
Table of Contents

 Introduction

 Foundations & Theory

 The Origins of Gaming

 A Backgrounder on RPGs

 The Components of RPGs

 Design

 JRPG Design Basics

 The Basics of JRPG Battle Math

 "Fast" Versus "Slow" Character Growth

 A Starting Point For Experience Design

 Abandoning Experience Points and/or Levels

 Start of game versus end of game ability

 The Combat Model and Character Class Design

 Exploration Expectations

 Complexity of Play

 Sacred Cows & The Usefulness of Ignoring Them

 Boss design: End-of-stage or independent-challenge?

 On Power Fantasies

 Examination of a Monster Generation Table

 Design Considerations: Rock Paper Scissors

 Eliminating Stalls

 Scenario Design

 Genre

 Structure

 Tropes

 Villains

 McGuffins

 The Reveal

 Developing the Scenario

 Do More With Fewer Words

 Strong, Exaggerated Characters

 Common Traps

 Working with RPG Maker: Some information that may prove useful when constructing with it

 A Suggested Work Order

 Basic Math

 How Do I?

 Yanfly’s Plugins

 About the Database

 Maps

 Feature alert: RPG Maker MV Automatic Dungeon Generation

 Creating an Overworld

 Creating Towns

 Creating Dungeons

 Creating With The Event System

 How to Design With RPG Maker Events

 Fair Conditioning

 An Aside to The Computer People

 Being Content With Contents

 What the Heck are TP?

 Getting Assets For Your Game

 Appendices: A miscellany of ideas, references and prior art to inform your game

 A List of Monster Gimmicks

 The Awesome Factory

 The Plots of Popular CRPGs and JRPGs, Summarized

 Cool Subquests & Activities From Various Games

 Cool Features From Other Games

 Battle Systems

 The Idea Book: 35 crazy concepts to make your game special

 Some Interesting NPCs

 The Basics of RPG Maker Fes

 Glossary

 Further Reading

 Some useful tools to aid you:

Other works by John Harris:

@Play: Exploring Roguelike Games

Bug Voyage

Someone Set Us Up The Rom, Part 1 & Part 2

21 Unexpected Games to Love for the Atari VCS

8-Bit Obituaries

Extended Play (ongoing)

Copyright 2019 by John Harris

Some sections of this work originally appeared on the website Gamasutra.

Some images contained within are property of Kadokawa Corporation,
and are included for instructional purposes only.

This is version 1.03 of the text.

Introduction

Make no mistake, game creation "construction set" programs have a stigma attached to them. Many devs look down upon their use, sometimes unconsciously, and even players scoff at them. There's a whole subcategory of such games on Steam, often derided, by those who do deriding, call them deriders, for being low effort "resource grabs." Truthfully, there are games on Steam of which that could be said.

But to apply that term to all of them is a mistake. Although many construction sets, such as classic packages like Shoot-Em-Up Construction Kit, Stuart Smith’s Adventure Construction Set, Bill Budge’s Pinball Construction Set, Garry Kitchen’s GameMaker, and other such packages, offer only a limited set of options, in some circumstances they can be used to make great work if you stay within the domain of the program. And sometimes you can even escape that domain, with clever ideas, and make unexpected things.

And, it can be a lot of fun to make a game this way. The boring parts that every game must have: its engine, that foundational work of writing display code and simple game logic; the data editors and construction of all those graphic tiles; the process of of getting images to fit together into a cohesive scheme; and the several dozen other minor-but-necessary tasks, a construction set supplies all of that for you, taking you at a stroke from the domain of the generalized computer program immediately to that of the specific genre of game you wish to make. And beyond that, finding ways to make the kit do things not in the design spec, can be an interesting puzzle to solve.

Of these construction kits, the RPG Maker series is probably the quickest way to see your JRPG creation ideas made real. Each version (including the ones we cover here) gives you a very capable map editor, a scripting facility, and an assortment of data editors with which to construct your game. Since you don’t have to work on all that preliminary engine work, you can get right into the most interesting part of game creation: brainstorming ideas and realizing them.

The great thing about construction kits, their secret advantage, is that at this stage of production, constructing games itself can be lots of fun. It’s like scribbling in a notebook: you can almost freestyle your work, doing what your mood leads you to do, and no one else even need see what you’ve produced. You could just make a game for you and your friends, with a fraction of the work you would otherwise need. There is real power in that idea. You could made a dozen games in the time it’d take a full team to make one, and you needn't have to worry about organizing or paying that team if you don't have one. You don't have to have profit as your end at all.

Furthermore, the enjoyability of working with it makes RPG Maker a favorite way to work for people in certain internet communities. Some of the games produced this way may actually seem more like day-to-day life simulators, but they allow the player to vicariously experience fandoms, interests and lifestyles that may not easily, or at all, possible for them in real life. If you are in one of these communities, you might consider using it to construct such a game.

For the most part, this book is a series of articles directed toward the hobbyists. If some of this is useful to people who plan to sell their work then more power to you, but the intend is to help people who just enjoy making games on their own.

Whatever reason you’ve come to try an RPG Maker product, this book is intended as a collection of essays on it and JRPG game design in general. Advanced makers may find a few things here they hadn’t known, but it’s likely information that they either already had or could find without great effort in one of its web communities. Of more interest to them might be the Appendices, which contain lists of many things, weird concepts and pieces of past games, which may provide ideas to help get your project off the ground, that special extra idea to make them special, and information on things other people put into their games for inspirational purposes, to demonstrate the breadth of the field. The book also contains short histories of both TTRPGs and CRPGs/JRPGs, to give you a sense of where these related genres have been and where they are going, which can be useful in making your own ideas a reality.

If there can be anything like a recurring theme in an irregular collection of essays as this, it is that I do not have all the answers. No one does. The RPG genre grows in different directions, sometimes at cross-purposes, and if you browse the internet long enough you'll easily find people who say X feature is obviously awful and unenjoyable but love brilliant feature Y, and others who say the same but with X and Y interchanged. My position is, nothing is as obvious as people say it is. When faced with competing audiences with such strong feelings, all you can do is go the way that seems right to you, and hope enough other people agree. Making games can be fun, all in itself; this book is a celebration of that fact. I hope it tells you at least something of what you want to know.

Foundations & Theory

The Origins of Gaming

On games in general

You’re probably itching to make your RPG game idea a reality. I sympathize, but you will be greatly aided by an understanding of the history of games, where they’ve been and where they’re going. I provide a brief overview of the history of the field here, before moving on to the origins of RPGs themselves.

The first games, in the history of human development, were in the form of play, imaginative scenarios in which participants take pretend roles for themselves. So in a way, the first games were role-playing games. From there, because of their simplicity, it probably moved into games of chance, which we know are at least as old as the Roman Empire, and games of strategy, such as Mancala and the lost game of Senet, which both go back even farther to ancient Egypt. From there evolved the advanced strategy games of Chess and Go, and later, organized sports.

One theme most of these games have in common is competition, of two or more sides competing against each other. While I am unsure of its ultimate origins (it may have gotten their start in bar betting), there another kind of game arose that is played at carnivals: the solitaire test of skill set by some referee. These evolved into coin-operated amusements such as the prize-grabbing skill crane and the pinball machine.

A while later, in the halls of academia, there arose the electronic computer, and new games that could only be realized through its auspices. The earliest known of these was Tennis For Two, but then there came games like Space War, and other amusements like the "computer therapist," Eliza. Two particular developments paved the way for widespread exposure of these kinds of computer games to the public. One was the release of the Ralph Baer’s original Odyssey by Magnavox, a dedicated game console intended for home use, that displayed the playfield through interfacing with a television set (although it came with plastic overlays to affix to the screen). The other, taking a cue from pinball, was Atari’s Pong, an arcade game, which was a relatively expensive unit that would be placed in a public location offering plays in exchange for people inserting coins. (Pong was not the first arcade game, but we’re trying not to bog things down too much here.)

For around 13 years (1972-1984), arcades were the predominant method most people used to play computer games. At first they used either the sport-like paradigm of pitting players directly against each other, or the carnival-like paradigm of providing a timed challenge for the player to maximize his score against. Then came the advent of Space Invaders in 1978, which provided a pinball-like game where the player had a number of playing "pieces," laser bases in its case, and the game was lost when all were destroyed. This style of game could be played indefinitely if the player had enough skill. But since all of these games are pay-per-play, lengthy games were fundamentally at odds with the demands of the genre. Players played as long a game as their skill allowed, but too many of those would be unprofitable for the operator.

Eventually computers came into the home, first in the form of kit computers like the Altair, then electronic gaming consoles (dedicated ones that played fixed games, and then programmable ones with games stored on cartridges), and then microcomputers like the Apple II, Commodore 64, Atari 8-bit line and IBM PC, that ran games distributed on tape or magnetic disk. Since there was no need, on these devices, to push players through games so as to allow more people to play (and pay more coins), games could afford to be more leisurely, although the arcade style continued to be popular for a time even at home. This was what allowed for the creation of the computer-based RPG, or "CRPG." But before we get to those, we’ll have to go back to 1974 and the basement of E. Gary Gygax.

A Backgrounder on RPGs

A few notes on TTRPGs, CRPGs and JRPGs

All games have some aspect of role-playing to them, in that you’re taking what is ostensibly a fictional position and making decisions from it, although in most classic games this is fairly abstract. In Asteroids, you are not literally your ship; it is a proxy for you, a visible object that represents you, your tool to influence the game’s world. But while there are earlier approaches to the idea, what we consider to be role-playing games generally began with Gygax’s fantasy supplement to the medieval wargame Chainmail. Working with Dave Arneson, they filled in the blanks between the combat sessions that Chainmail simulated, coming up with a general world around it, giving characters "experience points" that allowed for their advancement, a system of "levels" that measured that advancement, "attribute scores" that customized each character a bit, and "character classes" that determined their skills in the game. All of this together became known as the original "Brown Box" and "White Box" editions of Dungeons & Dragons, or D&D.

Over the years, D&D would be improved, advanced and overhauled multiple times, adding its own combat system and making it a game unto itself, its rules stitched together, iterated upon, expanded and standardized, then thrown out and rewritten entirely three times, as well as inspiring a complete "Basic" spin-off game, and ultimately a whole cottage industry of "retroclones." D&D is basically its own genre now, and none of those forms require a computer at all to play.

From early on other people, inspired by D&D’s audacity in creating what was almost a new kind of game, one that emphasized cooperation and collaboration over competition (for the most part), made their own role-playing games. At first many of these bore a large resemblance with D&D, but before long some of these early RPGs struck out and created new experiences that abandoned many of its specific aspects, games like Runequest & Call of Cthulhu, Bunnies & Burrows, Toon, Ghostbusters, Paranoia, GURPS, RIFTS, Rolemaster, Traveler, and many others. Nowadays, it is actually not common to find an indie pen-and-paper RPG ("TTRPG," to some) with experience points or levels. Many of these games are more properly termed storytelling games. Especially, D&D’s combat focus has been abandoned by many games that are not explicitly seeking to emulate physical conflict.

But on the computer side, things evolved differently. Early on, emulating D&D became the holy grail of computer RPGs, or "CRPGs." Early games included pedit5 and dnd on the PLATO multiuser system, but the first great commercial hits in the genre were Wizardry and the Ultima series. TTRPGs proliferated and tried out a great many ideas, but D&D remained the great market leader, and so computer gaming continued to take it as its touchstone, keeping attribute scores, experience points and levels, character classes, and a strong focus on combat.

A major factor here was the rise of Japanese CRPGs, often called JRPGs. Inspired by a trip to California during which time he came into contact with early Ultima and Wizardry games, programmer Yuji Horii founded the first really popular example of these, the Dragon Quest series, and it continues today still under his leadership. But JRPGs developed in a manner that might be considered strange to Western players. Part of this was due to the influence of developer Nihon Falcom, often called just "Falcom." Their Dragon Slayer series, and other games such as Ys, Xanadu, and Sorcerian, embraced some aspects of D&D, while going off in their own ingenious and distinctive ways, leaving an indelible mark on the genre. While some seem archaic by present-day standards, there are a ton of interesting ideas in them.

The huge popularity of Nintendo’s Famicom and Super Famicom consoles, and their overseas counterparts the Nintendo Entertainment System (NES) and Super Nintendo Entertainment System (SNES), as well as that of competing systems like the Sega Master System (SMS) and Mega Drive/Genesis, and home computers like the MSX and PC-98, were these games’ gateway to an appreciative audience. These systems saw the beginning of what would become the most popular JRPG series of all, Square’s Final Fantasy. Eventually the multimedia presentation of Final Fantasy VII, on the Sony PlayStation console, would bring JRPGs to the edge of mainstream popularity.

One thing about JRPGs, however, is that while they often have unique and abstract character growth and combat systems, most still adhere to many of the same underlying paradigms as Gary Gygax’s Dungeons & Dragons: they still have attribute scores of some type, hit points, experience points and levels, and the gaining of power through gold, equipment and magic is a primary, often implicit, goal. Many also use character classes in some form (although some identify character and class so closely as to be indistinguishable), and practically all of them have a combat system that functions as its own kind of mini-game within the larger experience.

Even these days, when RPG systems have come back and infiltrated many triple-A games, most of the times it’s through the form of experience points and levels, and collectible "loot," which have become ubiquitous in gaming. Oh, if only everyone had instead borrowed Runequest’s skill system, how different video gaming would now be! Well, no matter.

The RPG Maker series is optimized towards allowing you to make JRPGs in the style of the 16-bit SNES Final Fantasy games and other games released from around that time. The graphics can be a bit better, you aren’t held back nearly as much by memory size or ROM space issues, and you can have as many characters, places, monsters and items as you want, but the system works best if you adhere to the conventions of that genre. It is possible to diverge from it, and quite far: in the past people have made platformers in RPG Maker, and unusual and startling games like Space Funeral. The more recent PC versions of RPG Maker expose much of their engine implementation to the player to mess around with, letting them modify the underlying code and writing new functions in Ruby or Javascript.

But the closer your game is to 16-bit JRPGs in form, the less coding work you will have to do. RPG Maker gives you several complete, customizable game systems that can carry a game all by themselves. If your aim is to make another game in that style, then your job will be much easier; RPG Maker comes with a complete battle system, editors for character, monster, spell, equipment and item statistics, map editors, a surprisingly powerful scripting system, and much more, all without even having to touch Javascript or Ruby, plus support for those languages if you need it.

Ask yourself: what is your aim? Are you making something just for yourself? For your friends or family? For a fandom or subculture? For the whole wide world? Or for posterity? The further along that list is your aim, the more work you’ll have to do, and the less certain will be success. No matter which is your target, this book should be able to help you along your way. The rest is up to you, the whims of popular opinion, and fate.

It has to be said... JRPG, of course, stands for Japanese Role-Playing Game. I use the term here to refer to the distinctive style and other aspects of the category. One could say, with some justice, that if the game wasn't made by Japanese people then it's not a JRPG. When I use the term, I am thinking more at the elements of design that these games have developed over three decades. By this measure, Undertale may be considered a JRPG. I use the term because, realistically, there is no better descriptor at this time.

The Components of RPGs

On the major parts of CRPGs & JRPGs

So, let's talk about what a "role-playing game," a.k.a. an "RPG," is.

In a role-playing game, the player takes the role of one or more characters, deciding their actions in a variety of situations. That must sound pretty vague, and it’s true that, in a way, this applies to almost all video games, but the term RPG usually implies some element of simulation.

In one of these games, most of the time the characters have some goal they wish to fulfill. Often it’s saving the world, but it could be a quest for personal vengeance, or to right some wrong, or they may even just be in it for themselves. Most developers usually go for the tried-and-true save-the-world scenario, but there are lots of possibilities. Truly, the limits of what an RPG can be about are as wide and varied as those of literature itself, and it is my belief that the games with real staying power, the ones that people will find speak to them in the coming decades and even centuries, will be those that don’t just waste the player’s limited time, but actually show them something about themselves, about human nature, or about the world. That’s a pretty tall order, though.

Most RPGs are, by their nature, buildungromans, tales of growth, even if their actual stories don’t reflect it. Your characters begin weak, but as they overcome obstacles and hardships they gain power through the trials of experience, the acquisition of wealth, and the gaining of other forms of power. By the end of many games they are often among the most powerful beings in their world. There is nothing that says this has to be so, but it’s often true.

RPGs generally have a scenario, or story, a sequence of events that the characters run through until the end. In the classic mode of RPGs, especially those played at a table with other people, player decisions can greatly affect the outcome of the story. On computer, for whatever reason, most RPGs follow a linear progression that players can’t really much change. There are definitely exceptions, but even in many games that are presented as exceptional in this way, the exception isn’t as complete as it could be. Most of them result in the game having a branching storyline.

Beyond the scenario, there is the gameplay. There’s many kinds of RPGs, and to give a full description would test the reader’s patience. In brief, there’s dungeon crawls (Wizardry), sandboxes (Elder Scrolls), exploratory quests (Ultima), roguelikes (Rogue and Hack), adventure/RPG hybrids (Quest for Glory), action RPGs (The Legend of Zelda), roguelites (many current-day action RPGs), puzzlefests (Might & Magic), of course JRPGs, and more.

While JRPGs are usually classed based upon their origin nation, there is still a style that can be recognized as being JRPG in nature. For stylistic reasons, I’m going to describe JRPGs in the following paragraph using definite language, but understand there are really no hard rules; these are attributes often recognized as belonging to JRPGs, but there are exceptions to all of these. These are eighty-percent-attributes, so to speak, to give us a basis for discussion. So with that said:

Among the whole field of RPGs, unless you count more esoteric types like adventure games and visual novels, JRPGs are the most narrative focused, with stories that are straight-head linear or offer minimal divergence from a set plot. They use short animations or cutscenes to advance their storytelling and, visually, they take inspiration from anime and manga, to the extent of borrowing visual language from those places, such as throbbing veins to represent ire, or a sweat drop to represent embarrassment. (Sometimes these even get placed inside little word balloons. RPG Maker contains built-in support for these.) The player’s party, the Player Characters (PCs) they use to interact with the world and drive the story forward, are pre-made for them, and have a place in the game world and a specific role in the story. The composition of that party changes according to the dictates of the story; one character might need to leave, another one may join, according to the narrative needs of the game. Among RPGs they are the least concerned with simulation, and the most with raw gameplay. They frequently invent new game systems, many without basis in realism, to a degree that would make CRPG and TTRPG authors envious.

