algorithm

https://en.wikipedia.org/wiki/Priority_queue

http://www.raywenderlich.com/4946/introduction-to-a-pathfinding

Richard Adem

@richy486


Traps For Absolutely Every Imaginable Occasion

So if you are making a roguelike then you are going to put traps in it, because you must. You must because the only reason anyone ever makes or attempts to play roguelikes is because they want to bash against infinite unknowable brick wall universes over and over again until they find the one brick that is loose and then they can say, look, I did it, I won. This is the thing to say when you finally win a roguelike even though it really means "I won (that time)" and "I gave myself over to be entombed in a random superstructure but I was able to accurately observe the rules of its generation" and "I am drawing a map of where the loose brick is, slowly, blindly: this is what I am doing with my life." You are going to put traps in your roguelike because you don't just want a tall beautiful noble and unyielding maze: you want a mean maze that pushes back. Nobody can contend with mystery and the unknown without the horror of Unintended Consequences and so you will include traps.

What Is The Best Sort Of Trap

The absolute best sort of trap you can make for your game will be instantly recognizable to your player and they will want to step on it. I recommend a small switch on the ground that counts down how many steps you need to take in order to step on the trap and then a large sign that celebrates the player for stepping on the trap. It might be good to give the player some gold for stepping on the trap as well. You want the trap to be as exciting as possible.

Here is a short list of my favorite traps in roguelike games:

1. The sink, from NetHack. The ideal trap, taking a friendly form, having a handful of positive uses (identifying rings, free drinks) and many horrifying ones (black ooze!!!!), no player can resist the delightful sink.

2. The statue trap, also in NetHack. Most conventional NetHack traps just spring out of the darkness and are quite rude but the statue trap beckons you towards your own demise with sweet songs and curious rewards. Finally transforms prosaicly into A Real Monster Where You Assumed There Would Only Be A Statue, e.g., a Kiwi Statue would become Oh My God An Actual Kiwi. I love statues.

3. The corruption trap, from Ancient Domains of Mystery. Promises to eventually transform one into a "writhing mass of primal chaos", which is exactly the reason we all play computer games isn't it.

4. The doppelganger staff, from Shiren the Wanderer. Another example of Maybe The Best Kind of Trap Ever, the staff resembles a Useful Item that will transform a monster into the likeness of the protagonist, which will cause all other monsters to attack the target of the staff. But! Ta da! A victorious monster levels up and becomes even stronger after victory, often causing Wonderful Problems.

5. The bloodwort seed pod, from Brogue. Rendered in a forbidding crimson, the bloodwort stalk dares the player to approach before bursting into a cloud of red mist. "Surprise!" it says. "I'm healing you!"

6. Siphoning in 868-HACK. My favorite trap. Siphoning is necessary and desirable for so many reasons (new programs, points, money, energy) but it always produces Bad Things. The player falls gleefully again and again into the arms of death.

Other kinds of traps that launch arrows or fireballs or boulders or poison gas are good too even if they are a bit on the nose. Your players will learn how to mitigate even the most random and unfair circumstances, which they will confuse with a kind of prickly complexity or they might think that you have a sense of humor and that you are attempting to communicate with them. Traps make a world snap and snarl with brutish life so make as many of them as possible.

Making As Many Traps As Possible in VNOOFIS

My game VNOOFIS (http://www.lexaloffle.com/bbs/?tid=3039) is about feeling your way through a slimy writhing fungus cave and finding luminous spores to press into your flesh. In an effort to include All Of The Positive Feelings of Traps I decided to make three kinds of traps:


		Treasure Trap

		Boulder Trap

		Arithmetic Trap



The specific form I chose for Treasure Trap was Every Single Wall in VNOOFIS. Touching a wall allows a player to See (or Feel) What's Going On which is a Lovely Treasure that cannot be abided without beautiful anguish so the wall produces a hostile Slime. The Slime will hurry along to the place where the player is but the player can retreat with Powerful Knowledge. This gives a very nice feeling of Impending Doom That Can Perhaps Be Avoided, so everyone feels Clever.

The Boulder Trap in VNOOFIS happens when you are confronted by Too Many Slimes, Maybe so you step into a wall, smashing it with your body into a carpet of nerves and flesh. You gain an Avenue of Escape but you must keep going because the wall is growing back in as an Angry Blister which will Explode if you attempt to return. You have traded Flexibility for Future Complexity and again you feel Clever.