In a JRPG, the traditional plan is to divide it into roughly five elements: exploration, combat, information-gathering, trade and upkeep. There are many variations, but the following is true of the great majority of these games. Most of you, if you have an interest in making games in this field, probably already know a lot of this, but there is still value in making all this explicit.

It all starts with exploration. Here your party (usually consisting of from one to five characters) roams around the various "fields" of the game, 2d maps that represent the game’s world. Of these there’s three main types: towns (which generally have no enemies), the overworld (which has enemies and is very big) and dungeons (which have enemies but are smaller, and tougher). All of these entities are connected together, in a nested sort of arrangement: the overworld contains the town and dungeons, which each may themselves contain sub-areas, like buildings and rooms. There might be some areas that are difficult to classify, but most of the time they end up being one of these types.

The overworld and dungeons contain enemies that at times attack, miring you in combat. In the classic age these took the form of "random encounters," where you’re just stepping along and BWOOT-BRZZAP, suddenly the screen is different, and your party is lined up, and there are large colorful monsters arrayed against them. Once in combat, you must defeat the opponents or run away to continue exploring, or else your characters will perish. Most games are designed that, so long as you play sensibly, it’s possible to defeat all your opponents every time. If you do, you party earns experience points (which are either awarded to everyone in your group or divided between them) and money (which goes into a group total). Running away is not guaranteed of success (failing to escape gives the enemy free attacks), and there is usually a minor penalty if you do get away, like a few gold pieces dropped in haste. If all of your party members are defeated at once, you get what has come to be called a "Game Over," after the classic session-ending term from arcades. Some games then let you then return to the last time you saved but with everything you got before your party wiped; some games reset you to exactly how you were at that last save; and some games return you to the last save point minus half your money. None of these are significant setbacks, for at least you still get to keep playing, the words "Game Over" as insubstantial as the wind.

For some reason monsters are loathe to enter towns, making them a safe area for your party. This helps you focus on information-gathering, speaking to townspeople and other characters to orient and direct your quest. In an ideal JRPG this consumes a significant part of the game, so it’s import that the text is entertaining, which gives townsfolk a bit of a reputation for silliness. Sometimes this involves cut-scenes, and sometimes those cut-scenes have playable combat in them, but this is usually resolved to important set pieces. This is where your game’s text writer earns his keep, for making up for the intrinsic monotony of the traditional "talk to everyone once" sequence requires some pretty good writing. In the process of that, the player should also get the information he needs to progress, of course.

It’s also in towns that trade occurs. The behavior of JRPG shopkeepers is so commonly known that subquests, and even entire games, have been written about life on the other side of those audient counters. Depending on how simulationist an RPG is, trade may actually be an involved activity and require some special effort; most JRPGs however, are not very simulationist, and trade is merely shopping, the process of exchanging money for items, or items for money.

Finally there’s upkeep, the process of making sure your party is adventuring optimally. This is the province of the "field menu;" some games call it a "subscreen," or a "pause screen," or something else, but all of these things refer to a system of menus that allow you to heal characters, outfit them with equipment, decide on their marching order, remedy status ailments, check character growth, learn about your items and spells, save the game, and perform other forms of bookkeeping. A substantial portion of the game often lies in these branching menus. In JRPGs this part of the game has diminished in importance, but it still plays a role in many games, and it usually plays a big part of an RPG Maker production.

One, some or all of these five categories may be essential to the play; you can get a sense of what parts of a game the developers considers to be important by the time the player spends in each. Many JRPGs, for instance, offer "optimize" functions, that equips each character with the strongest (by some yardstick) equipment they can use. Here is how each of these five modes apply in RPG Maker games and, in summary, how to use them:

Exploration: You provide places to explore in the Map Editor component. You lay down tiles with an easy-to-use interface. The tiles included with the program are many, and some of them automatically "join together" when placed near each other, providing for a more visually-interesting world.

More ambitious users can also create their own tilesets. Although this requires a lot of work, the result is usually worth it. This is best done using a built-in tileset as a template; that way, you can use RPG Maker’s auto-tile functions to your advantage, creating terrain regions that are visually joined together. All of RPG Maker’s tilesets can be exported from a project through the Resource Manager, under the Tools menu (look under img/tilesets). After you edit them to your liking, you can also use the Resource Manager to import them for use (again, into img/tilesets). Then, create a new tileset in the Tileset tab of Database Manager and select your imported image for use (along with any other images you might need; it’s a good idea to look to see how the default tilesets work in RPG maker and copy their settings over). Finally, from the Map Editor, right-click the name of the map (in the bottom-left corner of the window), select Edit, and then select the tileset you created in the Database to see your new tiles in the editor.

Combat: Enemies to fight are created with functions from the voluminous and forbidding Database Editor. This is a multi-step process. You create individual creatures in the monster editor: you decide on the monster’s statistics; you pick a graphic from those included or import a graphic you made yourself or commissioned; you script it so it knows what attacks to perform in which situations or on which round; you take multiple creatures and group them together to form a troop, a group of monsters that appear as a unit; then you give the player a means of encountering them, either randomly (you can assign a troop to appear randomly when the player is traveling on a specific type of "encounter chip," which are placed in the map editor), or by using "events," scriptable entities that can initiate combat and are visible on the exploration map. (Specifically, you would use the "Battle Processing" event command on the third tab of the command dialog.) That requires more work; the example project supplied in this book uses this technique.

Information-gathering: Much like you would use events in the overworld and dungeons to initiate combat encounters in a visible-encounter kind of system, you use them in town maps to create NPCs to talk and interact with. RPG Maker’s scripting system is domain-specific but quite usable. You build scripts line by line with an editor that provides the many items to you using a tabbed-interface; this is a slower workflow than the traditional text editor, but effort has been put into making it easier to use. You can cut, copy, and paste lines between events fairly easily (the standard keyboard shortcuts Ctrl-X, Ctrl-C and Ctrl-V), or delete them with the Delete key, or drag them around to reorder event flow, or even create "common events" that can be called like subroutines. This is the interface you’ll use to create animated cut-scenes, although they will require additional effort.

Even games that usually use encounter chips and random encounters to initiate fights usually have a handful of set, event-generated encounters, such as boss fights.

Trade: Often this is a mere formality, but it’s possible to inject interesting play decisions here. If you have a choice between two different, expensive items, which one do you get? In RPG Maker, for the most part, the shopping interface is handled for you in the form of an engine-provided Shop menu, triggered through the event scripting, in which you determine what the shop carries and, optionally, a custom price for them.

A word to people coming from more Western RPGs types…. Part of the tradition of JRPGs is the "item upgrade cycle." There’s some of that in CRPGs, but JRPGs make it a bigger part of the game. As you advance through the game world, you enter areas that contain more difficult enemies, one that are challenging at first, but as you gain in power they become easier. Some of your increase in power comes from experience levels gained, but not all of it. The rest is made up for by the improved, and more expensive, equipment you can buy as you travel to new towns. Many games have a set progression of equipment that you typically follow, like from iron to steel to silver to mithril to diamond weaponry, and beyond. Nothing says you have to use this system of enforced obsolescence in your own game. It adds a little bit of strategy (who do you more fully equip first?), but truthfully it’s a bit long-in-the-tooth itself. It is up to you, however, how your own game is designed. RPG Maker makes it possible to create your world, and any upgrade paths within it, as you see fit.

Upkeep: A minor but necessary part of almost RPGs is the Menu Screen (that is RPG Maker’s name for it), or Sub-Screen, or Camp Menu, or whatever. This screen is a catch-all for all the party manipulation options available to you. Sometimes this is a substantial portion of the game, such as when crafting systems or specialized equipment happens here. Even for those games where there isn’t much to do outside of battle, the menu screen is an important source of information on your party’s statistics and inventory.

If you’re doing a by-the-numbers game, without special systems, then RPG Maker’s engine will handle this for you by default. In a PC-based project, unless you intervene, the player can call upon the menu screen by pressing the X key at any time in a map, but you can prevent this, for whatever reason, with the Change Menu Access command. While Menu Access has been disabled, the player can only visit the menu screen when you open it in an event, with the Open Menu Screen command.

Changing the Menu Screen to add your own items and functions requires going beyond the basic RPG Maker functionality.

Design

JRPG Design Basics

Some words intended to inspire you to think your concept through

so, what makes a JRPG fun to play? This is a question of paramount importance for us; the whole purpose of this section of design is dedicated to ways to answering it. Let’s begin with a contrary position. Is JRPG design actually important? In some cases, it may not actually be.

When people think back to the favorite JRPGs they’ve played it’s rare that they think about the mechanics, the points and levels, the numbers and skills. Most of the time, what engages them, what makes them come back and play for many sessions, what makes them see the 50+ hour ordeal to its end, isn’t gameplay, but scenario. The story. Characters, personalities, settings, places, events, setbacks, surprises, successes, denouements, climaxes and resolutions.

It is possible, for some games, to just think of the RPG elements as a skeleton upon which to drape the flesh of the story. Who really cares if it takes 800 or 1,200 experience points for a character to advance to level 12? How does an attack growth curve satisfy a player’s need for emotional catharsis? If you look at the gameplay as just a way to bulk out a story, to make it seem more substantial. Contrary to popular belief, when the scripts of many RPGs are written out, many actually have less text than you’d think, because text can be a big consumer of ROM space. Looking at the internals of many 16-bit era games will reveal an assortment of text compression schemes, a fact of tremendous concern to hobbyist translators trying to hack English scripts into Japanese games.

If your story has no need of gameplay, I encourage you to forgo it entirely. It’s the 21st century, and there is time for visual novels! There’s a number of ways to construct them these days, both commercial and free. Commercial, from the people who make RPG Maker, there’s VN Maker, a $70 package you can use to help tell and package your illustrated story. Free, there’s good ol’ Ren’Py, a Python-based system that’s open source and fairly easy to use. If this gets you where you need to be, then congratulations! I’m glad I could help. I guess you can close the book now.

But….

Is it true that a game where most of the interest is in the scenario has no use for RPG gameplay?

Sometimes, I won’t lie, it doesn’t. There exist good games where arguably the actual game is the worst part. One that springs to mind is the SNES JRPG Lufia and the Fortress of Doom, aka Estopolis, a great game with charming characters, a terrific story, a tremendous shocking development, and even some good gameplay ideas, but where the dungeons are a chore, where the enemy encounter rate is set way too high, and where the combat game seems to exist mostly to prevent your enjoyment. (When you complete the game, it unlocks a mode where you can replay it with quadrupled experience and money income. That is actually the best way to enjoy it for the first time, if you can convince someone else to beat it for you first.)

But even a game with rote, purposely by-the-numbers play can have its scenario improved by the presence of that play. One thing even basic gameplay adds to the experience, as I said above, is bulking it up, adding a touch more substance to a story that, if it were just written out, might not be all that substantial. Playing along with your characters puts skin in the game: it adjusts your perspective to be a bit more from that of your characters than if you just read it on a screen of page.

A lot of RPGs, J and otherwise, are stories where characters have to overcome great obstacles to prevail at some huge and noble quest, like saving the world. The time-honored dictum of writing goes, "Show, don’t tell." If you write, "Sir Drebnar and his associates suffered through many hardships and overcame many obstacles before they reached the evil castle," it’s insubstantial. You don’t feel any of the weight of their actions. One way to overcome this is to write it out and use purple prose to make the journey seem longer, so it’s not just one sentence but many paragraphs, but the reader can usually see what’s going on. But if you go into detail on those hardships, make it clear to the reader what they are, how they got to be that way, why they’re so terrible, why they must be suffered, and by what ingenious means they were overcome, how our heroes came to defeat them, and what tragic costs they had to suffer to do so, then you’ve got both length and weight, and also, if the journey is good, substantial interest factor to boot. That, in broad overview, is the process of writing about exciting adventure.

Well, gameplay, even unoriginal gameplay, can be the interactive equivalent of that prose! Showing beats telling, but doing beats showing! That’s why TTRPGs are once again popular, and that’s still the great legacy CRPGs and JRPGs have inherited from them. If your story is great enough, it may not even matter to the player that the course of events is ultimately linear, the quest as railroaded as the B&O. (You know. From Monopoly.)

And, while it is true that text has evocative power that images and sounds lack, neither should the advantages of visuals and aurals be discounted. There are things that are best read, and there are things that are best seen. This is not a book about telling them apart, but one thing it’s easy to do is give the heroes some fights to win, and let them consider the efforts they expended in finishing them as a proxy for the ordeals the characters overcame to succeed.

But, also….

Just because a JRPG doesn’t necessarily need good gameplay to be enjoyable, doesn’t mean you shouldn’t consider adding it anyway.

It does mean you should think about the role it plays. It is a paradox of game narrative: the more important the story is to a game, the more that challenging gameplay tends to get in its way. If the story is really interesting, then players don’t want to get half-way through and then be stuck, effectively between paragraphs, for hours until it continues. And they don’t want to have to start over. The needs of a story are fundamentally different from those of a game. It’s not that it can’t be done, but that these requirements are at odds with each other. This is one reason why most JRPGs are not hugely difficult to complete, and why most action games don’t have deep storytelling. It’s also why some clamor for the introduction of Very Easy or Tourist modes in very large games, because the more of a game there is that is not game, the more people will want to be able to see without having to play it.

There are always people to which gameplay is an obstacle, not a joy, and it is important to remember these people are not always wrong. Everyone has their own line between what’s fun and what’s a chore, and everyone is right about it. Your grandmother is never going to master Robotron, and your uncle Charlie is not going to master your intricate RPG systems. You can ether just ignore these people—which, let’s be clear, is an option, a small team cannot afford to cater to everyone—or lower the barrier to entry, and for some people, any barrier at all will dissuade them. That’s just the way of things.

Now, the way this essay stands so far, it sounds like I’m saying you should make your game incredibly easy, and some games do take that approach. Grandia II, for example, is a game that doesn’t offer much challenge, but is still fun to play because of its engaging combat. But there are legitimately challenging games that are fun to play. The whole category of roguelikes fits in there; for them, the difficulty is largely the point. They’re about learning and mastering the game systems, and figuring out how to take advantage of them, in order to have interesting adventures and, someday, improve enough to win. But notice that roguelikes usually don’t have much of a detailed story, and those that do (like ADOM), have branching quest structures that you explore as you play, allowing you to drive the outcome by your actions, and the choices you make also change what options are available to you gain during the game. That is, the story isn’t separate from the gameplay, but more like a different facet of it.

There is a place for interesting systems and true challenge in the JRPG genre, but it’s usually in the form of optional side-quests or rare encounters. Those are the places where the system masters have a chance to shine, fighting through difficult dungeons, trying vainly to overcome powerful elite bosses, and sometimes playing under limitations like only being able to use magic (such as with the Cultist’s Tower in Final Fantasy VI).

One advantage of the JRPG format for storytelling is that, due to the general open-world nature of the game, where you can freely go back to older areas, the player can return to towns and dungeons you visited before to revisit characters, and you the developer can reward such return trips with new sub-quests. If you have the time and energy, you can tell a story that can expand beyond a simple linear progression like this, remedying past wrongs, and helping folk you couldn’t on the first pass. These optional bits can be substantially more difficult than the plain-progression version of the game, since the player can nominally conclude the story without doing them.

The Basics of JRPG Battle Math

What do all those numbers really mean? This article was originally published, with minor changes, on Gamasutra. This version makes an important correction regarding RPG Maker: its default battle system scales up numbers by a factor of four.

One of the obstacles to creating your own RPG is: what the heck do I do for math? There’s now been well over 30 years of computer RPGs, in both C- and J- styles, and one feature most of them have in common is that they’re awfully vague about their combat math.

CRPGs in the really old days often cribbed their battle mechanics from Dungeons & Dragons. Any game that uses the term Armor Class is basically admitting this outright. If Armor Class counts down as it improves, it’s being extra cavalier about its inspiration. There is an advantage to this, though: players familiar with D&D will know generally how things work, that an improved AC (whichever way it counts) means a decreased chance of being hit, and that a weapon like a longsword will probably do a Gygax-approved 1d8 points of damage.

I cannot say if early JRPGs also passed through a phase where most developers outright stole their system from D&D, but my belief, from what I have seen (which mostly comes from reading Hardcore Gaming 101) is that they did not. It seems like what happened there is that popular early JRPGs, like Dragon Quest and Dragon Slayer, were inspired not by D&D but by western games that were inspired by it, like Wizardry and Ultima. Coming at their ideas from one or more removes meant they weren’t struck in awe of TSR’s beast like many early RPGs seemed to be, and went on to develop their own ideas sooner.

But that meant that players didn’t have those assumptions to fall back on as far as how the game system worked. What the heck does a point of "Strength" mean, in game terms? What is the proper effect or armor? How strong should magic be? Having only other games for inspiration, themselves with poorly-explicated systems, meant everyone came up with their own system, a state which largely persists to this day.

You, too, when you make an RPG, will have to come up with the math to underlie it. You may have to take into consideration things like:

 	How strong should PCs ("Player Characters") start?

 	Assuming you’re doing levels, how much does a character rise in power when gaining a level?

 	How strong should equipment be? What portion of character power should come intrinsically, and how much from what he wears and uses?

 	What is the numerical difference between, say, a fighty class and a magicky class?

 	How much trouble should a party be in if all its mages are dead? If all its fighters are?

 	Should parties be automatically refreshed after victories? (My opinion: no! Party depletion is an important element of gameplay!) Should a character be refreshed after gaining a level? (My opinion: probably not unless there’s a strong play reason, like in Desktop Dungeons!)

 	If a party runs out of resources and can’t afford an inn, how can they de-screw themselves?

 	What keeps adventurous players from venturing into difficult areas and accelerating their growth? Should you even worry about that?

I am not here to give you solid answers. In fact, I think there’s multiple good answers to all of those questions! It all depends on what you’re going for in your design, how you want the game to play and the player to experience. But what I can do is, by examining a couple of classic games (with the help of a bevy of FAQs), tell you how some classic games did it. Maybe that will get you started off in finding your own solutions.

Whatever you decide, take note that is almost certainly just the beginning of a journey. Abstract math systems can only take you so far by themselves; once you know what the calculations look like, you have to design monsters to put up to them. The same battle system can be either very easy or very hard depending on the numbers you give your monsters, and even with excellent foresight, it can be easy to get them wrong. Only playtesting, both by yourself and others, can help you there.

Note 1: For the most part, we don’t discuss bugs in the games, focusing on what the designer intended, although with FF1 we have to exclude whole parts of the design (weapon elemental effects) because they simply don’t work in the original game. This also means we don’t discuss overflow bugs, which were fairly common on 8-bit hardware.

Note 2: We’re interested in the gist, not the specifics. Some of these formulas may be missing a +1 or -1 somewhere or other, and special cases like blindness or paralysis may be ignored. If the omission is insignificant to the general case I am not overly concerned. My aim is to provide examples to you for basing your systems, not make recreations. If you really want to know the details, I provide all my sources for this article at the end where you can read about them yourself.

The Dragon Quest Attack Formula

The power of a character’s normal attack is the sum of their Strength statistic and the attack power of their weapon and assisting items. Skill attacks have their own formulas, as do magic spells, which utilize the Intelligence stat in later games; the first game has no such stat, and spells simply heal/cause damage in a set range for that spell. Defensive power is the sum of the player’s Defense (or Agility) plus all his sources of defense, such as armor, shields and miscellaneous items like the Dragon’s Scale. Similar to the player, monsters have Attack and Defense power, although they are not modified by equipment.

One of the strengths of the Dragon Quest series’ design is that the underlying math is quite simple. While some minor specifics change between games, the formula for doing base damage is largely the same between games, and is similar between player and enemy attacks. It is this:

(Attack Strength – (Opponent Defense / 2)) / 2

For strategic and thematic variety, there are other means of doing damage that go outside this formula, but this gives the game a baseline. This is the standard reward a side receives for using its combat turn to just "fight." As such, it can nearly always be fallen back upon, say if the player is low on magic, or spells are blocked or not known.

What does this mean?

 • It takes two points of Strength to add up to one additional point of damage. This can be from a level advance that raises Strength by 2, or from a good roll on a Strength Seed, or from some other, game-specific source. So, "Attack +10" means "do five more points of damage."

 • Two points of weapon power also results in one more point of damage.

 • It requires four points of defense, from any source, to reduce physical, non-critical damage taken by one.

Because it has no other costs besides that of opportunity, it is unexciting, but for many classes it’s their bread-and-butter move. Because all combat actions consume a turn, anything else a player does should be at least as valuable as making a simple attack. A spell that consumes both magic points and a combat turn should be more powerful, on the average. (Situations, of course, vary. Against an opponent with high magic defense, or if the player purposely uses an early-game spell while carrying late-game equipment, could produce situations where simple attacks will have greater effect than spells. We’re talking about the general case, and assuming the player is trying to play optimally and has the knowledge to do so.)

Some points of interest about this formula:

 	This is the traditional Dragon Quest formula for "base damage." Most JRPGs, Dragon Quest included, don’t just apply damage, but modify it by something called variance. To simulate some of the uncertainty of battle, the value coming out of this expression is adjusted randomly. In Dragon Quest/Warrior I and II, the actual damage done is in a range between this and double. So, if the result is 10 points of damage, the damage dealt is actually between 10 and 20. While not as random as, say, Dungeons & Dragons tends to be, that is actually quite random by JRPG standards. Dragon Quest/Warrior III uses a formula that uses double this base damage, but in the variance step halves it again, +/- 10%. A tendency in later JRPGs is to reduce variance, with DQ VIII damage being in a range from just 1/16th below to 1/16th above the base.

 	While it’s offset a bit by the fact that some player characters have extra item types adding into defense (shields, helmets, some miscellaneous items), all other things being the same, a point of attack strength is twice as strong as a point of defensive power. In play terms, this helps to keep players and monsters "in play" longer, allowing even lower-level participants to do at least some damage. The consequences of a very high Defense is to shut a battle down (assuming no critical hits happen), making things hopeless. This way, high Defense enemies, while still unlikely to outright defeat a player character, may still have a chance of taking off some hit points, and thus eventually forcing them to consume resources in healing or retreating back to town.
Anyway, the fact that Defense is divided by two before it’s applied seems significant, but, and this is one of the things about RPGs that can make them a bit confusing to examine, it needn’t be. As mentioned, player characters may carry shields or wear helmets in addition to wearing armor, and that means the total Defense may be higher than expected. Or, defense items may be stronger to make up for it. Or it’s possible that PCs gain innate Defense/Agility faster than they gain Strength. Or it may even be that enemies simply have less attack than players to make up for it. If you examine any aspect of a system in isolation, you risk missing relevant factors outside of it that may change its implications.

 	The above formula is replaced by a different formula when an enemy attacks you with less Strength than you have defensive power. I don’t go into it here (check my sources if you’re curious), but notably it ensures higher-level opponents, whom you still greatly outclass, do at least a small amount of damage, and doesn’t take your defense into account at all.

 	"Critical hits," which Dragon Quest sometimes calls things like "excellent moves" or "desperate blows," use a different formula. It’s traditional for JRPGs to not take opponent defense into account when a critical hit is scored, which is effectively what Dragon Quest’s engine does.

 	Later games have engine adjustments, like Skills and DQ8’s "Tension," which add their own quirks to the formula.

Some Other Notes On Dragon Quest

Dragon Quest I’s statistic growth is pretty much set in stone, but there are some minor differences. The game cooks up a value based on the first four letters of the player character’s name (really!) and uses it to decide what stats are gained on gaining a level (including the first, which the player begins at). The upshot is, for two of the PC’s four primary stats (Strength, Agility, Max HP and Max MP), stats are higher than normal at low levels, but less than normal at high levels. For the precise details, see tyan8bit’s guide, linked in sources.

Dragon Quest III stat gain (information adapted from Fafnitr_Volsung’s guide, in the sources at the end of this book) is fairly weird. Each possible character class at each level has a kind of ceiling score in each stat. If a PC has less than that upon gaining a level, it rolls for a substantial gain in that statistic. If it has more than it, it only has a 50% chance of gaining a single point.

About those substantial gains… they can actually be quite huge, depending on the class and level (check the FAQ for details), while the "expected" stats rise at a standard amount, for each class, throughout its progression, from level 1 to 99. If the gains are very large, it’ll hit the progression ceiling quickly, and from then on, some of that class’ stat gains will become tiny. Meanwhile some class/stat combinations never get very high stat growths, and so will probably never hit their by-level caps.

An important implication this has to do with the game’s class change feature. When a character changes to a different class, its stats remain the same while level returns to 1 in the new class, so at first the character will probably only gain the ceiling-level, 50% chance of one point advancement. The character will have to grow to where the new class’ ceiling is over the current stat before substantial increases will resume.

But, as Fafnil_Volsung points out in the sources, there’s another drawback here, and one that seems a bit buggy. The game only hands out substantial max HP and MP when both those statistics are above their ceilings, and the amount gained are based on the Vitality or Intelligence gained. So, to get a substantial amount of Max HP, both Max HP and Vitality must be beneath the ceiling at the same time, and for Max MP, both Max MP and Intelligence must be beneath the ceiling. For this reason, a character’s first class matters disproportionately in terms of HP and MP possessed.

RPG Maker uses a similar formula by default; it’s described some ways below.

Final Fantasy Attack Formulae

Unlike the starkly traditionalist Dragon Quest games, Final Fantasy has made it a point to make each game something different, sometimes greatly so. The games do not share a common attack formula on the whole, and even the first one uses quite a complicated system, so let’s limit our examination to that one. Links to FAQs for a couple of others are included in sources for the interested reader.

There are two entirely different player character Base Attack formulae. For most characters, and armed Black Belts or Ninja, it is:

(Weapon + (Strength / 2))

For Black Belts and Ninja without a weapon in hand, it is simply

Level * 2

In an actual attack, the damage done is

randrange(Base Attack, Base Attack * 2) – Enemy Defense

Note that this includes basic variance. We’re not done here yet, as we have to take into account multiple attacks, but before that...

Final Fantasy’s chance-to-hit calculation is more involved than Dragon Quest’s. Each weapon has a specific accuracy score, and each class builds a Hit% stat at a set rate. That chance is determined with a good old fashioned to-hit roll, although its form is much different from D&D’s:

randrange(0, 200) < (168 + Hit%) - Enemy Evasion

If the random number is less than the value, the attack hits. Special cases are made of rolls of 0 (automatic hit) and 200 (automatic miss). The providence of that magic constant 168 is unknown; why did they pick that number? Maybe there was some internal formula to the design that decreed that to be the perfect value, but, honestly? I think they just picked something that they thought would work well enough, and that made it through play testing.

Now that we’ve introduced Hit%, we can talk about the "multiple hits" that some classes get, which can be a substantial modifier. Basically, you divide the character’s Hit% by 32, adding 1 to it, then multiplying the result by a random number from 0 to 2. I do not know for sure, but I suspect the resulting number of hits is rounded off before multiplying all the damage done by that attack by it. The randomness in this process is a substantial element, potentially even greater than the normal attack variance. Also note that Black Belts/Ninjas double the number of hits done, just because. Call it the home field advantage.

A character’s Defense, aka "Absorb," is, entirely, determined by their equipment, except in the case of unarmored Black Belts/Ninja, whose Absorb is equal to their level. (Or should be; there’s a bug that in some cases uses that character’s weapon power instead. Please don’t seek to simulate the effect of such bugs in your own games.)

Critical Hits? Each weapon has its own critical hit rate, which is then completely ignored by the engine. It’s a bug: the weapon’s sequential position in the table, divided by two and in percent, is its critical hit rate. Excepted from this (as you might be expecting) are unarmed Black Belts and Ninja, whose critical rate is their level. Damage done from a critical is the same as normal, just with the random part rolled a second time and added in.

Here’s a couple of notes:

 	Outside of HP and MP, characters only gain single statistic points upon level increase. Level 50 is the maximum level for both Dragon Quest I and Final Fantasy I, but in FF, a character can only gain a single point in each stat at increase. Some classes have scheduled guaranteed increases at particular levels; other levels have only a 25% increase in growth.

 	Since characters can only gain one point of Strength upon each level gained, and its effect in the damage calculation is halved, as far as base damage goes, for non Black Belts, weapon power seems to matter a lot more than arm power.

 	Balancing against that is each class’ Hit% gain. Fighters start at 10% and gain 3% with each level, putting them at getting a second hit in more times than not at level 8, and getting another on average every 11 levels after. Weapon choice may play a role in that as well; the source material seems inconclusive. Unarmed BB/Ns get twice their level, meaning an extra hit every 16 levels, but then the number of hits is outright doubled, so make it every 8. That explains why they tend to be such an attacking powerhouse in the late game.

 	I didn’t cover magic users in this, which is its own huge and drawn-out matter. I leave that as an exercise for the (hyper-motivated) reader.

The RPG Maker Battle Formula

The above was written to give you a sense of what’s traditional among classic JRPGs. By default RPG Maker’s engine follows something similar:

a.atk * 4 - b.def * 2

"a.atk" means the attacker’s Attack value, and "b.def" means the defender’s Defense. As you can see, the attack strength is multiplied by four, then double the defense is subtracted to get the base damage. From there a small amount of variance is added. Notice that the radio between Attack and Defense is the same as in the Dragon Quest system, it’s just been scaled up by a bit.

What if, for whatever reason, you wanted to use the Dragon Quest formula instead, or the Final Fantasy formula, or another of your own devising? You can actually do that! RPG Maker MV gives you the ability to change the damage done by the skills in the game, and Attack is implemented as a special skill. (We explain how to do that later.) The Attack command in battle uses the first skill in the Skills list in the Database; if you change its formula, you also change the damage done in the game, both by PCs and by monsters that use the Attack skill. If you do so, be sure to follow the same convention: the variable a represents the attacking character or monster, and b represents whatever is being attacked. We explain this in more detail later, including the fact that, technically, the content of this box represent a Javascript expression that is run on every attack. Clever coders can insert their own code here, before the calculation. Put a semicolon after your special code and before the expression that figures damage. The value used by RPG Maker MV appears to be the returned value of the last expression in the box.)

"Fast" Versus "Slow" Character Growth

How much will your characters change, in terms of statistics, over the course of a game?

Take a moment to consider the rate of character growth in your game. Following from the power-fantasy nature of most of the genre, a lot of the satisfaction of an RPG comes from watching your little video people grow and become world-shakers. When you win a battle, and afterword the message appears: "[Character] has gained a level!" (Or alternatively, "[Character] levels up," a bit of so-called engrish that has passed into common usage.) There is a little feeling of satisfaction there, even if experience levels, outside of video gaming and D&D-derived TTRPGs, are considered an outdated concept.

The terms "fast" and "slow" are, of course, relative, so let me set out what I mean by them. In a game with fast character growth, at the end your little video game people will look very different, in terms of power, than they did at the beginning. A good example, again, is D&D. A character at level 2 is roughly twice as powerful as one at level 1; hit points, the main measure of survivability, will probably grow by 50%. A character at third level, in many editions, gains abilities that greatly enhance their battle performance. Primary spellcasters, now able to utilize second-level spells, become much more formidable at level 3. And at level 5, pretty low on the D&D ladder of might, a Rubicon is crossed in terms of power. That is, after all, the level that wizards can take one of the game’s most notorious spells: Fireball.

An old joke in the hobby (dating back to classic print issues of Dragon Magazine) is that, if you look at raw day-to-day ability, Gandalf from The Lord of the Rings, one of the most iconic wizards in literature, is really only level five in D&D terms. It’s not that Gandalf is weak, it’s that wizards are strong. Another saying that floats around D&D players is "linear fighters, quadratic wizards." Wizards grow faster than fighters. But all characters, because they improve on multiple axes as they advance, increase in power significantly with each level. This was actually recognized as a serious problem when the 5th edition of Dungeons & Dragons was designed, as one of the game’s biggest sources of player power, their chances to hit enemies, was severely cut back in that version, flattening somewhat the power curve. Now the change between levels, for most characters, comes not from numeric power but from abilities they gain, everyone gains, as they advance in level.

Most CRPGs have what we would term fast character growth. Part of the reason for this is, again, they are power fantasies, and gaining ability rapidly is a bigger draw than slowly. In a game with slow character growth, much of what a character is in terms of power is set when the game starts. Levels tend to raise ability in small, even single-point increments.

In real-life battle, where stakes are higher, injury nowhere near as easy to overcome, and most weapons and armor require training to use well but can still be negated by lucky blows, dirty tricks or plain old gunfire, people don’t become really good at fighting without years of training. Slow character growth is much more realistic than fast, and so fits games with more serious themes, that seek to simulate battle with rigor, or that are more challenging.

A series of games that makes good use of slow character growth is Fire Emblem, which fits all of these categories. Upon gaining a level, your characters may, or may not, improve by one point in each of eight categories. Whether they do or not is random; each character has a hidden set of improvement percentages for each value, but (in most games*) nothing protects your characters from rolling badly.

What is the effect of a single point in a stat in Fire Emblem? Small, but significant. A typical base class character might have 24 hit points; gaining a single point isn’t a huge improvement, but most classes have pretty good advancement rates for HP, so over the course of 10 levels, a very lucky character might end up with 34. Of greater value is Defense, which removes a point of damage from all non-critical attacks. A 24 HP character with high defense will get a lot more mileage out of that small health pool. One of the series’ favorite tricks is to give bosses very high defense, so most of your characters, except those who happen to have come out ahead in growth variance, can only possibly hurt them with critical hits.

Attack, of course, overcomes enemy Defense, and puts a further dent into enemies with similarly-scaled health. A foe with 24 HP that gets attacked for 11 damage falls after three hits; when attacked for 12 damage, it goes down in two. Speed is an interesting stat: not only does it affect chance of hitting and of getting a critical hit, but if your speed is (typically) four points higher than the enemy, then you get two attacks in an encounter, one before and one after the enemy’s counterattack. A single point of speed could possibly be the difference you need to double your damage output.

Fire Emblem’s game system makes every point matter, so its slow character growth fits it well. In a Final Fantasy game, by contrast, in terms of points, random damage variance from a single hit might be more than all the damage from a Fire Emblem character’s whole attack. Slow growth is better suited for games that are scaled low, where both player characters and opponents have low numbers of hit points, attack and defense, where every point matters a lot.

In terms of difficulty, the thing you should most be aware of with slow character growth is that, since it takes several levels to attain a substantial amount of power increase, it is much more conducive to sequence breaking. It will take longer for a player who decides to run from a lot of battles to become underpowered. A player who ventures into territory they’re not intended to be in may actually be able to survive for a significant amount of time. This can actually be fairly entertaining; unless you limit progression with scenario-based barriers, players can explore in a much more open-ended manner. A random fight might be beatable at level 1 or level 6; the main difference would be how much of the party’s resources is consumed by the fight, limiting the amount of exploration in a high-difficulty area that can be done before the player must visit an inn. On the flip side, this makes it less obvious where the player "should" be if they don’t wish to sequence break unintentionally. Some players don’t like such non-linear gameplay.

You can’t please everyone, but you can please yourself. Make the kind of game you want to make.

A Starting Point For Experience Design

What happens when a character gains an experience level? How does that change as the character's levels get higher?

This book’s aim is to help as many people as I can with the formidable task of constructing their JRPG-like game, and most people will probably opt for a traditional experience system. Very well then! How do we go about making one of those?

Although there are limitations to it, the later PC versions of RPG Maker offer us a good solution to building experience graphs, with an interface that shows you, graphically, what happens to each statistic over the course of a 99-level tour. The relevant area of the program is under Tools > Database, Classes tab. To bring up the growth editor, double-click the box beneath the name of the statistic you wish to modify.

[image: growthcurve]

[image: generatecurve]

The five presets, A (fairy quick growth) through E (slower growth), are given for people who don’t want to worry too much about it. They offer fairly rapid growth, but it’s scaled up very high, like, Final Fantasy high. A level 99 character with hit points given out by Preset A can eventually have nearly 9,000 of them. Even Preset E will start characters off with at least 200 HP. The advantages to using the presets is that they’re reasonably consistent with each other, and automatically scaled to their respective statistics so that generally, if you give characters who are supposed to grow the fastest in an area preset A, and the slowest preset E, you’ll have characters that work as a player of old-school JRPGs would expect.