The Arithmetic Trap is what I think is the most fun part of dying in Shiren the Wanderer, saying to everyone who can hear you, "oh no the enemies have killed each other in a fashion that was not advantageous to me, creating an enemy that has statistics that are far beyond mine." In VNOOFIS there is the Segmented Worm, wandering around, difficult to avoid in their own right, but combined with a Hostile Slime! Well! You can only imagine the thrill of encountering this very special opportunity for defeat.

These are the ultimate trap combinations that I conceived for my gross cave game. They are the best ones but maybe you can think of another one!

Homework: make a game with FOUR kinds of traps (don't make any others though because making a PICO-8 game is an exercise in minimalism and restraint)!!

Kyle Reimergartin

@mooonmagic

[image: image 10]


The Roguelike *shiny* game-feel

What is the greatest feeling in roguelikes? Winning the game, in most cases. But what is another greatest feeling in roguelikes? Finding something *shiny*. The most obvious example would be a piece of equipment, but new enemies, bosses, or any world design element has a very large *shiny* potential. Game mechanics like level-ups or a new ability can also feel *shiny*. Winning the game is *shiny*. *Shininess* is an amazing game-feel that we all feel and love and the roguelike genre is the genre that has the best of it.

1.Roguelikes and *shininess*

You may have understood from the introduction that a great factor of *shininess* is discovery. But roguelikes are not the only genre that has good discovery feels. Most RPGs regularly deliver new equipments and new environments to the player, well-made puzzle games generally are based on making you discover new ways of using whatever interaction you have with the game or even changing their own game-mechanics to give you brand new situations. What do roguelikes have that makes them so appropriate to the *shiny* feel?

Roguelikes are RPGs. They can easily use the classic RPG's equipment and environment renewing, and they should. But roguelikes are also the closest you can get to the arcade genre in RPGs. And the arcade genre (or the "try again" genre if you prefer) is the best genre for keeping you very close to the screen, fingers mindlessly pushing buttons, and indeed having you the closest to the game. Therefore arcade is the best genre for game-feels in general. And therefore roguelikes are the best at *shiny* feels.

So how do you make it happen?

2.MacGuffins. MacGuffins everywhere.

A MacGuffin is a plot device that serves as a goal or a motivation for the main character. The princess Peach in Mario Bros is a MacGuffin. So are the coins to a further extent. In video games, MacGuffins can be of different importance but they all share that the player will most likely go for them and when he gets one of them, it will make him happy. MacGuffins are *shiny*.

In roguelikes, any weapon, armor, potion, book, toilet paper or indeed any item can potentially serve as a MacGuffin. So, what makes a good MacGuffin?

[image: image 11]

First of all, MacGuffins are based on anticipation. If you give your player a new item without him asking for anything, you failed your MacGuffin. So first thing is show the item to the player BEFORE giving it to him. Then, at least make the player walk to it and pick it up. You can also make the item the reward for a quest or slaying a boss. If you chose either of these last ones, you may chose to not show the item before the deed is done or even make the reward random. That's ok but do build anticipation anyway, use your narration to make the player aware he will get something good. When the player can finally pick up the item, make it obvious. The item must catch the player's eye before he actually gets it. So use lighting effects, sound, flashing colors, text, anything flashy.

Then, MacGuffins should not be deceiving. If the player gets an item he thinks is really good and it's really bad, you broke it all. The item did feel *shiny* before he got it but now it is the darkest piece of trash he has ever wanted. There are solutions to that! One of the simplest is to make all the items tradable for something else, like money for example. In Dungeons of Dredmor by Gaslamp Games, there is a point in the game where you get a lutefisk box, an item that can convert any other item in a quantity of lutefisk than you can then give to the lutefisk god who would give you a piece of equipment if you gave him enough lutefisk. Then, any object has a minimal interest. Another solution is funny/interesting tooltips. These can be information about the game's lore or bad puns or pop culture references, or anything you think the player will have some interest in. If you really want an item to be a waste of the player's inventory, make it so but then better put a very good pun on its tooltip or not make it shiny at all.

In the very successful roguelites The Binding Of Isaac by Edmund McMillen, Nuclear Throne by Vlambeer, Spelunky by Derek Yu and many other roguelites that are not turn-based, where we are even closer to the arcade genre, the shiny feels of a new item/mutation/weapon/trinket are often accompanied by an effective change in the mechanics of the player's game. Shooting works differently, you can hurt enemies by being close to them, etc... Which makes it even *shinier*!! The more unique the trinket, the more *shiny* it is.

[image: image 12]

And if you want ultimate MacGuffins, you have achievements. If one of your achievements is "find the Wooden Stick of the Doomed", you made a shitty weapon *shiny*. Well done. But if one of your achievements is "find the jeweled gold crown of the kingly royal King Bob Deluxe", you made an epically *shiny* item even *shinier*. Besides, Achievements are pretty easy to implement in a PICO-8 game: Have a table of strings, one for each achievement, and display one for a for a few seconds when the player achieves a thing!

Quests, value, lore, puns, achievements... Is there a way to make something shiny without affecting the game's mechanics or pouring lots of literary work in it?

3.The more literal aspect of *shininess*

In Pokémon, the famous RPG by Game Freak where you have to capture pocket monsters and make them fight with other people's pocket monsters, there are "shiny" pocket monsters. These particular pocket monsters have that of different from the regular ones that they are extremely hard to find and they have a different color palette. Shiny pocket monsters are among the *shiniest* things to be found in all RPGs put together.

[image: image 13]

Guess what! PICO-8 has a wonderful function called pal(c1,c2) which will make it draw the color c2 instead of the color c1! Which means that with one 3-colored sprite and PICO-8's 16 colors, you have a potential of 4096 variations of that same sprite!! And sure some of them are trash and will hurt your eyes but a lot arenít and won't. Better than that yet, if your game has other animated sprites (which it definitely should), you can make your sprite's colors change over time! Why not?

Do keep in mind that these palette tricks work only once the player is accustomed to see the item with its original sprite. But such a simple trick can make any item *shiny*!! Also note that this can be used more extensively to make A LOT of items with a few sprites, take the MMO-roguelite Realm of the Mad God by Wild Shadow Studio for example, where most tiers of a same piece of equipment is the same sprite with different palettes. There, the tier palette is also an indicator that an item is better than what you currently have and, in direct consequence, *shinier*.

It also works with enemies, environments and probably other things so use your imagination!!

And palette swapping is not the only cheap graphical trick to make something *shiny*! In fact any graphical or audio effect you can add to an element of your game can make it more *shiny*. One very efficient graphical effect is ridiculous lighting.

[image: image 14]

A good example of ridiculous lighting is light coming from chests when you open them. Whatever is in there, someone put a lamp with it just so you know you found something *shiny*. Zelda games do that. They also make the items levitate out of the chest and put a catchy jingle over the whole thing. Keep in mind there are lots of possibility when it comes to lighting though. You could put light rays coming from the item, or it could be lightning, an aura, sparkly shapes, fireworks, flames, sparkles, circling sparkles, glitchiness, rainbows, fireflies, light bulbs, etc and all that with all the different colors in the world. Do pick one. Don't be afraid to make it too extravagant, you won't, it's a video game.

And finally, add some animation to the thing when it comes on screen. Make it hover up, make it roll, make it sway, make it zoom-out, make it ))shake((! Chose whichever or make combos but when the item/enemy/npc/text/action/death-screen shows up, any animation will whisper *shiny* to the player's brain in a slightly scary but exciting way. I have a preference for the shaking as it is generally very easy to implement. Just store two global values shakeX and shakeY, add them to the coordinates of all the things when you draw them, and multiply them both by -0.8 each frame. Make a function add_shake() that gives random values to shakeX and shakeY and call that function ANYTIME ANYTHING HAPPENS.

4.To sum it up

Roguelikes are the best at *shiny* feels and to achieve making something *shiny* in one, you should make it a MacGuffin, based on anticipation and in-game value, and you should add lots of graphical effects to it, such as palette swapping, ridiculous lighting and simple animations. Along the way have also been mentioned that like game elements, game mechanics can also be *shiny* and that you shouldn't be afraid to make things too extravagant.

If you read all of the above, you should now be very capable of making anything *shiny* in your own roguelike or any other kind of game really. The *shiny* feel is the most adapted to roguelikes but you can certainly use it in most, if not all, games. So make me proud and go do just that!!

Dog Trasevol

@TRASEVOL_DOG


Dungeon walls

Hi. My name is Rodrigo Franco, and I'm not a game developer. I have been building web apps for over a decade — and playing video games for twice that — but I never got my hands dirty and tried to code a game. Then I found PICO-8 (http://www.lexaloffle.com/pico-8.php) — its minimal approach was simple enough to make me face my own ineptitude. As a blank canvas, it was terrifying but also inspiring. I was sold.