Myself, I prefer to keep numbers low. The lower everything is scaled, the more value there is to a single point, and I find it’s easier, in play, to gauge a character’s performance when your units are ones and tens than if they’re hundreds and thousands. If you want more control over character growth curves, but don’t want to micromanage character stats at every level, you can click the Generate Curve button. That will allow you to specify what a character’s statistic should be at level 1 and at level 99, and the shape the graph should take between those endpoints. The slider is marked "fast" and "slow," but doesn't have the same meaning as I used in the previous article. To explain, "fast" growth, here, means a stat that starts out growing quickly, but increases more slowly as levels increase; "slow" growth only begins slow, and speeds up the closer the character reaches level 99. "Normal" growth is a strictly linear progression, a straight line, producing a character that will gain about the same amount of that stat when advancing to a level, be it 2 or 99. So, "fast" and "slow" here only mean how characters start out advancing. At high levels, they in fact do the opposite! If you use a mix of characters with all three options, the player will likely find themself relying on different characters at different points in the game, which is not a bad way to go, as it encourages players to adapt different strategies as the game proceeds.

Having options is good, but which should you choose? I suggest, early on, just declaring what an average player’s level should be upon reaching the final boss, then decide what the player’s stats should be at that point, then work backwards from there. You could also do it iteratively, picking arbitrary values, designing relative monster strengths around those, testing them out, changing growth levels or monsters around what seems easy or hard at a given spot, and in this way going back and forth to produce the kind of difficulty your game should have. In truth, you’ll probably end up doing some of that anyway, but it’s hard to get started without picking some point to begin from. It’s difficult to balance out your game acceptably on the first try with pure math unless your battle system is simple.

So, I suggest picking a target end-game level for your characters; you can then adjust the length of the game, the experience points players will gain along the way, and/or the experience points required to advance levels, so that a casual player will reach that target level by the end. I suggest not making your target level 99, the engine’s ceiling, because it means players who like building up their characters to make the game easier will hit the wall before the end of the game. Then, a player that’s having trouble with end-game content will have little extra they can do to overcome that challenge other than trying again and again until they make it, which can make for a monumentally frustrating finale. Picking a low level, like 20, will mean characters will grow in just a few discrete steps, and an individual level will be a significant increase in power, in game terms, like it often is for Dungeons & Dragons characters. That can be an interesting choice, but most designs will probably be best served by a finishing level between 30 and 60.

Now that you have a target, you can use that amount of progression as a framework, around which to balance the rest of your game. The secret of RPG design you should be told, at this point, is that it’s arbitrary. If your characters have 200 hit points and enemies attack for 50 damage each, it’s the same as if your characters have 20 hit points and enemies attack for 5 damage each. Most character stats matter only relative to the stats of the enemy; to make the game easier, you can either raise player stats for one part of the game, or decrease enemy stats; the result is the same. Although, in practice, changing player stats, once you get the growth curves set up as you like them, might upset other parts of the game you’ve balanced to your satisfaction, but you can always fix individual problem enemies.

I presume you get what I’m saying. High values are high only relative to other values that are low. If you multiply everything in your game by 10, effectively, nothing changes. Readers who did well in Algebra will probably be thinking about numerators and denominators right now, but I will spare you such talk.

Abandoning Experience Points and/or Levels

A weird idea that may not be so weird after all: maybe don't have character advancement at all, or tie it to something other than just fighting.

It needs to be asked: why are you using experience levels at all?

Before we get started with this discussion, I should warn you that RPG Maker’s JRPG-based systems are geared towards experience points and levels. It’s a package oriented towards making it as easy as possible for you to construct your game. Ease of construction directly translates into relying on many assumptions, and besides hit points themselves, there are few JRPG assumptions as universal as experience levels. The phrase "level up" has entered into gaming commons for a reason (even if I conspicuously refuse to use it).

If you follow the suggestion in this article, and are using an RPG Maker product as your development system of choice, then you’re going to have to do some working-around. You’re going to have to come up with some other means of character advancement. Fortunately, RPG Maker is flexible enough to give you multiple ways to do this: you can advance character statistics through permanent-gain items like the seeds from the Dragon Quest games; you can rely on purchased or found equipment to provide all of your character’s advancement, which may put extra emphasis on money in your game; you could use Javascript (or Ruby in earlier versions) to code your own advancement system completely separate from points; or, you could come up with some completely different solution that I haven’t thought of. You could even choose not to use character advancement at all! That’s a valid design choice, one that requires you to adjust the rest of the game to account for it, but if that’s your decision then go for it! Let a thousand different design paradigms flourish! Your journey will be easier if you just let RPG Maker do the experience lifting for you, but there’s something to be said for walking untrodden paths.

Let’s say that you’re opting to design a game without experience points and levels, by whatever means. What else can you tie player advancement to? Here are a few suggestions, a by-no-means-complete list.

 	There’s story progression, of course. This is the most boring, least interesting route. It means you can make it so that players will always be of an appropriate level to complete challenges when they get to them. But it also means that they can’t help but be. You take away the tactic, which some players enjoy using, of purposely advancing levels above where they should be, in order to make the game easier for themselves. It also means players cannot attempt low-level challenge runs, it takes away some of your power to reward players for accomplishing extra goals, and, as we'll observe when we get to the boss section, you throw away all of that potential variety in game state that comes from uncertain level. You basically dictate that all players must face the game the same way.

 	You could award player improvements from finding specific places in the world. You could sprinkle enough of those along the main path to let incurious advance (maybe with a bit of difficulty), but reward poking around optional areas with additional advancement. This ends up looking a little like The Legend of Zelda, where player advancement, in the form of Heart Containers, is obtained by finding it.

 	Here’s a crazy idea. Let players purchase level gains in towns! Call it training! Now players have strong competition for their earned cash with weapons and armor. You could take this a step farther by not letting enemies drop money (set all their cash to zero) and funding the player exclusively through gold awards found in treasure chests, which brings a bit of the advancement-through-exploration element into it.

 	Or, alternatively, you could bring in some old-school D&D, and instead of removing experience points and levels, award experience for value in gold pieces found, whether in combat or not. The justification for this is a bit unintuitive to current thinking: instead of just awarding experience points directly from defeating foes, you award it from accomplishing goals. What is one of your primary goals? To earn loot and gold. So, if you find treasure, whatever you did to obtain it was a good thing, right? That proves you’re playing well, and should get experience points for it.

Whether you agree with that reasoning or not, it might be an entertaining thing to try in either case. You could either seek to implement this automatically, so every gold piece a player earns through combat or finding it also adds to their experience total, or you could just award a like number of experience points as gold value when a battle is won or a chest is opened.

 	You could award experience points, or outright levels, or stat increases, through accomplishing subquests for people in the game world. You might award a basic amount of this from finishing legs of the main quest, but players who take the time to engage with the people in your carefully-crafted game world would be rewarded for it in terms of advancement.

 	Or, you could go the Final Fantasy II (Japan) route, and use a custom system (here implemented in Javascript/Ruby) to give statistics a direct chance of increasing when you use them. Characters who attack would see their attack power rise; characters who take damage might gain hit points; characters who use the Defend action might increase their resistance to damage, and so on. This is somewhat the system that Chaosium’s Basic Roleplaying system uses, where skills that get used see the most improvement.

But for a battle-oriented game, care must be taken with it. Final Fantasy II is remembered as being largely a failure in game design, because it was very easy to make lopsided characters, with tons of attack but little defense for example, unless players fought very consciously. In practice, many people would grind for many battles in order to raise their stats. There were also bugs in that game where some abilities could be trained just by entering their command, then backing out of it, allowing for character improvement without wasting turns in battle.

A system like this, if planned carefully and balanced around how often different actions are performed, might still could be useful. I would suggest leaving combat out of it though. Let players have skills that are useful elsewhere in the game, but maybe use a more traditional approach for increasing combat ability, unless you are prepared to spend a lot of time balancing.

Again, the more experimental you are with your gameplay, the more likely you’ll have to dive into Javascript or Ruby to make it work. There are plug-ins that might help you out though; the extensive series of RPG Maker add-ons that Yanfly makes (covered later) may be of great use to you. Before you do any custom coding yourself, see what you can adapt that has already been made by others. Don’t invent the wheel if someone else has given you a train!

Start of game versus end of game ability

What does a character look like at the start and end of the game? What does that tell you about the nature of the adventures they must have at the end points, and in-between?

Now that you know what level you want to be at the end, and the shapes of the development curves that lead to that point, you know what your characters will look like when they get that level. That means you can start planning the enemies that appear both at the start of the game (where all your characters have their default statistics) and at the end of the game (where your characters will have statistics based upon your projected end-game level).

You might not have figured out what special abilities characters will have by the endgame yet, but knowing what kinds of enemies await them there will help you do that. If you aren’t planning on giving characters strong, free abilities beyond Attack, then this shouldn’t be a huge issue. Strong spells should, naturally, have high MP costs to match, and the resource management around those costs should help serve to keep their usage in check. Remember that "high MP" only has a meaning relative to player maximums. A spell that costs a third of a player's full magic tank usually qualifies as high cost, but if the character relies on magic for basic functioning, then it may well be less.

Consider the concept of the "bread and butter" spell, a spell that a character relies on in most, if not all, encounters. Basic attack spells should probably have low cost to prevent wizards from being dead weight. Many low-level healing spells also tend to cost little, although you should consider how readily the player should have access to healing; also, unless the spell scales in power, low-level healing spells will quickly become valueless. Keep in mind that a healing spell's usefulness can be measured in two ways: hit points restored in a single turn, and exchange rate of magic points for hit points. An interesting design option is to make the weakest healing spell extremely efficient in terms of healing, making it a bad move to use it in combat beyond the very beginning of the game, but when not fighting it becomes the cheapest way to get all your health back other than going to an inn.

Anyway, you can think of each leg of the game along that way as a step towards the end destination. According to classical RPG design (16-bit Final Fantasy), players should not have to grind, in normal play, to be able to complete each step of the game. That is to say, assuming the player defeats all random encounters at an average rate and doesn't run, that should put the party at about the right level to finish each part of the game with a decent level of challenge. There are several virtues to this system:

	It does away with the scourge of grinding, which makes some older games frustrating to play to current players (see below).

	It allows the player to adjust their own difficulty, by grinding up an extra level or two if they choose.

	Optional quests along the way are the frosting on top of the cake, giving the player an interesting way to come out ahead of the curve if they want to.

There is nothing saying you can't design your game according to older, 8-bit era standards, where you expect the player to do more wandering around to find interesting locations, and rely on the player to grind as much as they need to to make each leg survivable, but some players will complain. Of course, some players will always complain, and as I exhort elsewhere, you should make the game that you want, but the more familiar and relatable your game is, the more players, speaking as a matter of averages, will enjoy it. Put another way: players like familiar, the convenience of not having to wander around just fighting monsters to advance caught on for a reason, and if your game wants to go back to that earlier norm, you should at least have a compelling gameplay reason why, like, your fights are super interesting, somehow.

The Combat Model and Character Class Design

What are the nature of your game's simulated battles? What roles do your characters play in them?

We talk a lot about traditions in this book, and nothing says you have to follow any of them. But by doing so, you decrease the cognitive load on the player. When you have characters that clearly are fighters, thieves, priests and wizards, the player will know what their roles in battle are and be able to strategize with them better out of the gate.

That said, it is a fact that, after over three decades of use (four if you include their TTRPG origins), they’re kind of boring. Unfortunately, the influence of MMORPGs upon the genre has further solidified character roles, now into gameplay role terms like Tank, Damage and Healer. I am not fond of this, but it is what it is. I’m not really much more fond of the old-school roles, but at least they were rooted in the characters’ story concepts, and not just what they do in a fight. But it is true that thinking of characters in that way helps the developer design the game a bit better—it’s when players start using those terms that I begin to think something has broken down.

To talk about how to design useful character classes, we have to consider a few things. We have to look at the fact of RPG Maker’s combat system itself, which by default is largely a version of the old Dragon Quest and Final Fantasy systems, what that means, and, importantly, how does the party roster change throughout the game: do PCs come and go according to the whims of a story, does the player get to choose who’s on board, or is it largely a set party, maybe with one or two "guest" characters?

The Combat Model

Constructing an RPG combat system is not a simple task. It is fortunate that RPG Maker offers one by default, but it’s pretty simple really.

Some games offer interesting features like grid-based battlefield positioning, intrinsic movement based on actions, delayed actions depending on execution time, real-time combat, and the opportunity to cancel enemy attacks with timely and strategic action. RPG Maker, sadly, offers none of this by default, and to offer any of these things would require extensive scripting. Instead, we have a classic "line up" battle system, where all your characters effectively stand in a line, and enemies have their pick of who to attack each turn. Where did this concept come from? Why are fights done this way? As with a number of other unexamined things about JRPGs, the details go back to classic Dungeons & Dragons.

These days, at least since the 3rd edition of the game, most combat in D&D is done using miniatures on a tactical grid mat. 3E D&D contains comprehensive rules for handling diagonal movement, how much cover corners offer, the shapes of spell effects, and more. Before that however (and making a bit of a comeback), a prominent way to play the game is using what many players called a "Theater of the Mind" kind of style, where the DM describes the location the players are in, and they just say what they want to do. It's called Theater of the Mind because, with this kind of simplified setup, miniatures aren't necessary at all; a simple list of opponents and players is enough to run combat, with the action mostly occurring in the heads of the players. Although details vary, most of the time this is what we would call a zero-dimensional combat model; a battle location is basically a singularity, a point that "contains" all its participants. Everyone is in the same location, so everyone has equal access to whoever they want to attack or aid, and battle access is limited only by the will to act. This, with some minor adjustments I'll get to in a minute, is the basis of most JRPG combat.

What alternatives are there to a zero-dimensional model? There's a linear, or one-dimensional model, which is surprisingly uncommon but can be observed in CRPGs in some of the classic Bard's Tale titles, which measure distance from the party to enemy groups, and in some form in Wizardry and Might & Magic, where some monsters or players cannot fully participate in battle unless they are in the "front lines," the leading slots of the party formation. A linear combat model usually measures distance, in some way, between the party, or sometimes individual characters, and some or all enemies. In such a system, missile weapons and spells gain greater use because they can be used to attack foes that are not yet close enough to attack with melee weapons. A specially-designed party might be able to obliterate a group of monsters before they even reach melee range, but because distance attackers tend to have little health and defense, if the opposition did manage to close they would be in trouble without "tank" type characters ahead of the to bear the brunt of their physical attacks.

Then there's a planar, or two-dimensional model, which is mostly used in tactical RPGs like Fire Emblem and Shining Force, but also shows up in the Mystery Dungeon games and other roguelikes, and a few others like the Lunar games and the Japan-only Live-A-Live. These systems can be quite complex, and so often in these games the role of combat expands to form the brunt of the game, and towns shrink in importance.

Although they may be laid out on a screen or even a 3D field, the essence of the battle model in most JRPGs is zero-dimensional, although with a couple of linear elements to deepen strategy. Dragon Quest games, for example, usually make it so characters towards the back of the lineup are targeted less often, although there is still nothing preventing your weakest wizard from being hit by every monster in a turn. Many classic Final Fantasy games allow you to set up two "ranks" in combat, the front and back, and so long as at least one character is in the front, characters in back take, and do, half physical damage unless they're using missile weapons.

These features are a concession to one of the flaws of the Theater of the Mind setup, that there is nothing preventing monsters, if they are fighting optimally, from attacking low-defense, high-damage characters like wizards and thieves, first and every turn. All characters have equal accessibility, and so mathematically that's the best move to make. In a TTRPG, the gamemaster might make a concession to this, ruling that opponents may not be intelligent enough to play optimally or observant enough to guess that the characters wearing robes are high-priority targets, but then, it's not the job of a gamemaster to obliterate the players, which is easy enough, but instead to play fair and provide a decent challenge. The same is true of the combat in your own game.

The bad new for users of RPG Maker is, it does not appear that the default combat system makes any allowance for Final Fantasy-like rows or party ordering. While the menu screen during play has the Formation command allowing characters to be moved to different positions in the line-up, there is not a lot of documentation that I've been able to find on what effect this has in battle. In 20 test rounds with a group of four characters, they seemed to get attacked pretty much at whim, with no benefit for being toward the back of the group.

Since battle formation is an important part of traditional combat strategy, if just to provide a way to offer some protection to weaker characters, I would suggest that creators using RPG Maker MV use a plug-in like Yanfly's Row Formation system to provide at least some strategy to party layout.

Character Class Design

We've already mentioned the MMORPG-determined three archetypes of character design, Tank, Healer and Damage, which are just renamed versions of the three original Dungeons & Dragons classes going back to the White Box days, "Fighting Man," "Cleric" and "Wizard."

"Fighting Man" is an unfortunate naming that later editions soon rechristened to just "Fighter." A strong and bulky sort who can hit for decent damage, and has a lot of hit points and defense so can take punishment too. Because of their high damage capacity, losing health means a lot less to them than other classes, so attacks made against them hurt the party overall a lot less. Their drawback is usually the lack of magical abilities, although the recent trend is to give them special maneuvers that start to look a bit like spells when you unfocus your eyes. This is because fighters, left just to their basic combat strengths, become less powerful than wizards at high levels, and because fighters are pretty boring as far as characters go if you don't give them special abilities in some form. A fighter on their own, can usually last a while, but is hampered by their lack of restoration unless they load up on consumable healing.

"Clerics" are the default healers. Back in D&D they were inspired by the fighting priests of the Crusades, and so could use fairly heavy armor and decent weapons in addition to their holy powers. Non D&D JRPGs, and lots of CRPGs too come to think of it, usually drop the martial aspects in favor of pure holy goodness. In the process the strategy of deciding whether your healer hits or heals each turn is lost, but truth be told D&D clerics are probably a little overpowered considering how essential a function healing is. Also in the purview of this archetype is restoration abilities, like healing from poison or even raising the dead and banishing undead. The classical cleric is the most self-sufficient class in White Box D&D, able to serve as a one-person party in some cases.