Since I was a kid, my favorite gaming genre has been RPGs. From tabletop to early computer incursions, like Atari's adventure and the Ultima series, being able to live a classic "dungeon crawl" experience fascinated me. I think that's why I knew that when I finally started working on a game, it would be something like a roguelike.

Inspired by PICO-8's minimalism, I decided to strip down my game to the bare essentials, but not graphically — I was lucky enough to be able to commission Christina Antoinette (@castpixel) to conjure lovely sprites for me — but since I had no idea how I would implement the game, I imposed severe restrictions on the mechanics to actually accomplish something. With that in mind, I came up with a random one-room-per-floor dungeon romp.

Like many before me, I started my gaming career (fancy eh?) by studying Zep's collision demo (http://www.lexaloffle.com/bbs/?tid=2119). From it I understood the "pico way" of map drawing and the use of sprite flags to define and check for solid areas. This approach worked well for my early prototypes, since everything was made of crude 8x8 sprites like this:

[image: image 15]

Everything was fine, until Christina sent me the final art:

[image: image 16]

These are not your grandma's 8x8 sprites. How could I handle that? Besides everything being 16x16, I wanted just part of the wall tiles to be solid. This would allow me to accomplish an isometric feel:

[image: image 17]

The way I was doing this (using the sprite flags) didn't work well with that. I did some research, but never found a proper solution, so I decided to come up with something myself. Here's how I solved it.

1.Setting the stage

First, I created some tables to hold the props I was about to create, all the objects that would be added to the world and what I called 'solid regions':


	SOLIDS = {}

	PROPS = {}

	WORLD = {}



Then I came up with an ideal way to add items to the world. I wanted it to be something like this:


	ADD(WORLD, PROPS.MUDDY_WALL(0,15))



This call would add a muddy_wall to the world and position it on the screen at X=0 and Y=15.

To make this work, I added the following to PROPS:


	PROPS ={

	MUDDY_WALL = FUNCTION (_X,_Y)

	LOCAL PROP = {SPRITE=64, WIDTH=16, HEIGHT=24, SOLIDWIDTH=16, SOLIDHEIGHT=16, X=_X, Y=_Y}

	ADD(SOLIDS, {PROP.X, PROP.Y, PROP.SOLIDWIDTH, PROP.SOLIDHEIGHT} )

	RETURN PROP

	END

	}



PROPS.MUDDY_WALL is the code representation of a graphical element store at position 64 of the sprite sheet. The element has 16px of width and 24px of height, from what 16 by 16 are solid. By calling it with 0 and 15 as params, the function also adds a new element into SOLIDS, like this:


	ADD(SOLIDS, {0, 15, 16,16})



By returning local variable PROP, the function also allows it to be added to the world table.

From there I could just add elements to my game by passing MUDDY_WALL multiple times with different X and Y coordinates. I could also create new props by creating functions like BRIGHT_ WALL, GREEK_COLUMN or STAIRS. The sky's the limit!

2.Drawing the elements

With everything in the memory, it was now time to draw things. Again I tried to come up with the method signature first, then come up with a strategy on how to implement it. Here's what I wanted to do:


	FOREACH(WORLD, PROPS._DRAW)



To be able to do that, I added the following method to props:


	_DRAW = FUNCTION (P)

	SPR(P.SPRITE, P.X, P.Y, (P.WIDTH/8), (P.HEIGHT/8))

	END



A simple SPR method call with the prop params. That was easy!

3.Making things solid

Now the real deal: How can we make props solid? As I said earlier, for each prop added to the WORLD table, we also added an item to SOLIDS with X and Y coordinates and width and HEIGHT of a solid area. It's time to put this to good use.

I'm not going to enter in details about how my actors traverse the dungeon. Just imagine I have a function called MOV that expects an ACTOR as param. This function calculates the actor's attempted position, and if the position is valid, moves the actor there. Something like this:


	FUNCTION MOVE(ACTOR)

	IF VALID_MOVE(ACTOR.ATTEMPTED_X, ACTOR.ATTEMPTED_Y)

	DO_MOVE(ACTOR)

	END

	END



Now imagine this other version:


	FUNCTION MOVE(ACTOR)

	IF SOLID_AREA(ACTOR.ATTEMPTED_X, ACTOR.ATTEMPTED_Y)

	DO_NOT_MOVE(ACTOR)

	ELSE

	DO_MOVE(ACTOR)

	END

	END



How would I implement SOLID_AREA? Here's how I did it:


	FUNCTION SOLID_AREA(X,Y, A)