"Wizards" are traditionally glass cannon characters, capable of dishing out damage but not taking it, relying on the other characters in the group to dilute enemy attacks and keep them on their feet. Wizards tend to have the weakest hit points and defense and don't get strong weapons either. As mentioned above, on problem with Wizards in the RPG Maker engine is that there appears to be no way to dissuade enemies from targeting them, so if the dice roll badly it's possible for one to be the target of multiple hits each combat round. You might be able to make up for that by making magic-using-class-only equipment to give them with a high Evasion Rate % trait, but that's a workaround for a function that should really be in the engine. Ah well. Wizards are not very viable on their own, since all those enemy attacks that would be directed at their associates will go towards them.

Those are the big three, which have to do with absorbing, replenishing and doling out damage. If you view an RPG as mostly a combat game, then that may well be enough, although you can still make more "classes" by adjusting and combining these roles. Like, a "Paladin" is a part-fighter, part-cleric; a "Ranger" is halfway between fighter and wizard; a "Sage" is a cleric/wizard; a "Barbarian" is a fighter with some extra mechanics that make them stronger but less flexible, and so on. If you consider an RPG to be more about interacting with a world, with combat being only a part of that, then there is room for other specializations.

"Thieves" were the first class added to original Dungeons & Dragons after the big three. While they have some combat potential in the form of high-risk, high-reward attacks like backstabbing, the true purpose of the thief is in utility abilities, things to do outside of combat. Picking locks, opening doors, disarming traps, climbing walls, sneaking around and other things of that nature. Thematically, some of these things a wizard may be able to do too, but at the cost of expending some of their magic; thieves can just do that stuff. On their own they're a mixed bag: they're going to take hits and are only a bit more durable than wizards, but ideally they won't get into battle that much. And because they can find traps and open locked things by themselves, they can do some things safely that other classes cannot. Because the class concept relies on doing things out of battle, to make thieves really work as a character type you should add events like locked doors and chests for them to open, and traps for them to save the party from. Some games give thieves a chance to steal money or items in battle, but overall this archetype doesn't really shine in JRPGs, despite charismatic examples like FFVI's Locke.

"Bards" are a kind of jack-of-all-trades class. Some games have "Dancers," which in mechanics are essentially Bards by another name. In battle they provide buffs for other party members, which encroaches a bit on the turf of clerics and wizards, but makes them a little weak. Most battles that aren't boss fights don't last that long, and they end up spending their first turn initiating their effect, a turn that could be used in whacking or slicing the enemy. One notable use of a bard character is in the classic CRPG series The Bard's Tale, which let bards sing songs that persist outside of battle and provide passive effects over time that way.

"Goof-Offs," or "Gadabouts," were also invented for the Dragon Quest games, and are unique in that they have no explicit positive aspect. They aren't good at fighting, healing or magic! They don't pick locks or sing! Sometimes they don't even do what you tell them to do in a fight! They sometimes do random things on their turn that can be useful, but they can also be harmful to your group. Goof-Offs are intended to be a challenge class, a character to include for people who want to make the game a bit harder, but there is often a secret advantage to using one in the game. In Dragon Quest III, the first game to offer them, Goof-Offs could immediately promote to Sages at the Temple of Dharma instead of having to do an optional quest first. Dragon Quest VI requires characters to "master" the Goof-Off class as a stepping stone to the Luminary class.

There are other possible options too, but then you're creating something new. Maybe an Accountant or Merchant class for help in reducing cost overheads, or a Chef class if your game enforces a food requirement? (If it does, by the way, then I wish to subscribe to your newsletter.)

If combat is a large part of your game (I generally assume that it is), it's important to give even utility characters at least some battle function. If they're just as powerful as combat-focused classes, though, then it could create the situation of why you'd ever choose non-utility characters. A player choosing a utility character should be a statement that they're devoting some thought to out-of-battle concerns; this shouldn't make fights easier, but it should carry some benefit, which implies a more complex world than the default.

All of this implies that the player will be able to create their own party. Many JRPGs don't allow this, but instead stick you with a cast that changes through the game, or else gives you a number of required characters and a roster of others you can switch in and out at your option. A danger of the first type is the temporarily unviable party, where for a period the party consists only of people who don't fight well. Every party configuration that is exposed to the player should be checked for all the regions of the game they might visit, to ensure they are generally survivable in all situations.

If the player is expected to build his own group, then you can call situations where the party is not viable and any stalls that might cause the player's fault, but you'll also have to account for a lot more possible parties trying to work through the game. One way or another, you're going to have to do playtesting to make sure that players have good experiences.

Exploration Expectations

Why bother poking around every corner of the world? Why indeed.

Exploration is fun. Everyone knows that, but what does it mean, to explore in a video game? It might seem like an obvious answer to you now, but I insist that it’s more complicated, maybe more complicated than you thought possible.

What are the games that make a big deal of exploration? Legend of Zelda games are some; player advancement (in the form of Heart Containers and a few items) are tied to it, secrets abound in those games, and they even have a short musical jingle that they play just for when you find something cool. Metroid games are some others. A lot of Shadow of the Colossus is "pure" exploration, in that a lot of it there’s really no play reason for; there’s terrain that’s just there to look nice and fill space. That works for Shadow, but for a lot of other games that have huge areas, the player has a reasonable expectation that there will be something in that space to find. One of the black arts of map design is knowing that unusual things found in a game world naturally suggest importance, that there is something hidden there to find, and even large expanses of nothing can be such an unusual thing.

It is possible for a game to have too much exploration, or bad exploration. A lot of classic RPGs, especially early Dragon Quest titles and Phantasy Star II, towards the end would present formidable dungeons that it was very difficult to make your way around in. It wasn’t just that these dungeons were large and had a lot of tricky bits like trap floors that suddenly dump you on the level below. The nature of those games’ combat distracts the player from navigating the dungeon. Usually the combat takes longer to resolve than the exploration time until the next fight. Couple with it the difficulty of the fights at that stage of the game, and you end up with an experience that seems almost intended to dissuade players from progressing.

How can you make exploration more enjoyable, or at least easier? Oh yeah, get ready for another list!

 	It is in large, complex dungeons that high enemy encounter rates are at their most frustrating. There’s a reason that encounter rates generally decreased throughout the years of the early days of JRPGs. Since every moment the player spends fighting monsters distracts from the greater puzzle of navigating the dungeon, it makes sense to adjust random fights down considerably, or even switch, for these locations, to visible enemy encounters. If there is anywhere in the game where a player who usually makes it a point to churn through every fight to start just picking up and running away, it’s towards the end of a late-game dungeon.

 	One of the things that makes dungeons and very large overworlds tiresome to navigate is when the terrain all looks the same. Classic 8-bit RPGs, and even 16-bit ones, would use one tileset for an entire huge map, and make the tiles generic stone, bricks or, in some cases, tech detail. This is your primary enemy in designing multi-level, complex dungeon mazes: making every screen of them memorable and unique in a way that stands out in the memory.

 	Related to the above is making every level interesting to look to in some way. RPG Maker gives you a lot miscellaneous tiles to use as dungeon dressing: use them! It takes a lot of effort, but if you give each dungeon a unique tileset, it’ll also help give each a unique sense of place.

 	It also helps if you provide some visual indication of how far the player has made it through a large dungeon. Putting numbers of the walls that indicate how far the player is from the entrance, or how close they are to the goal, not only serves as a visual landmark for memory purposes but gives the player a sense of their current location in the greater whole.

 	Putting interesting puzzles in a dungeon, say oriented around block-sliding, can both make a dungeon a bit more challenging to complete directly, while also making the dungeon easier to explore by providing another memorable landmark.

 	Finding your way into a dungeon can be interesting; finding your way back out is less so. You can provide easy escapes from dungeons through an item or spell, such as Dragon Quest’s Outside utility spell or Earthbound’s helpful Exit Mice. This way, the party doesn’t have to consider conserving resources to escape with if they get overwhelmed, nor do they have to worry about remembering the way out.

 	Alternative to the previous suggestion, you could put a refresh location right in the dungeon, maybe at the end of one passage, or even in the center. It can serve as a kind of base of operations to facilitate exploration as well as a landmark. You could also put important places, like a shop selling powerful items or one-time skill upgrades, in a dungeon; then the dungeon isn’t just a trial to overcome, but a source of powerful advantages that requires skill and daring to use.

 	It is a little known fact that dungeons with loops in them, multiple ways to reach various locations, are actually a little harder to explore than "branching" or "one route" dungeons, where there’s only one way to get to any location. Any maze without loops (or one-way passages or other such tricks) can be explored in its entirety, eventually, by following the wall, either on the left or right. However, dungeons with loops in them are also more interesting to explore. I would go with loops rather than branches most of the time, but the occasional simple, branching dungeon can make for a change of pace.

 	Treasure chests, even if they don’t contain anything, are a useful thing to provide players throughout these dungeons, because they provide a visual record of where the player has been. Or alternatively, give players some other means to help them track where they’ve been; maybe an item that makes visible "bread crumbs" appear on the ground? Maybe unlit torches on the wall that they can light?

 	A favorite trick I like to see that makes dungeons memorable for navigation, can provide hints for finding secrets, and also tends to be fun to explore, is to make a dungeon based on something the player might be familiar with. Maybe the inside of a gigantic tree? The interior of a big animal? (Zelda: Breath of the Wild uses that for its dungeons!) Inside of an office building, with hallways and meeting rooms? A portrait of a person scaled up? Even a huge geometric symbol. The familiarity of the object helps to give players an extra cognitive nudge towards remembering the insides and helping them navigate. This is exactly the kind of brilliant advice you’re reading this book for, so use it!

 	Finally, you could outright use the gimmick that the Legend of Zelda games have used since the beginning, as well as some of your more forward-thinking early exploratory games like Impossible Mission on home computers, and just give the player a map that updates as they explore. RPG Maker doesn’t provide any in-built support for it so you’ll have to implement your own solution; such a project is way beyond the scope of this book. Sadly, I don't even know of any plugins that do this.

Complexity of Play

Is the world just a stage for your characters to wax and wane upon, or does it have more of a life of its own, simulating things outside of sight?

This fairly speculative article may be of no interest to you. If you view RPG Maker as a means to storytelling end, you probably won’t get much out of this. This article is for those of you who choose to take RPG Maker’s defaults and do a plus/and. Keep the same kind of game world, but add a little something extra. Maybe even a lot of something extra. In the default case, RPG Maker presents a fairly traditional game system. In it, a typical game goes like this:

The game starts out with maybe a single party member. At the start, the groups, whatever size it is, is just strong enough to beat a few weak enemies found around the starting town. Let’s call these weakest-of-the-weak foes that you face slimes. You can probably guess why.

Town holds a special attraction for parties of adventurers because, in addition to being the place where you buy equipment, get information on your quest and maybe even receive subquests, it is the site of the inn, that all-important resource for adventurers through nearly all JRPG Fantasylands. Inns are usually low priced, and restore the HP and MP of all your characters upon visiting. Because of this, your journey can usefully be divided into the periods of time between visits to inns. Let us call these periods expeditions.

It’s not just an inn visit that can end an expedition; it also ends if all your party members kick the bucket. If everyone in your group has perished, it’s "game over," which usually means you get sent back to your last save point with half your cash-on-hand. This is a setback, not a huge one, but still a setback.

As you gain experience levels and purchased equipment, your expeditions can become longer. You eventually can extend your range long enough to reach another town, with another inn. You gain power, enough to tackle strong enemies, challenging bosses, fearsome bosses, and eventually the final boss. The end.

That is the basic JRPG archetype. If that’s all you want from your game, then RPG Maker is there for you. But what if you’re more ambitious than that?

Take money. Usually you get it from defeating enemies. But what if you can do other things with money? What if you can bribe monsters with it, in order to leave you alone or even join your group? Or, instead of investing it in better weapons and armor for your group, what if you could more literally invest it in ventures run by people in the game world, like some kind of shlock fantasy Shark Tank? Or alternatively, just sock it away in a savings account, or buying a bond? But these things also require that you model the passing of days, to give your investments time to mature. A relatively simple idea can require a bit more out of your game engine than you first thought to realize it.

There are lots of ways you can extend the game world beyond the fairly simple defaults that RPG Maker’s engine gives to you. A day/night cycle not only requires tracking time, but also changing the world’s colors to match the time, and maybe even moving around your towns’ NPCs to reflect time of day. (That could end up being so much work that it might be more effort-efficient to just make complete copies of your towns that get loaded depending on the game time!)

There's lots of different systems like this you could add. There's even a whole appendix in this book devoted to suggesting more. They take a lot of work, but with some custom scripting, RPG Maker is flexible enough to support them. Cool features like this have the power to show players that an RPG Maker production doesn't have to mean a boring game with little play interest, that a game world constructed using it can be just as interesting as something made with a bespoke engine, and made in less time.

But there's a limit to how much complexity the typical player expects to put up with. Every feature you put in your game becomes something a player expects will have to be interacted with in order to play successfully. And really, if the player doesn't have to interact with it to finish the game, why is it in there?

Everyone has a limit to the amount of effort they will put into something ostensibly meant to be enjoyable before they throw up their arms and exclaim too much work. There is no hard limit, and in fact it varies according to circumstance and player. Someone will put up with a lot more out of a game they want to enjoy than one they were already predisposed to dislike going in. And player tastes change over time: many 8-bit RPGs tend to seem kind of simple today.

What can one do in these cases? One thing you can do is design the game around the expectation that the player will never think to play around with your complex and inventive play system, leaving it just to be an extra edge for players who take the time to master it. The Grandia games are largely like this. They are known for their ingenious combat system where battle participants' relative readiness to act is depicted on a circle or line chart as an icon. As fighters prepare to act, their face moves forward on the chart at a rate determined by their speed. One point is marked COM; that is where the PC or enemy decided what to do. In a PC's case, action pauses while their command is input. Then the participant's face begins traveling the rest of the way down the way, to at a rate partially determined by how much time it takes the action to occur, until it reaches ACT, when the decided-upon move is executed, and then the character begins preparing for their next act.

The greatness of this system lies in timing. When a character takes damage, their face actually moves back on the line a little, to represent them getting held up by the attack. And some attacks have a property called "Cancel." If you manage to hit an opponent with a Cancel attack after they've made their decision but before they've carried it out, they'll completely forget what they were doing and go back to preparing for another turn! Properly mastered, there are some boss fights that can be finished without the enemy getting any actions in at all; in fact, Grandia II plays special victory music if you get through a fight without taking damage, to encourage thinking like this.

Grandia II plays special battle music after perfect fights to obscure the fact that there is no other reward, other than the satisfaction of playing well. It is possible to complete the game without worrying about this at all, just heedlessly bashing through each fight. Did Game Arts make the right decision in designing such an enjoyable and strategic combat system without ever forcing the player to use it? I will not answer this question for you: you should decide on your own answer.

I will offer a counter example, the much more recent game Xenoblade Chronicles 2. By way of contrast with Grandia 2, combat is much more complex, and later on some battles force you to make better use of its quirks. And its battle system is quite hard to learn: there are tutorials, but each is only given to you once, and if you fail to pay attention while they run, your recourses are to learn while playing (which is very hard), learn from internet FAQs (good luck with that), or start the heck over (yay for replaying the annoying early phases of the quest all over again).

I can't fault its makers for having some degree of ambition for their combat, once you learn how to play well it's a satisfying system. But is it asking too much of a player to learn to master what is a largely opaque and non-discoverable system? Where should the line be drawn, between Grandia II and Xenoblade Chronicles 2? I encourage you to think about this on your own.

Sacred Cows & The Usefulness of Ignoring Them

Lots of vocal people have ideas about what is good or bad RPG design. Some of them are right, but some of them are wrong, and many are wrong situationally. Decide for yourself which are which.

No doubt you’ve heard them. The nay-sayers.

You’re reading a review of a JRPG from some time back, and you spy, "The game has random encounters, a piece of game design that I thought had gone the way of the dodo."

Or, "My party wiped, and it threw me back to my last save! This is the 21st century, haven’t we learned by now that failure should be frictionless?"

Or, "The combats in this were actually quite hard! I found that it was interfering with my enjoyment of the game. Shouldn’t I be able to play the content and experience the story I paid for the way I want?"

My friends, it is time that I revealed something of my true nature. I am, of course, a forward-thinking, modern game designer. I sympathize with the plight of the casual player, and of the lesser-skilled. And yet, if you do not wish to take their interests to account, I say that is entirely your prerogative. As an indie game maker, you cannot afford to second-guess your instincts. Leave that for the big studios, who must mathematically accomodate the widest possible audience.

Put another way: I grant you permission to make the kind of game you want to make. If you want/can consider the interests of those classes of player who eschew difficulty, that is great! The world needs many more games like that! But there are some kinds of games that fundamentally need to be difficult. This article exists to help you exercise your own judgment as to what those are.

There are many kinds of games:

	Some (like arcade games) are tests, measurements of skill. An easy version of Defender misses the point.

	Then, many difficult games, from Super Mario to Mega Man to Dark Souls, are exercises, designed to improve skill, both because it improves game-playing ability itself, and because learning and accomplishment are themselves fun. Tests improve skill too, in the same way that if you take a test a dozen times you'll tend to do better at it each time.

	Some games are narratives, designed to communicate a story in an immersive way. In these games, as has been mentioned before, high difficulty can prevent interested players from exploring the game to their satisfaction.

	And, amazingly rare, some games are participatory narratives, where the story is more of an algorithmic thing, and the player’s actions and skill, for good or ill, influence the outcome. This one is a mixed bag, and since the outcome of the story depends on player decisions, and the player may want to replay the game to explore them, it's good if these games are short.

	There’s more kinds than this too: there’s the toy, the puzzle and the sandbox, and for some of these the question of difficulty may not even apply, but let’s stick to the subject.

The great promise of RPGs in computer gaming has always been the participatory narrative, a story that adjusts itself around the player as if there were a live referee running the show. Since the first CRPG promised players an experience of going on a D&D-like adventure without a DM, that has been the ideal. And yet now approaching 40 years later, it’s still so vanishingly rare that I, who am dorky enough that I can readily come up with examples of ancient computer games in most cases, even I cannot easily think of solid examples. Ogre Battle, whose ending depends on many things you do within the game, may be one.

A lot of games that pretend to be participatory narratives really are not. Some roguelikes could be considered a kind of participatory narrative: they tell the story of the adventures of a character, as if it were a D&D adventure. If the character dies, then the story is over, for they do not allow go-backs. Neither would any DM worth their salt.