	LOCAL X = X + A.H LOCAL Y = Y + A.W

	FOR ELEMENT IN ALL(SOLIDS) DO

	IF (X >= ELEMENT[1]) AND ((ELEMENT[1]+ELEMENT[3]) >= X) AND (Y >= ELEMENT[2]) AND ((ELEMENT[2]+ELEMENT[4]) >= Y) THEN

	RETURN TRUE

	END

	END

	END



Let's break this down. Here's what I'm doing, bullet by bullet:


		Add the actor's height to the attempted X

		Add the actor's width to the attempted Y

		Iterate all items in SOLIDS, and for each one check if the X and Y point is inside the solid area

		If we find the point inside of at least one element, returns TRUE



If SOLID_AREA returns true, I don't move the actor. Otherwise, DO_MOVE is executed.

4. Wrapping up

That is it. I know there are probably a million better or more "gamedev-y" ways to do it. For me, doing this was more for the challenge then anything else, and I'm happy with the result. Unfortunately, my game isn't ready yet—hell, I don't even know if I will be able to finish it, but if you follow me on twitter (@caffo) I will make sure to let you know when I make it available. Happy PICO-8'ing!

Rodrigo Franco

@caffo


Sharing music between carts

I’ve written an album, “9 Songs for PICO-8” with the intention that other people can use the songs in their PICO-8 games. They’re in a bunch of different styles, but nothing far from what you’ve heard before. That being said, it’s not as easy as just taking an audio file and dropping it into your own project. Let’s have a look at how to take a song from one cart and put it in another!

The first thing we need to do is open up the cart in an external code editor. I like to use Sublime Text, and set to View the Syntax as “Lua” - this way everything becomes nicely colour coded. You could also just use Notepad or TextEdit if you wanted. In the file, you’ll see a few sections denoted with double underscores before and after the title (e.g.lua). We’re interested in the sfx and musicsections, but let’s get into a little bit of the theory before we start moving things around.

[image: image 18]

Music in PICO-8 is made up of sound effects. The music player can play up to four sound effects at once, making your song. On a cart with no sounds, the sfx section is followed by a ton of zeroes. If you’re looking at a cart which already has sound effects and music in it, you’ll see what looks like a bunch of gibberish. Each of these lines is one of sixty-four “sound effects,” (numbered from 0 to 63). The numbers and letters are the code which tells the audio system what notes to play, in what order, using what articulation, and how fast.

Underneath the music section is much easier to understand. Again, it’s 64 lines of information for the audio system, but because all the heavy lifting is taken care of by the sound effects themselves, this section is almost readable. The first two digits tell the tracker if the music is supposed to loop from that point, continue or stop, then the 8 digits following are hexadecimal for which sound effects will be triggered.

Sharing music between carts

[image: image 19]

Sharing music between carts. The easiest way to share music between carts is to open them both up in the external editor, and copy and paste the entire sfx and music sections onto the second cart. Then, when you open it in PICO-8, you’ll see all the music and sounds from one cart on the other. This is great for collaborative work, but be careful because if two people are working on sounds separately, you certainly risk overwriting someone’s work. That brings us to the more precise and careful way of doing this: copying specific lines. This is easy with the sound effects themselves, you just count from the first line after sfx (starting at 0, see diagram below). That number will correspond to the name of the sound effect when it was in PICO-8. You can pick and choose which sounds to copy over. Be careful to paste them on the same line they came from! Repeat this process for the relevant music lines as well, and you’re all set.

[image: image 20]

If you want to take it a step further, you can paste the sound effects to whatever line you want. This is good if you want to consolidate, or if you want to move a song from a high tracker number to a lower one. Remember how the music steps just point to sound effects? Well, if you copy over the relevant sound effects to whatever line you want (and you’re like me and can’t easily write out hexadecimal), it’s not hard to just open the file in PICO-8 and point the tracker to the relevant sounds after the fact.

Robby

@RobbyDuguay

Editor's note: In PICO-8 v0.1.5, it is now also possible to copy and paste music between carts, but the following methods can be used for finer control when manipulating audio data.


DONUT MAZE


	FUNCTION ADDCEL(X,Y,DX,DY)

	

	X += DX*2 Y += DY*2 --MOVE ALONG PATH

	

	--ALREADY VISITED OR OUTSIDE?

	IF (PGET(X,Y) == 0) RETURN

	IF (PGET(X-1,Y)==7 OR PGET(X+1,Y)==7) RETURN

	IF (PGET(X,Y-1)==7 OR PGET(X,Y+1)==7) RETURN

	

	--DRAW THE NEW CEL AND A JOINING PIXEL

	PSET(X,Y,0)

	PSET(X-DX,Y-DY,0)

	IF ((X+Y)%4 == 0) FLIP() --SLOW DOWN!