Most JRPGs are just narratives, without the participatory part. If your party wipes, you not only can go back to your last save to overcome it, many games reduce the loss beyond even that. Failure is expected, and allowed for. And this is fine, for that is the kind of game they are. When you’re making a game that extends past the 20 hour mark, it’s almost essential, because it’s disheartening to spend a week to get to the last boss, die to it, and be told, too bad, the world is doomed, go start over.

So what am I getting at? Simply: recognize the kind of game you want to make, be it a test, an exercise, a narrative, or (if you’re ambitious, for there’s good reasons they’re so rare) a participatory narrative, then go make it without apology.

Although if the rate is turned up too high they can be annoying, there is nothing intrinsically wrong with random encounters! Making players go back to their last save upon party wipe is okay! Or better, if you have a great idea, do something completely different from these things, that I have not anticipated! If it's an old idea, recognize that gameplay doesn’t go obsolete. You might be limiting your game's audience, but it’s best that you get it made for some people than if you equivocate forever about making it and so no one ever gets to play it at all, or if you end up watering it down into being just like everything else. Make strong gameplay statements, the ones that you want to make, and express them boldly. As an indie (I assume), you are in a unique position in that you don't have to worry about appeasing rich investors and appealing to everyone, so take advantage of that fact and make a game that is distinctive and unique. With so much competition out there, it is really your only chance to be visible among the crowd.

Boss design: End-of-stage or independent-challenge?

On the virtues of not letting players refresh and save before a boss fight.

In the earliest days of JRPGs, bosses came at the end of challenging dungeons. You’d sweat through a gauntlet of tough, randomized enemy groups, through a complex maze of passages, traps and tricks, and there, with the goal in sight, you’re attacked by the strongest foe you’ve yet seen, just when your party is at its weakest. What a dirty trick, right? The chances would be high that you’ll end up losing and having to go back to the last inn. How frustrating! It wasn’t long before the convention became to put full restores and even a save point right before a major boss. Problem solved, right?

Well as you can probably tell by now, when I start out an essay with a lead like that, it’s usually to tell you that the solution can be just as bad as problem. Not that you should discard this pattern entirely—it can be interesting to fight truly challenging opponents when the party is at full strength, in some circumstances. But allow me to make a case for not letting the party fully restore before a boss fight.

Consider, for a moment, the body of information that is the player state. That is, the state of the player’s resources, statistics, attributes and so forth at a given instant. It’s everything that makes the game position, as it stands at a point in time, unique. The contributing factors to that state are everything that has happened up to that point. Every action the player has taken, every setback, every success, all those random fights, all that mucking around in town, the purchases the player’s made in towns, the equipment they’ve sold, the steps they’ve taken. All of those things, combined, is, even more than where they are in the scenario, the story of the game up to that point.

Games, especially turn-based ones, are about making decisions about resources. This can be taken to extremes, but ideally, every decision should have some influence on the game, no matter how small, and even if the player doesn’t perceive it. Taking an extra step along the path to the objective increases the chances of a random encounter. Making the wrong move, even in an easy battle, might result in taking a little extra damage or expending an additional magic point. They might not be enough to meaningfully influence the state of the game, but those choices added up give the game’s state in a given moment character. If the player is a little low on hit points because of those decisions, it might mean the player will have to spend an extra turn healing; if they’re a little low on magic points, they’ll have to prioritize normal attacks, and so on. These things jumble up the game state and make each decision a little different from the others.

But a lot of this goes away when the party receives a refresh. It tosses away a lot of the state from before, resetting hit and magic points to current maximums. By granting a full refresh, the designer is saying this is a goal, making it here. If you can get to this point, then however you reach that point doesn’t matter. It inherently makes the strategy a little more limited. The player doesn’t have to worry about surviving the dungeon and its boss; just surviving the dungeon, and then surviving the boss.

Additionally, by putting a full refresh right before a boss, you effectively equalize the situation across plays. When the player always has access to all of his characters’ powers when fighting an interesting situation, as boss fights tend to be, it lends a sameness to those encounters. It’s not entirely the same; depending on the game, the party may have a different experience level, different equipment or inventory, different party construction or other persistent abilities upon reaching the boss fight. Those things can help a boss fight remain interesting across multiple plays even if a refresh is available right before it. But health and magic supply is the most immediate measure of a player's well-being in exploring the dungeon. Plus, by putting a refresh point in a dungeon, you are giving the player an anchor right there, a place where they can go back and explore the rest of the dungeon, working backwards. To avoid this, you could either put a point of no return right before the refresh, but that has its own problems, as then a party that cannot defeat the boss has stallled.

Note, also, that not allowing a party refresh before a boss fight makes designing the boss, itself, harder. A good designer will account for more possible player states up to that point, which usually takes the form of making the boss encounter a little easier than it’d be otherwise, or not forcing the use of magic to beat it, or else helping the player with access to other forms of self-aid, like finding healing potions on-site.

On Power Fantasies

Power fantasies are a time honored part of RPG gaming. Aren't they part of the whole concept, though?

Since the beginning, a time-honored part of role-playing games has been the joy of watching a group of characters rise in power, from weaklings who have trouble against a handful of kobolds to demigods who can shake the heavens themselves. Whether it’s tabletop RPGs, CRPGs or JRPGs, it is something that nearly all of the have in common. Because the player comes to identify with the characters, it’s a way to vicariously experience the thrill of becoming powerful yourself. It could be argued that it’s harmless, empowering and fun.

It could also be argued that it’s boring. In fact, Leigh Alexander argues exactly that, and she makes good points. Some games, especially Western-developed ones, nearly fall over themselves to make the player feel, to use a common term, "like a bad-ass." It is telling, from looking at them, that there is a dearth of imagination as to what such bad-asses are supposed to look like: invariably male, well-muscled, with a face covered with stubble as if a mere razor were not up to the task of controlling it. Not just in RPGs, from Metal Gear Solid to God of War to The Witcher to Grand Theft Auto, the games make it clear that your character is strong and can overcome anything, and then prove it by giving you an escalating series of carefully crafted challenges that you can beat, to build your ability throughout, until you can defeat the horrible oppressive figure awaits you at the end.

JRPGs don’t buy into some of these tropes, but they substitute their own, usually involving youth, stoic aloofness and spiky hair, and are just as much power fantasies as Western games, just sharing the advancement between a party of characters instead of just one.

Now as they say, if it ain’t broke, don’t fix it, and a lot of players play games specifically in order to experience a sense of empowerment that is all too often denied them in life. But it doesn’t necessarily have to be so. I observe that some particularly fondly remembered games don’t have the player characters become all-powerful by the end. After all, in the original Final Fantasy Tactics, your main characters leave, ultimately unsuccessful. In the first two Mother games, while you overpower foes through battle and PSI powers throughout, at the end it’s only through appealing to outside forces that you succeed. In truth, messiah tropes, stories of a destined or chosen one only through whom can the world be saved, are severely overplayed. Discarding them can greatly increase the variety of stories you can tell, at the cost of abandoning some other tropes of the genre as well.

I offer, as a prominent example of a game about overcoming obstacles where the players are specifically not empowered, the tabletop game Call of Cthulhu, based on the works of H.P. Lovecraft, designed by Sandy Petersen and published by Chaosium. (There are computer game versions of Call of Cthulhu; I ask you to forget anything you know about them for this article.)

To compare it to the biggest TTRPG, D&D is a game for heroes, even from level one. In its world a score of 10-11 in an ability is considered average, but most ways of generating player attributes are aimed at giving them at least one score well above that range. In recent editions of the game, characters with average statistics in important areas have a much tougher time, doing less damage and hitting less often. In earlier editions, characters with low scores often couldn’t even be some character classes. Wizards without high Intelligence scores simply couldn’t cast high-level spells, presuming they survived long enough to learn them.

By contrast, Call of Cthulhu is a game about normal people called upon to do extraordinary things. Players still roll statistics for their characters, but generally they don’t play as large a role. Notably, there are no experience levels, and player advancement is mostly in the form of a large number of skills, which improve over time individually and through usage. The maximum hit points a character begins with is likely what they will die with. Characters do game some abilities, in the form of Mythos spells, but their usage costs them sanity points, a terribly important statistic. And the nature of sanity loss in that game is, the lower a character’s sanity, the more likely they’ll lose more, causing a downward spiral that eventually renders characters, if they survive that long, unplayable, broken by their experiences. That might sound like a bummer, but Call of Cthulhu is a popular game, partly because players know what they’re in for. There aren’t many Lovecraft stories where the protagonists have happy endings, after all.

This, then, may be the primary obstacle to making games that are not power fantasies. If you are of the mind to see the genre advanced, to not just copy what you’ve seen but produce new things no one has seen before, then I encourage you to find your own solutions. How can you create a satisfying game in which the player’s group may not ever be the strongest in the land? Manage the player’s expectations, let them know what they’re in for early, and see what you can get away with.

Examination of a Monster Generation Table

How a formational JRPG distributed its mid-level monsters.

In the game Dragon Quest II (known originally in the US as Dragon Warrior II, probably for trademark reasons), the player’s party eventually comes to the town of Hamlin. A significant portion of the game is spent here: the player should find the third party member, find and conquer a tricky-to-locate tower, and spend a lot of time building experience and gold. The monsters encountered in this area will be fought many times, with a party that starts out weak and becomes significantly more powerful. It’s useful to examine the monsters that are generated in this specific area, since they are fought under a wide array of conditions.

Dragon Quest II was only the second game in the venerable Dragon Quest series, and is a much more complex game than the first. The first game is almost unplayable now, more a faddish thing, in my eyes, than a true classic, but the second game has much greater longevity. For the first time you can have a party of more than one character, which has many implications to gameplay: a single character’s death no longer means total defeat, you can do a lot more in each combat turn, different characters have different strengths, one character can have lots of magic remaining while another is entirely depleted, and there are many other, more subtle, changes to strategy. In fact, in battle, you can actually have a strategy: before, your choices were limited to Attack, Heal, Hurt/Hurtmore or Run, with occasional Sleep or Stopspell; now, each of your characters has to make such a decision, with varying effectiveness, so you must prioritize, watch multiple levels of resources, and generally do a lot more in combat than before. In my opinion, while the series continues to evolve with each successive iteration, this is the game that really invented what Dragon Quest plays like.

Because the player has access to much more in the way of health and magical resources, the designers greatly increased the level of difficulty over the previous game. Monsters can attack in groups too, and usually do. You could end up facing up to seven opponents in a battle, and it’s even possible for more help to be called in during the fight. Party wipes are common in the Hamlin area, especially when starting out, but can occur even later on. Careful decision-making is needed, and once in a while, you get wiped no matter what you do. (I once got surprised by five Dragon Flies that each breathed fire before I could get my first turn!) Still, while reviving characters is expensive, this is far from a permadeath game, and you keep experience earned upon revival after all your characters perish, even if you do lose half your gold. (Or none of your gold, if you just go back to your last save.)

To get a look at how the makers of an important game decided what to throw at the party during an important intermediate leg of the quest, I thought to examine the possible enemies that can appear around here.

A few common observations: all of these enemies go down with from one to three hits, rapidly centering on one except for the tough guys. The first Dragon Quest had enemies, at the edge of your explorable range, that could take several rounds to defeat, but with the frequent encountering of groups larger than your own make that less viable here. A common use for magic is to reduce the hit points of a large group far enough so that fighters can finish the enemy off. Two enemies here have party-affecting attacks, Magicians and Lizard Flies, but only one enemy, the Heal Slime, can heal. The only enemies with strong physical attacks in this area are Zombies and Baboons, but most foes can get in a hit or two. It's the weight of accumulated encounters that provides the difficulty, more than single encounters.

The monsters a player may encounter are:

Big Rats – A lot of areas have what I will term "mooks," that are really just bags of hit points and attack strength. There is nothing fancy about a Big Rat. It has no special power to make your characters miserable. It just bites and scratches, dutifully, once each turn. Its danger is entirely incremental. Since they (and most of DQ II’s monsters) usually appear in groups, even if you outclass them (which is likely even when starting out in this zone) you’ll probably take at least a hit or two, and over time those add up. But unless you’re down to your last character from other fights, Big Rats probably won’t wipe you out.

Even though they offer little challenge, mooks are important enemies because they give an outclassed party an out, a way to, slowly perhaps, build themselves up to fight stronger opponents. The penalty for death in DQII is pretty big: to revive a character, it costs 50 gold per character level. If the player doesn’t have that, they could conceivably earn it by saving, sticking close to town, and fighting random monsters. If you get strong enemies, reset and try again. If you get a bunch of mooks, beat them then go save again. Over time, this can save a newbie player out of his depth from a permanent stall.

Army Ants – These guys are mooks too, but with an important difference: they can call for help. Once you start depleting a group of Army Ants, they can spend turns calling in more of their species, dragging out the fight and slowly eating away at your hit and magic points. But on the plus side, they only call more Army Ants, and each Ant is pretty easy to crush. And DQ II gives awards based upon the monsters you kill, not the ones that started the fight, so you can earn a lot of experience pretty safely this way. But you must be able to seal the deal: if you don’t end up killing the last Ant, but are defeated or run from battle, you get bupkis.

Magic Ants – We’re getting into trickier enemies here. Magic Ants don’t call for help, but still appear in groups of four, or mixed in with other enemies, and they can cast Sleep.

In DQ, an enemy using Sleep could be an expedition ender all by itself, especially if it managed to chain together multiple Sleeps without you being able to do anything about it. With a larger party, it’s much less likely for a single Sleep spell to end your game. Further, it’s rare that even multiple Sleeps take out your entire group, so Magic Ants are usually pretty easy to beat. But there’s still that chance, and all players collectively shiver in fear at its possibility. And given enough fights, the odds of it happening increase. Still, in my test game, it never occurred. As the party gains experience, their resistance to Sleep spells increases, until eventually fighting a group of Magic Ants becomes a blessing, an encounter opportunity that could have been Baboons.

Magicians – In the original Dragon Quest, Magicians were terrors of the first stage of your journey, the stick the game used to punish low-level players who strayed too far from Alefgard before they had eaten enough slime. In DQ II they’re much less menacing, even if they can appear in groups, because they mostly use the Blaze spell, and that’s weak sauce when you are plural. Sometimes they use Fireball, which attacks the whole party, but not as often as you’d think. The only reason they’re not mooks is because they actually know a spell, but they’re still pretty mooky.

Centipods – Centipods differ from basic mookdom because they have significant defense, meaning it takes two physical attacks to kill one for a while, and because they have a slim chance of poisoning. Poison in early JRPGs exists pretty much as a way to reward foresight and preparation, and punish the lack of same: if you have bought one of the extremely inexpensive Antidote Herbs, then you’re good. If not, you’re going to lose a hit point every few steps until you’re cured or die. So simple: always have an Antidote Herb when you leave town! Simple, right?

Nope! This is early-era Dragon Quest we’re talking about, meaning hard inventory limits! Having an Antidote Herb (which are occasionally dropped by enemies, too) means one less Medical Herb you could be carrying, one less Wyvern Wing you could have, one less Lottery Ticket you could carry, or one less key item you’ll have room for, and DQ II loves key items.

In the end, an RPG is a fantasy, not just of power, but of experience, of guiding a group of ragtag murder hobos through dangers and wonders to do something great, and an undervalued, in recent years, part of that is the process of preparation, of making wise decisions concerning the outfitting of your group. So, when venturing out from town, don’t neglect the Antidote Herb! At least until you learn the Antidote spell, which probably happens about halfway through your time in the vicinity of Hamlin, which costs only 2 MP and makes Antidote Herbs themselves almost entirely moot. When you get the Princess of Moonbrooke in your party, and soon after the Infernos spell, groups of Centipods are notable for burning up from a single casting.

Big Cobras – Weaker Centipods with a higher chance of poisoning. They actually appear before this area too. They’re pretty scary when you only have one person in your party, and even less room for Antidote Herbs, but now they’re kinda pitiful.

Babbles – Sometimes called "Bubble Slimes" in other games, these are basically Slimes that can poison. That makes them slightly more dangerous, but not much.

Magidrakees – They are physically small on-screen, which has the side effect of allowing more to attack you at once, and can cast Blaze, but otherwise are just a wear-you-down kind of foe. They cast the Defense spell, which counter-intuitively decreases your defense power, but they’re weak hitters anyway so it’s usually just a wasted turn. It does, however, demonstrate the use of the spell, which is important for when it turns up in your party’s magic list, and when stronger monsters use it later on.

Megapede – An upgrade from Centipods. They also have high defense and can poison, but more importantly, they have a chance of executing a "heroic attack," a critical kind of hit that can take a character to low HP or beyond. Remember, at this phase of the game reviving a character can only be done by going back to town and talking to a priest, so just one of these, if you’re unlucky, has the power to end your current expedition, starting you on the walk (or flight) back to civilization.

The existence of these enemies has important implications to the resource management game. Often, the player must decide whether to try to keep all the characters healed up to maximum all the time, which can be quite wasteful of magic points, or to wait until they take significant damage to heal. Megapedes are an argument for the former, for a random Heroic Attack probably won’t kill a fully-healed character, but very well could finish the job on a half-full dragon warrior if you’ve been skimping on the heals. Still, Megapedes are uncommon, and there’s plenty of harder enemies to force this decision

Ghost Rats – A slight upgrade on Big Rats. Can even appear late in the game, since, strangely, they sometimes get generated at sea. They can call for help, but are really just spooky mooks.

Smokes – Are quite harmless, except for two things: they usually appear in groups with other monsters, and they can cast Stopspell. But Stopspell can only work on individual characters in this game, has a higher chance of failing than in DQ1, and probably won’t matter anyway.

Healers – In some games they’re called "Heal Slimes." Now we’re getting into the realm of the infuriating. A group of Healers and nothing else is some delicious experience points, but if they appear pumping up a Baboon you’re in for some suffering. From the standpoint of monster design though, Healers are brilliant. They’re only a threat if they accompany something else, but if they are, you’d either better be able to take out that something else in one hit, or spend a lot of turns killing all the Healers first. A perfect example of how different monsters, randomly teamed up, can completely change the strategy required in a fight. That’s what monster design is about.

Zombies – These guys tend to appear more to the west of Hamlin, on the way to the next area. They hit pretty hard and have good HP, so it can take significant resources to return them to the soil. There’s two other things about them. One is they know the spell of Surround, which supposedly makes it harder for your characters to hit their targets, but I don’t think it works in DQ II because I’ve never noticed it having an effect. The other thing is that they randomly Guard in battle, which halves damage taken from physical attacks. But they have to waste their turn to do it, so it really just delays the inevitable.

Lizard Flies – Ah, so we’ve come to these jerks, one of your two primary hassles in this area. Lizard Flies often appear in groups of four or even five, and while they often stupidly attack you, they are very likely to spend their turn attacking with Fireball. Unlike the Green Dragon breath you encounter later, or even the Dragon Flies you’ll encounter pretty soon after Hamlin, Lizard Fly fire isn’t that strong. But it always hurts somewhat, usually doing around 12-15 damage, and it always hits your whole party. Several of these attacks in a row will easily wipe you out, and they’re another strong argument for keeping your party’s HP topped off. Fortunately, they have few hit points.

Baboons – The heavy-hitters of Hamlin, these apes have a lot of HP, enough that it usually takes two hits to kill one. and also hit hard, and can appear in groups of four. They also like to appear in mixed groups, sometimes with Healers. (I’ve seen up to seven supporting a single Baboon!) But even when they appear in homogeneous groups, if you don’t use magic, you’ll probably have to spend four turns taking down a group of four, absorbing plenty of hits in the meantime. Baboons have no special powers, but they don’t need them. Especially since, if in one round all the Baboons randomly decide to attack one party member, they’re probably going to die. The Sleep spell doesn’t always work on them, but is almost always worth the risk.

The existence of Baboons force the player to ask themselves a question: do I spend the magic points now using Fireball or Sleep to help take these guys out, or do I spend more afterward on healing spells to recover from the fight? Or, if they don’t ask themselves that question, they suggest it strongly.

Metal Slimes – The jokers of Hamlin’s monster deck, they show up rarely. Metal Slimes are legendary members of the Dragon Quest bestiary, renowned for awarding huge experience rewards if defeated, but with such high defense that most attacks do 1 or 0 damage, and likely to run away each turn. What’s forgotten sometimes is that they can actually pack a bit of a punch. Metal Slimes in DQ II can appear in large groups when they do show up, and can cast the Blaze spell. Multiple Blazes hitting a single character hurts a lot, so a party member can end up taking significant damage, which in turn means spending turns on healing, which increases the already-high chance that they run away. Also, magic almost never works on them. Have a nice day!

The sad fact is, by the time your group is capable of commonly defeating Metal Slimes in battle, the experience awards they grant (135 each) doesn’t look quite so great anymore. That’s always been the Tragedy of the Metal Slime. Metal Babbles, which show up later, are worth 1,050 experience, which is more significant, but with similar drawbacks relative to the level at which they are usually encountered.

Design Considerations: Rock Scissors Paper

On the tried-and-true RPS system of character strengths and weaknesses.

A time honored strategy for designing games is to take a pre-existing game, learn how it goes about its business of being fun and/or balanced, and seek to bring that into another game. One of the most popular of these prior games is the one known variously as Janken, Roshambo, or Rock-Scissors-Paper.

The part of this game that’s of most use in design is its principle of circularity, that no move is better than the others. This is contrary to the basic idea of using numerical stats, since they are linear, one is always measurably, obviously better than the others, so usually some greater design principle must be brought to bear on it.

In RPGs, one obvious way this design idea can be brought in is in the idea of vulnerabilities. An enemy with a lot of physical attacking power needs a vulnerability, some character class that can defeat it relatively easily even at lower level. So you may decide, when designing your monsters, that enemies that have high attack may have little or no magic resistance.

For more substantial games, you needn’t stick to a three-node arrangement. You can go beyond simple Rock-Scissors-Paper and gain the same benefits.

One game that makes explicit use of this is Pokemon, which expands on this idea with the concept of asymmetric weaknesses. Each of the game’s 17 Pokemon types is strong against, and weak against, multiple other types, in a system where few monsters are universally capable. This idea, that every Pokemon has a moment where it may shine, is ingrained in the culture of the game, to the extent that in the rare cases where the system breaks down it feels unfair. The original games had, at the very end of the game, the fearsome Mewtwo, which was not only of Legendary strength but was also of Psychic type, which was explicitly created to be unbalanced in that version of the game. The result was that Mewtwo was nigh unbeatable in player vs. player battles unless you specifically built a Mewtwo killer, which was usually either another Mewtwo or a Parasect, a Pokemon of the sole type (Bug) against which Psychic types were weak. But even then, Parasect was a normal Pokemon, not a Legendary, so while it had a chance it was not a slam dunk. Later versions took special pains to rein in Psychic types' overbearing advantages.

Another game with strong R-P-S systems is the Fire Emblem line, which has multiple cycles. The most obvious is its "weapon triangle," where Swords beat Axes, which beat Spears, which beat Swords, and attacking a unit using a weapon to which the target unit's equipped weapon is strong confers substantial bonuses. But its magic system also has a triangle. And its classes also have circular strengths and weakness from just how its battle math works: heavily armored units are very difficult to overcome unless you have an enemy with super-high attack, speed and critical hit chances like Swordsmen; Swordsmen, on the other hand, tend to be lightly armored and not super mobile, making them the prey of mounted units; and mounted units tend not to be able to overcome high armor. But later in each game you find exceptions to all of these rules, weapons that reverse the triangle, characters with atypical stats, and weapons and spells with enough power to overcome the triangle bonuses and penalties, which can give even good players a nasty surprise if they are not prepared.

The thing about R-P-S, however, is keeping in mind your player’s party composition and which monsters they’ll be fighting at different times. Except in certain cases, such as subquests and challenge areas, it’s a bad idea to make a foe a character is weak against totally invulnerable to that character. Depending on your game’s story and/or the player’s choices, the party may be composed entirely of Rocks, so to speak, at particular places. If there’s absolutely no way for a Rock-filled party to defeat a Paper-type foe, then it will really suck if there is a hard-stop Paper boss it must defeat. One way to give such a group an out in these situations is through the use of consumable attack items that can be bought or found that overturn or ignore the standard sequence, although in that case care must be taken that they aren’t so obtainable that the normal cycle can be ignored, and the party could just load up on those and coast through the game.

So anyway, how could a "Rock Paper Scissors" system look like in your game? Well for starters, this kind of system is really an analogue for a game where characters have a circular, non-transitive set of powers. "Circular" here means character A beats character B, which beats character C, which beats character A: relative powers are set up in a circle like that, where each category of character or enemy has those things it's good against and those things it's bad against. "Non-transitive" is a mathematical term: transitivity is a kind of property where, if some directional relationship is true of A and B, and B and C, it is logically true of A and C. The properties of being "greater-than" and "less-than" are like this: 5 is greater than 3, 3 is greater than 1, therefore, 5 is greater than 1. Obvious, right?

To some degree this is obvious, which means it kind of breaks your brain a little bit when it's not true. My favorite example of this is the phenomenon of non-transitive dice, which is one of those mind-warping facts of our universe that can't help but change your perspective of it slightly when you find out about it. Seriously, follow that link and try to understand it.

You could use the mathematics of non-transitive dice to run your combat, although you'd have to change some things under the hood about how RPG Maker works, but you don't have to go that far. Basically, you can add a Rock Scissors Paper level of non-transitivity by hinging combat on values in a circular kind of way. Here's an example.

Divide characters and monsters in your game into three groups:

Group A has high attack, but low magic defense

Group B has high speed, but middling hit points

Group C has high magic attack, but decent defense and speed

So: Group A's high attack should prevail over Group B in the first round; Group B's high speed should let it beat Group C in one round; Group C acts last in combat, but its defense should let it survive the first attack from a Group A character and destroy it with a spell.

Now this arrangement isn't perfect, and I feel I should mention this is just a suggestion, and one where the details matter greatly. In fact, on some level, the details are the game! Just like Rock Scissors Paper, as played in a schoolyard, is more of a test of psychology than a game, so this system, if strictly applied, isn't really that interesting. Just as how Pokemon doesn't have a circular arrangement of strengths and weaknesses but a complex web, the nuts and bolts of the combat, the ways in which it doesn't line up exactly into three exactly opposed groups, the asymmetry of the system is what makes it interesting. If one group is, objectively, a little more powerful on average, then it in turn increases the power of its counter. And, of course, as characters and monsters increase in power, eventually you find cases where Group C can beat Group A if its level is high enough, and so on.

What is my point here? Although your combat system is based on numbers and their linear relationships with each other, you should find ways to use different values to upset the expectation that more in one category always equals better. In real life, people are never "greater than" each other, and you can play with the assumption of strict power superiority in your game to make its play more interesting.

Eliminating Stalls

A few words on ensuring the player cannot get hard stuck.

Something to consider, especially if your game allows frequent saving (which is most games made with RPG Maker) is cases where the player may get into a stuck state. When designing a game, think: what happens if a player saves a game at a point where they have no practical way to continue? It really sucks to have to restart a 20-hour story-based game because the party has gotten themselves into an inescapable hole.

It’s possible for a player to purposely try to get themselves into a situation. You shouldn’t worry too much about a player who sells all their group’s equipment and wastes the money gained. You should design around the idea of reasonable play, not babyproofing your world. Selling necessary key items should be prevented; selling items needed to function in combat, probably not.

A few examples follow.

 • At the start of the game, is it possible to get into a state where the player cannot earn any money for healing, and cannot earn money (from defeating enemies)? Solution: if the player can earn small amounts of money through other means, or from selling items, or from fighting a very weak local enemy that poses no danger, they can get out of a situation like this.

 • In the middle of a game, can the player get to a point where they cannot proceed? Again, be careful about anything in your game that requires money to proceed. It’s possible to be temporarily reduced to very low funds after equipment and consumable purchases; if that’s done before an inn visit, the player might end up forced to sell back one of their purchases, typically for half the cash, in order to heal up. Did you ever wonder why inns tended to be the first building you see after walking into town? It’s not just for convenience’s sake.

 • Being stalled is not the same thing as being stuck. It is okay (depending on the nature of your game) for the player to be stuck for what to do next. A game that’s heavy on exploration (as opposed to heavy on narrative) might conceivably allow the player to look around to figure out what the next step of the story is. Being stalled, aka soft-locked, is when whatever that next thing is is impossible for the player to accomplished, and should be guarded again. Is it possible to discard an essential object, or in cases where anyone can be fought, to kill an important NPC.

Scenario Design

JRPGs tend to have strong stories, stronger than CRPGs which hew closer to classic roleplaying’s sandbox aspect. Some are almost visual novels, but even the early games had a narrative that the player, taking the role of the characters in the party, attempted to see through to completion.

If you’ve decided that you want to create a JRPG-styled game, then it’s likely that you already have an idea for a story. You might just have a structure in mind; you might have thought of a number of strong characters and need something for them to do; you might have an interesting villain who needs to be stopped; you might have an awesome world you want to let people live in for awhile, or a tragic history to unveil, or an amazing triumph you want players to experience. If you have any of those things, you’re already a step ahead of the game, because you can start from there and work backwards, tailoring everything else in the scenario of your game towards giving that maximum effect. That’s pretty good!

If you don’t have any of those things, or (heaven forbid) you have focused on gameplay in your concept, then things will be a bit tougher. Truly, in a JRPG, players expect a strong story. It’s become kind of a prerequisite of the genre. You can make what is more of a CRPG, a more sandbox-ish game, focusing on player choice and progress in ways other than just combat. It’s a bit harder to do this kind of thing in RPG Maker, but it’s definitely possible. You’ll probably want to investigate doing at least a little scripting to realize your ideas. Anyway, there’s advice on how to do this in the rest of the book; this is a section on story construction. Take from it what you need, go create your brilliant and ridiculous interlocking game systems, and godspeed.

We are going to work from the assumption that you have no solid part of your story that you want to start from. If you have that, then by all means keep it. It likely the reason you’re making your game, after all. The better you can communicate that enthusiasm to the player, the more they’ll like your story.

I call this enthusiasm, that sense that there is something inside you that you need to express through your work, energy. This energy is a thing that, if you communicate it well enough, can grab your audience’s eyes and glue them to the screen, and it can also help fuel your own interest in seeing your project through its creation. Energy is powerful! It can be what makes your game worth playing.

Energy, however, can also blind you to a project's faults. Be careful if you find yourself obsessed with your vision, or especially to one character. There's lots of games, stories and comics that suffer from this sort of thing. The best cure for it is perspective, both your own, from exposing yourself to a wide variety of experience and media, and those of other people, getting the opinions of friends and family and subjecting your game to extensive play testing. See if you're communicating what makes your idea sparkle in your head like a diamond; maybe it's only cubic zirconia. Remember, while you can only go by your own guiding stars, ultimately your work will have to be enjoyable by others to be successful, if outside success is what you hope for, and other people have very different perspectives than you.

This is the ultimate difficulty, not just of game design, but of all art. If you have trouble overcoming it, you can at least take some solace in the fact that you are not alone.

Genre

I’m not talking about the genre of game here, as I use the word elsewhere, but the genre of story. Fantasy and Science-Fiction are the two obvious front-runners in the field here, but there’s also what we could call Contemporary Adventure (Earthbound, the Persona games and The World Ends With You are of this type), Historical (there’s a popular style of game in China that adapt events from that country’s tumultuous history) and other categories.

There is a popular trick, that’s been through RPGs almost from the beginning, of making a game start out looking like a fantasy game and having it turn out to be science fiction. Final Fantasy games are especially prone to mixing these tropes. Even The Legend of Zelda veers this way sometimes, most recently in Breath of the Wild, which goes so far as to send Link out into the wide world with a magic iPad. Because this twist is so common, it is always verging on overuse. My suggestion, which you are of course free to ignore, is not to do this unless you’ve confident you have some new angle on the idea.

Another cliché to look out for is the modern-institutions-in-fantasyland one. Lots of JPRGs do things like have modern-like schools for teaching magic or fighting. People play any enjoy these games, and if they’re enjoyable then I have trouble calling them wrong, but I wonder sometimes if these stories might be better served if set in the present day.

One more cliché is inventing fancy names for things that don’t need them. For example, in Grandia II, your main character is Ryudo, who is by profession a "Geohound." What the hell is a Geohound? I’ve played through the game at least twice and I still can’t tell you for sure, but it seems an awful lot like an adventurer-for-hire, a traveling fighter a village can enlist to solve problems. There is no need to give it a cool-sounding name; you never meet any other "Geohounds" in the game. JRPGs are rife with this kind of thing.

Other than the obviously different trappings of the game, how does the story of these different genres change?

	In fantasy-styled medieval worlds, mere communication can be a problem. You can make subquests around merely taking an important message to a destination. Fantasyland is also frequently blanketed by a coating of monsters, which gives players a ready source of levels and gold. Sometimes the monsters are a new arrival, caused by the Villain, and other times they’re just a fact of life. If the game just takes the existence of frequent overworld monster fights for granted, it’s sometimes a sign the scenario hasn’t been thought through very well.
Fantasy games often truck with monarchy and feudal institutions in a kind of anachronistic, almost fond way. It is important to remember that, in real life, these institutions were often the cause of great hardship and suffering. There is a reason that agrarian serfs, an omnipresent part of most medieval societies, are almost never found in JRPG fantasy stories. A canny writer will take the time to recognize the problems with kings and knights while still using them. The villain can be an evil king, for example, or a knight gone rogue. A really sharp writer might call the whole thing into question, and look into the hidden machinations that prop up even supposedly-good monarchs, but there is nothing necessarily wrong in writing a traditional kind of fantasy story that isn’t too critical of its basis.

	Science-fiction has long been second to fantasy in RPG setting popularity. In terms of its use as a setting, it’s a lot more flexible than fantasy, with a lot fewer in-built expectations. One of the first (if not the first) science-fictional TTRPGs was TSR’s Gamma World, which was a crazy post-apocalyptic game with mutants and weird creatures. The scope for a sci-fi game can be much more vast than fantasy: you can explore one planet, or many planets, or focus on the spaces between them, or fight interstellar empires on all fronts, or make an economic sim, or do a lot of other things. In literature, this is a genre that ranges from the multi-millennia epic of Isaac Asimov’s Foundation series to Frank Herbert’s strange and feudal Dune books. As a result, you can more easily tell many kinds of stories in this genre.
When most people say "science fiction," they start out thinking of space opera, that is to say, a type of story that involves traveling the whole galaxy, space travel between distant stars, with lasers and robots and weird aliens. Star Wars is space opera writ large. Interestingly, this is not actually that common a setting among sci-fi JRPGs, partly because the theme almost begs developers to implement a spaceship mode, increasing design complexity.
It’s possible to do a space opera style of game without being classical science fiction; Skies of Arcadia is a fantasy game, but its flying ships and interactions between airborne nations feels like a space opera kind of game given a reskin.

	Contemporary Adventure games are those that take place on current-day Earth, or the Earth of the time of the game’s creation at least, or on a similar kind of planet, or at least a world that passes for Earth if you don’t examine it closely. This might seem like a limited kind of setting, but in fact, because we’re surrounded with this setting in real life, you don’t have to waste time or words explaining them. For instance, if your group finds a convenience store, then they can settle right in and avail themselves of its goods and services.
You can tell a lot of different kinds of stories in this kind of world, but one thing that it may be difficult to do is tell stories of wide scope. In our stratified world, a story with the setting of one neighborhood looks very different from one set in a small town, which looks different from one set in a city, which differs from those set of in a state, a nation, or on the world stage. Telling a story that crosses between several of these layers requires more knowledge and effort that one that stays entirely within one of these layers.

	There are some interesting games that don’t fit within this system. Undertale, for example: what the heck do you call that? It feels like a Contemporary kind of game, but it’s set in a separate world anyway. Square’s cult classic Live-A-Live plays around with genre, presenting multiple scenarios each set in a wildly different kind of world. The various Mario games (Super Mario RPG, Paper Mario series, Mario & Luigi series) are ostensibly fantasy, but are really their own whimsical and abstract thing.

Structure

People who know writing will tell you about the three act structure, which dates back to Aristotle’ Poetics and is expounded on in Syd Field’s classic book on screenwriting Screenplay. The first act is the Setup, and establishes who the characters are, their relationships, the nature of their world, any other necessary exposition and contains the inciting incident; the second act is the Complication, in which the conflict begins and most of it occurs, and in which the protagonists try to resolve the conflict while opposed by the antagonists; and the third act is the Resolution, which contains the climax, the culmination of the rising action of the second act, and explaining what happens after and tying up and loose ends. While there are exceptions, this is the general structure of nearly all fiction. It is the basic structure of narrative.