	

	--VISIT NEIGHBOURS (FAVOUR RIGHT)

	D = FLR(RND(4))/4

	IF (RND(1.15)<1) D=0

	FOR I = 0, 0.75, 0.25 DO

	ADDCEL(X,Y, COS(I+D),SIN(I+D))

	END

	END

	

	--SET UP DONUT SHAPE

	PAL(6,7,1) --WHITE WALLS

	RECTFILL(0,0,127,127,7)

	CIRCFILL(64,64,48,6)

	CIRCFILL(64,64,16,7)

	

	--START MAZE FROM LEFT

	ADDCEL(17,63,0,0)

	

	WHILE (BTN()==0) DO END



[image: image 21]

--zep

@lexaloffle


[image: image 22]

OEBPS/Images/Issue1/image12.jpg
il

QJE:EIEJU& ¥ [l Qaaa






OEBPS/Images/Issue1/image11.jpg





OEBPS/Images/Issue1/image10.jpg
=
=
g





OEBPS/Images/Issue1/image16.jpg
)5 2a o]

PHTTEHI‘I'!EEHIHEEEEHE]F
E/00 E/01 [m] [m]
H11 CH1O

c-11 OH1O

c-11 FHLO

c-11 GH1O

c-11 AH1O

c-11

c-11

E-11 c-10

E-11 Oo-10

E-11 E-10





OEBPS/Images/Issue1/image15.jpg





OEBPS/Images/Issue1/image14.jpg
401F SP0 1k LOOF 00 |00
ocT BEER ENEICLLN P

BRI mm

CHLOL- [C-101- |cHOO1-|c-001
DH101- 0-101- OHOO1- |0-001
FHLOL- [E-101- FHOOL - |E-D01
CHLOL- F-101- (CHOOL- |F-001
RAHLO1- [C-101- ANOOL- |G-001
R-101 R-001

E-101 E-n01

= c-201 €101





OEBPS/Images/Issue1/image13.jpg
[ e2 0 DRSS
00 ¥ ©5P0 1k LOgP o0 oo
0T EEIR - I I

Byl |l CESmmErFImmm
BI117Y/E-11740G-1174)c-1174

C-1lb- JE-11b- |G-11lb - JC-11h
C-115-JE-115- |G-115-JC-115
C-114-JE-114- |G-114-JC-114
C-113-JE-113 - |G-113-)C-113
C-112-JE-112 - |G-112-jC-112
C-111-JE-111-|G-111-)C-111





OEBPS/Images/Issue1/image19.jpg





OEBPS/Images/Issue1/image18.jpg





OEBPS/Images/Issue1/image17.jpg
.n...\... o B[]
Sl it T Sl e N
n.\...li ..l.;-r.'.nf.,.l\.....,.f..,.f.\ H
-\\.\.\.f\\..\.r\”.\.\.\.n

| =% . ..-\-ln
| ..\.,....r.u/.rri rlr!.\...fn
L I Sl
i Gl il
] e S i
] oo ._'.\.\n
| i g

[ P e e
B g W S N Mo il
H e .r.rf._.../“._uff\ -

S T T T i T T

A a N Ny Ny N g B

o A Al 2
o, i O R S Y i P





OEBPS/Images/Issue4/image1.jpg
ROLUE-RUN-LERRN
SHARE-LOWE-PLRAY
COODE-CRERTE-DRAU
NARE-ODESIGN-EE
THINK-URITE-ERERK
PFARTICIPATE-FETFY






OEBPS/Images/Issue4/image2.jpg
T FOR

HIIHR[L EFUULH






OEBPS/Images/Issue4/image3.jpg
iy
: EE:
I





OEBPS/Images/Issue4/image4.jpg
hala e b
o s | s !_-
b o (e o e (512

JE i e _I_I_-.m 14]

fru e e 2
o e et 14]

e o [ o o | 1 [
i _I_I_I _I_I_ 1=]=]

T





OEBPS/Images/Issue4/image5.jpg
TEELE

rr

RPQQOD





OEBPS/Images/Issue4/image6.jpg





OEBPS/Images/Issue1/image23.jpg





OEBPS/Images/Issue1/image22.jpg





OEBPS/Images/Issue1/image21.jpg





OEBPS/Images/Issue1/image20.jpg






OEBPS/Images/Issue1/image27.jpg





OEBPS/Images/Issue1/image26.jpg
n.1_u1n.

amm“_H_

w

%.,_ e

h 3 &fﬂ

s

g

By

1] af g
&

e et
B

NN R

mvuuua 3 ¥
hﬂ:T M%mﬂl
B e

Fda: ¢

L g g g

:
i mm.u

s LA
e
el .m

R e PN mwfn

+1HiP FOR ERCH FIGHT





OEBPS/Images/Issue1/image25.jpg
ﬁ%‘é

RN =

= e =





OEBPS/Images/Issue1/image24.jpg
()

.o

ENFORCER





OEBPS/Images/Issue1/image29.jpg





OEBPS/Images/Issue1/cover.jpg
PICO-H
LZLINE

0 f

CODE-PLAY-5HARE-EE-THINK-DESTROY-LERRN-ERERK-LOVE-ARKE

AUCNST 2015






OEBPS/Images/Issue1/image28.jpg
(e { (4

EY LTRADIQ

PRESS THINGS





OEBPS/Images/cover.jpg
PICO-H
LZLINE






OEBPS/Images/Issue2/image6.jpg
@

O

0O






OEBPS/Images/Issue2/image5.jpg





OEBPS/Images/Issue2/image4.jpg
()
)

o0
)





OEBPS/Images/Issue2/image3.jpg
000 » @ 0O






OEBPS/Images/Issue2/image2.jpg





OEBPS/Images/Issue2/image1.jpg





OEBPS/Images/Issue4/image10.jpg





OEBPS/Images/Issue4/image11.jpg
THE
ARCAUFFIN

[





OEBPS/Images/Issue4/image12.jpg
Y

=]
G & @






OEBPS/Images/Issue4/image13.jpg





OEBPS/Images/Issue4/image14.jpg





OEBPS/Images/Issue4/image15.jpg





OEBPS/Images/Issue4/image16.jpg





OEBPS/Images/Issue4/image17.jpg
HP: 5 SCORE: O FLOOR: 1





OEBPS/Images/Issue4/image7.jpg





OEBPS/Images/Issue4/image8.jpg





OEBPS/Images/Issue4/image9.jpg





OEBPS/Images/Issue3/cover.jpg
CODE-PLAY-5HARE-EE-THINK-DESTROY-LERRN-ERERK-LOVE-AAKE

DECEREER 2015






OEBPS/Images/Issue4/image20.jpg
st
et
010c0020102451c9071c007102351c0071c907 102251,
00300020267402674026730287202674026730174014
00300020000400004080030000:
001800201761517615156151;
001800200106301700000001063
001800200¢035100351103515035
01180010115430000000001054300000000000c5:
0030002000000000390000000020000000000000Y
0124020051450c145051450¢145051450c14505
014890202174421740217402274624744247401
0124002000145151450145151450e 145151454
911200200c1330960509613096131 63309505

7401c7401c7401C7301c7301c7201c720
0400c0300c03006200c0200c0200c020
615076150561504615026150161501615

90000000000000900000000090400000000
[45071450c145071450c145071450c 14507145
4411740207402274024744247402474024745
145151450e145151450c145131450¢14513145.






OEBPS/Images/Issue4/image21.jpg





OEBPS/Images/Issue4/image22.jpg
LDEX; };xE

PRESS &

@CRSTPIHEL





OEBPS/Images/Issue4/cover.jpg
[§
\

(
/

M

D .\/\ )|
-“






OEBPS/Images/Issue4/image18.jpg
8 SublimeText2 File Edit Selection Find QUL Goto Tools Project Window Help
200 e Bar > ey

et i Tabs
pico-8 cartridge // http: Hide Sats B
Version 4 Shom Consle -

S Open i with curent extension 5
enterfull Scren ~xr

Enter istracton Free Mode "ORF | rcoarsrt

Sopesci
ey »

Layout >
Focus Group Vs
M Fle To Group i3

o
s
ndentaton Cloure
Line Endings o
°

Word Wisp
composer. duge ) o
track 1 Word Wrap Calumn >

s Ruler >
playing-false Spel Check | Gtz oam
e Groow
step-o kel
Stepper-stat(20) Dicionary i
s
Iaascrint

els() e
rect(0,0,127,127,1)
music('1)

oy





OEBPS/Images/Issue4/image19.jpg





OEBPS/Images/Issue1/image01.jpg





OEBPS/Images/Issue1/image05.jpg





OEBPS/Images/Issue1/image04.jpg
L3





OEBPS/Images/Issue1/image03.jpg
eeeee

IEIEIEII
- |-/

HE — AEp
Y= [ EE






OEBPS/Images/Issue1/image02.jpg





OEBPS/Images/Issue1/image09.jpg
you start here

RUN <






OEBPS/Images/Issue1/image08.jpg
ey






OEBPS/Images/Issue2/image9.jpg





OEBPS/Images/Issue1/image07.jpg





OEBPS/Images/Issue1/image06.jpg
ALPHA DEHO CRRTS

ELOOT CHPY
EY ZEP





OEBPS/Images/Issue2/cover.jpg
PICO-H
L LINE

EEREE RN LGS
- B -
PEERAESaaRR
FEEEFRETESS
£SR3 E S SR 288 E
Rt EmERE L E
R R T
R R
e fe g pa®E
FEEEzr S L=

CODE-PLAY-5HARE-EE-THINK-DESTROY-LERRN-ERERK-LOVE-AAKE

OCTOEER 2015






OEBPS/Images/Issue3/image8.jpg





OEBPS/Images/Issue3/image9.jpg





OEBPS/Images/Issue3/image15.jpg





OEBPS/Images/Issue3/image16.jpg





OEBPS/Images/Issue3/image17.jpg





OEBPS/Images/Issue3/image18.jpg





OEBPS/Images/Issue3/image11.jpg





OEBPS/Images/Issue3/image12.jpg





OEBPS/Images/Issue3/image13.jpg





OEBPS/Images/Issue3/image14.jpg





OEBPS/Images/Issue3/image10.jpg





OEBPS/Images/Issue2/image78.jpg
1=3
#=-0.2
4=0.3





OEBPS/Images/Issue3/image19.jpg





OEBPS/Images/Issue1/image30.jpg
LEWEL 1r4  SCORE:D

L nl 2. 2lml
Efemimami | g wrh il .-'Il\_..
I P Y P

| 1l
b il ¥ vl i ¥ ¥





OEBPS/Images/Issue2/image11.jpg





OEBPS/Images/Issue2/image10.jpg
e o
1.,
LT T LI T |
-
+li [ N B3
. F

THICENES





OEBPS/Images/Issue1/image32.jpg





OEBPS/Images/Issue1/image31.jpg





OEBPS/Images/Issue2/image19.jpg





OEBPS/Images/Issue2/image18.jpg





OEBPS/Images/Issue2/image17.jpg
3





OEBPS/Images/Issue2/image16.jpg
Y %





OEBPS/Images/Issue2/image15.jpg
|t ol ottt ettt
SCORE: 000

HEL

B b ke b b





OEBPS/Images/Issue2/image14.jpg
o

L
FEFFFEEErrree

| 8
b

(l

U],

i.’:l






OEBPS/Images/Issue2/image13.jpg





OEBPS/Images/Issue2/image12.jpg





OEBPS/Images/Issue1/center.jpg





OEBPS/Images/Issue2/image22.jpg





OEBPS/Images/Issue3/image4.jpg





OEBPS/Images/Issue2/image21.jpg





OEBPS/Images/Issue3/image5.jpg
“The bai gets outof
the oid

ey cmrst o e Wating forthe
o pay e rewin/ | To Ball Out Hayrs npor Al
ety
S T— -
ol raches [ S——
Waiting for the Eompmam
ers i or Al Py

Justwait 1 sac





OEBPS/Images/Issue2/image20.jpg
i






OEBPS/Images/Issue3/image6.jpg
[ |

when ot in
control of the.
Ballis out and the ball

player has reached

wow-in place
Ball thrown-in

Hit by a tackling player

Hit by a tacking player

Ball coming
too fast

player has reached
the comer place

Ball kicked

Player
inputiA.

inputiA.






OEBPS/Images/Issue3/image7.jpg





OEBPS/Images/Issue3/image1.jpg
HACh-RUN-LERRN
SHARE-LOUE-PLAY
COLE-CREATE-DRAU
MAKE-DESIGN-EE
THINK-URITE-ERERK
BRETICIPATE-FETEY






OEBPS/Images/Issue3/image2.jpg





OEBPS/Images/Issue3/image3.jpg





OEBPS/Images/Issue2/image26.jpg





OEBPS/Images/Issue2/image25.jpg
b,
aHAH . LLITYLY G,
HIHLOUY "“"HEH






OEBPS/Images/Issue2/image24.jpg
H





OEBPS/Images/Issue2/image23.jpg
ELTE TR LR