RPG stories follow this pattern as well, but generally with an extended second act. The rising action of the complication extends throughout most of the game, and its sequence of subquests. These subquests, each forming a leg of the journey, take the form of a series of episodes, not unlike those of a TV show or anime series. Usually each of these episodes, in addition to demonstrating more of what the party’s characters are like which helps endear them to the player and possibly pass along important information related to the development of the plot in that regard, also reveals a bit of information about the main plot, such as the nature of the threat the group faces, something about the villain or his underlings, or the plots which they are putting into action. Most of the game, in fact, takes this form; sometimes these individual episodes take the form of their own little stories within the larger one, each containing its own three-act structure as it introduces side-characters, a smaller problem that must be overcome, and its resolution.

The longer a work is, the more difficult it is to construct in a sequential, start-from-the-start manner. Some people, who are blessed with the memory capacity to hold large sections of their story in their heads at once, might be able to puzzle through it in their heads then write it down for implementation, but I suggest creating an outline in a word processor. Create one top-level point for the Setup, which takes the from of an introductory episode; then make one top-level point for each subquest between there and the Resolution, all of these together being one episode of the extended second act; then the Resolution, the final, climatic part of your game can be the final top-level point. Then within each point, in order, list the events that must happen at that point, taking care to note when new elements of your overall story make their first appearance.

If your game is the sort where characters join and leave your party according to the passage of the story, you must make sure both that your party’s size doesn’t exceed your intended maximum, and, unless it’s for a limited section of the game that will have encounters designed specifically around a small party, to keep the party’s composition as close to maximum as you can. Being down even one member can make the game substantially more difficult, so you should try to make sure that, if a portion of the game world is intended to be explored at multiple times during the story, that a necessary leg of the journey with a diminished roster doesn’t leave the group too underpowered to pass. You might want to consider, say, a scripted vehicle sequence to get the group to their destination if there’s no way to make the trip with enough characters to make combat viable.

The outline you create will be of great help in planning all aspects of your game. You can drill down deeper, creating more subheadings to remind yourself of elements that must occur at each point right there in the document, but there is also value in keeping separate sections, or chapters in your file, for those notes, so as to keep your master outline clean and easy to refer to at a glance.

An example might be useful. Let’s take the beginning of one of the more famous examples of the type, Final Fantasy VI, and see how it might be outlined. Note that the game’s structure makes each town the site of a major step of the journey. This is common, and so it often makes sense to make each top-level outline point the name of its location.

I. Narshe

	A. Assault on Narshe

		1. This part is a linear introduction to the game’s world, the initial protagonist Terra, the Empire that threatens the world, the town of Narshe where a creature called an "Esper" is frozen in ice, and the game’s combat systems.

		2. The party enters a cave with a simple two-phase boss, the last-ditch defense of Narshe and, at the time, a Final Fantasy tradition.

		3. After defeating the boss, the party encounters the Esper. The two side characters, Terra’s guards, are destroyed outright. Terra is freed from the control that she had been under, but passes out. In a cutscene, we get our first glimpse of Kefka, underling of the Empire and ultimate antagonist, although the player doesn’t know this yet. We don’t yet get told his name.

	B. Escape from Narshe

		1. Terra wakes up and is told by Arvis, an NPC, about the "slave crown" that had been used to control her, that she’s free now but the town is angry at her and is coming to kill her. She is urged to try to escape through the mines.

		2. Terra’s escape is the first example of non-scripted, random encounters in the game. They are are weak and pose little threat to an attentive player.

		3. The first Save Point is here, which gives the player a run-down of how saving the game works and the (very slight) consequences for defeat in this game.

		4. We are put in control of the game’s second character, Locke, a thief who prefers to be called a treasure hunter. Told about the plight of Terra, called a "witch" by the townsfolk, Locke agrees to go to her rescue. Later, we find out this is because of his memory of a prior lost love, but this is only alluded to here.

		5. Upon finding and joining up with Terra, they are cornered in the mines by Narshe forces. A passing band of Moogles agrees to help Locke and Terra. This takes the form of a multi-party battle, serving not only as an entertaining set-piece but also a preview and tutorial for a much more involved multi-party battle a bit later, and for the party split-up sequence at the very end of the game.

		6. Upon prevailing, the party passes a Beginner’s House, a staple of Final Fantasy games at this time, and a friendly NPC outside urges them to enter. (Beginner’s Houses were used at the time to inform players of the finer points of the game.)

II. Figaro Castle

	A. Rendezvous at Figaro

		1. Player has their first overworld sequence, in a locked-off portion of the world map with only three other locations; one is a blocked passage to the next area; one is the first Chocobo Forest (possibly introducing players to their use); one is Figaro Castle. Neither of the other locations allows progression; eventually the player will have to go to the castle in the desert.

		2. The party is met for the first time by character #3, Edgar. He and Locke leave to discuss matters, leaving the player controlling Terra alone once again. Terra is strong enough a character to survive on her own, so exiting the castle is allowed; again, it’s impossible to progress without returning.

			a. It might be useful, in the outline, to note special cases that might occur if the party goes to unexpected places. For example, while the story doesn't return Marshe for a while, its location on the world map is not locked off. Various parties, including Terra traveling by herself, can return to Marshe at this time. This is a good opportunity to note what may happen when the group goes somewhere off the track.

		3. While exploring the castle, Terra meets an NPC who tells of a fourth character, Sabin, in a cutscene. The private meeting between Locke and Edgar doesn’t end until this scene is triggered (it’s where the player has a chance to name Sabin), blocking progression.

		4. After the meeting the character is introduced to Edgar formally, and story stuff happens. During this meeting an emissary of the Empire that Figaro is nominally allied with arrives—it is Kefka, previously seen in Terra’s cutscene….

And so on. As you can see, for a long game, such an outline can stretch on for many pages. Making an outline like this is not the only to plan out your game, but even if you don’t start from one, keeping one while working on your game, maintained in a more iterative fashion, as you go, can be a good way to keep track of the current state of the story. If you change something earlier in the story, you could then scan the outline for possible implications to the bigger picture. The bigger a project gets, and the more work on your team’s to-do list, the more essential it is to have such a document available for reference.

Tropes

Have you been to TVTropes yet? Surely I don’t have to explain what it is nowadays? In brief, it’s a massive wiki-style public database of what the site calls tropes, which are like little story construction pieces. There’s a ton of stuff there, covering just about every piece of pop culture you could name, all ruthlessly dissected into its components.

It’s possible, while scanning through the site, to despair that everything has been done before. This is not true, but it is true that creating an idea that hasn’t been covered by the site in some way before is very difficult. You should not feel bad for this; over a hundred years of content is tracked by the site that predates your story creation efforts, and anyway creativity is not the creation of entirely new things but the combination of pre-existing ideas in new ways. It is said that good artists borrow, but great artists steal, and there is a fundamental truth to this, so long as you don’t steal things protected by copyright, like characters and appearances. In a limited sense, filing off the serial numbers on old content is a time-honored way to write. (I feel like I should clarify that by "steal" I don't mean plagiarize, more take inspiration from, but I didn't mean to get into a discussion of semantics here.)

So, what you can do is use TVTropes as a place to get ideas for things to build up your story, both great and small. But it’s worth covering a few specific ideas here that come up time and time again.

	The concept of "The Hero." The idea of the monomyth, the concept of the Hero’s Journey, is central to the great majority of RPGs, no matter their basis. It’d be cliché, except it’s really foundational to the concept. It is worth looking up Joseph Campbell and the Hero’s Journey to get a sense of the trope, but it’s up to you if you want to follow it like so many other people, or try to subvert it. (I’m in the later camp, myself.) In particular, the idea of a chosen one is ripe for exploration and deconstruction. Why this particular person? Who does the choosing? Why does it have to be one person?

	Because it was a part of the early Dragon Quest games (in the form of the kings who save your game), not to mention the whole Ultima series, the idea of a powerful patron who’s on the player’s side and helps them along is pretty deeply embedded. It’s also worth deconstruction; why are they helping you? Exactly why can’t he save the world themselves? Where do they get their power from?

	Very popular characters in JRPG stories are the redeemed ones, the bad guys who come around and join your group. They get to be both the bad guy and the good guy, and and have cool hair, and attractively tragic pasts, and tend towards Maximum Bishoneness. These appear often enough that their reveal, the moment in the story where they realize they actually like you and start helping you out, should be disguised for maximum impact. It’s best if the player still thinks they’re a bad guy right up to the moment they flip. That’s the kind of moment that can really drag the player in and care about your game.

	The flip side of that is betrayal, the character that is secretly working against your party. This takes multiple forms: there’s the classic betrayal, the character who never was on your side and was just pretending to mess the player up; there’s the mind-controlled character, which is a popular choice because it lets a character wreck things while still ultimately being sympathetic; then there’s the coerced character, who does real harm unwillingly because the villain has kidnapped someone they care for or they’re being blackmailed; and then there’s the misguided type, who thinks they’re doing good because they don’t really know what the player’s group is about. The ultimate example of a betrayer is Kain from Final Fantasy IV, who betrays and makes up multiple times each during the game, and who by the end you’re not really sure which times were mind-control and which times were jealousy, but in the ending seems to still be kind of friends with your group.

	Fantasy games often have some form of magic, or at least other supernatural force tamed and made accessible, almost to the point of becoming just this thing in the world. Often it feels like there is an effort to make magic seem like just another form of technology, which would make sense in our increasingly-technological world. Yet this idea originated with sci-fi author and writer of the book version of 2001, Arthur C. Clarke, who said "Any sufficiently advanced technology is indistinguishable from magic," a maxim that was first brought to the world as recently as 1962. Yet, treating magic this way risks cheapening it, sapping it of its wonder. Some stories attempt to both have its cake and eat it here, by using magic as an ordinary sort of force in most people's lives but having another, greater kind of magic, maybe going by a different name, that's really special. Anyway, if you just want to have magic-users in your game without fretting about explaining how it works, that is okay.

	Transformation, a character physically changing from one shape to another, is a powerful metaphor. A lot of interesting characters have alternate forms: Terra from Final Fantasy VI, all the PCs in Breath of Fire, all the Laguz characters in the Radiance Fire Emblem games, Elena/Millennia in Grandia II, and more. The duality can represent many things from both a storytelling and gameplay perspective, and strikes at something deep in the human psyche.

	For some reason, a lot of JRPGs have mind manipulation themes. Cloud in FFVII, for example, is controlled by Sephiroth for a good chunk of the game and the player isn't even told about it. Kain in FFIV is partly controlled by the bad guys, and partly the rival of main character Cecil. Amnesiac characters could be considered a subset of this, and that's an especially overworn trope. I don't like these plot developments in general: they often feel too much like a way to introduce party conflict just because the story has to have one which is kind of cheating. Also, characters under mind control don't get to experience real character development.

	And then there's the trope of the big reveal, where we find out (gasp!) Character X was really Character Y all along, or the ostensible good guys are really bad guys, or your own character is Not What They Seemed. This is an interesting and entertaining enough subject to get its own article, a bit later.

Villains

The bad guys (who don’t have to be guys, of course) can be interesting characters to create and write for. They’re not supposed to be positive types, so you can have them do all kinds of horrible things. Theft, murder, regicide, mass destruction, personal betrayal, and more. You can have them do things that the player finds disgusting, and you might have to tread carefully there, especially for villains that end up getting redeemed. If Sir Darkarmor kills your protagonist’s family, it probably isn’t a good idea for the two to ally later, no matter how much soul-searching they do.

It might seem weird, but there are bad acts, and there are bad acts. The difference between the two has played out largely along the moral development of our culture, and is situational according to the era. A character who kills many people for the wrong reason is sometimes redeemable. A character who commits rape is not, even if it only happens once, because it risks glorifying the act and pushes uncomfortably to a prevalent problem in the real world, and because its cruelty cannot be excused by misplaced purposes. Likewise, a character who uses real-world ethnic slurs is off-limits entirely, even if the worst person in the world says them. It is not an easy line to tread, which is why most games rely on "mere" murder, and even then visualized in mostly symbolic form, or even off-screen, to illustrate the evil of their villains. You should remember that, even if you’re attempting to make "important" work, that what you are making is ultimately just a game, an experience that a wide variety of players is expected to enjoy. If you make them uncomfortable, they’re going to stop playing, and hate you for what you put them through. It is a big responsibility.

One danger is in creating the overly-sympathetic villain. If the villains are too personable, or are doing the wrong things for the right reasons, you risk the player rebelling against the game’s story, unless it comes to acknowledge that the bad guys should probably not be utterly destroyed. As the scenario writer, you have a lot of power: basically, you can make the player do things, even awful things, by requiring them for story progression. Well, you can’t make them, but you can cause them to rebel, that is, stop playing your game rather than go on. You must always be aware of this. There is no force that can make a player to keep playing a game that you’ve made distasteful or unwelcoming. Everything your characters do should be sympathetic in a linear section of the game’s story; if you give the player a legitimate choice at some point, where multiple actions can be done that cause the story to play out differently, that’s another thing, but it also increases the work you have to do, supporting multiple story branches from that point.

McGuffins

Alfred Hitchcock coined the term McGuffin, as an item in a movie that drives the plot because everyone wants it. A good example is the briefcase in Pulp Fiction. Key to the idea is that it doesn’t really matter what the McGuffin is, you can just write into the plot whatever reason the item is important, but its possession is desirable enough that the characters will come in conflict with each other over getting it.

In games, I use the term to refer to collectable items that the player gathers in the course of completing subquests. Lots of games use this sense of McGuffins: The Legend of Zelda has triforce pieces, Ultima III has dungeon marks, Earthbound has songs to collect, Dragon Quest III has crests to find, Final Fantasy has orbs to empower, and so on. Sometimes a McGuffin isn’t a physical thing, but it’s still something a player has to quest forth and go to a hard-to-reach place to accomplish, like praying at shrines for partial Avatarhood in Ultima IV, or placing crystals in Zelda II.

McGuffins are, ultimately, kind of a cheat. It’s difficult to come up with a varied story that changes the player’s motivation in each leg and represents their rising and falling fortunes through a narrative through an entire game. McGuffins are one way to overcome that, while also giving the party a sense of progression. "The bad guy has the Evil Thingamabob, whose power can only be matched by the seven Mystic Doodads! Go forth, you people, and collect them, and go push them down and make them cry!" There, instant motivation! Now the player knows what they need to do and why.

More recently McGuffins have fallen a bit out of favor, though. Without them, you have to give the group a specific motivation ("Go beat up the bad guy!"), but also a direction to go in order to accomplish that. Location is one useful barrier to overcome: the party can’t inflict righteous violence against the evil wizard unless they’re physically proximate, and just getting to their dark tower can, and has, fueled endless adventures. That’s just the story barrier to completion. The player also has to gain enough level and equipment power to overcome the villain, but it’s generally understood that they’ll gain that on the way.

The Reveal

A lot of JRPGs have, at some point along their story, a huge revelation to make. Some of them re-contextualize the entire game. These very memorable moments, if executed well, can have players talking and thinking about your game for weeks. And they’re fun to think up too! For maximum effect, if you’re going to have a big reveal, you should plan for it as soon into your writing process as you can, or else you might end up having to rewrite the rest of your story to make it fit.

One important law of narrative, though, is that a Big Reveal cannot come "out of the blue." To the player, that just feels like you pulled a rug from under them. You must hint at the reveal it at least once or twice up to that point, and give the player a chance to guess it. The more hints you give, the more amazed they’ll be, and the more memorable it’ll become. Since a Big Reveal can be anything, this isn’t as big a giveaway as you’d think, and even if they guess the reveal from your hints, if it’s well crafted and foreshadowed, they’ll still be impressed, and also be pleased that they "saw it coming." Yessir, Big Reveals are a large part of the fun of the genre, and you should at least consider having one, if you think you can pull it off.

One problem with having a Big Reveal, however, is that players like specificity in story and description, but it’s easier to create a Big Reveal if you’re vague about things. Every definite thing you say in the game reduces the number of possible Big Reveals you can do, and if everyone speaks elliptically and elusively about things, eventually the players will figure something’s up.

Because of the wide variety of brain trips you can pull on the player, I cannot offer much aid in coming up with them; indeed, it’s best if the particular revelation you pull on your players is something they’ve never seen before, and that’s hard to do. I can give you some examples of prior art however, to give you a sense of the kind of thing is possible. Note, even though this is a book full of spoilers, these spoilers are of a much greater class than usual. I am giving away the Big Reveals of several major games here! I will do this by presenting their title in boldface, then following it with the reveal in normal text; if you’re interested in playing one or more of these games, the hope is that, when you see the boldface title, you’ll skip ahead to the next game, and maybe come back once you’ve finished the game and seen the revelation for yourself.

 • Final Fantasy X: Main character Tidus, his father, and even the land he’s from turn out to be "fayth," basically imaginary people given form. In the end, beating the evil Sin that has been threatening the world for centuries also means he can’t exist anymore. Bummer. (A lot of Big Reveals are like that.)

 • The Legend of Zelda: Link’s Awakening: The whole world of the game is just a dream, dreamed by a huge entity called the Wind Fish. That’s why the NPCs can’t even comprehend of life outside the world, and why the monsters are trying to stop you. It even explains the somewhat whimsical characters. The McGuffins you chase throughout the game wake it up in the end, but the world you explored vanishes into nothing… including your friend Marin, who you met and grew close to throughout the game. (For a twist on this ending, finish the game with a death counter of 000.)

 • Grandia II: A lot of the game has to do with the fight against Valmar, an ancient evil from long ago, who was defeated by Granas, the god of the world. Now a piece of Valmar has taken residence inside a young priest, who becomes a party member. This piece causes her to become possessed by another being, who comes and goes at random times and starts out as an antagonist. Over time, however, this being becomes friendlier. In the end, it turns out that Granas and Valmar aren’t what they seemed: Granas died in the battle, and Valmar was in fact created by people to fight against Granas’ stifling order. The leader of the current-day Church of Granas is insane and merges with Valmar’s different parts, becoming the final boss. BUT! The being who helped you throughout the game turns out not to be an invasive spirit after all, but an alternate personality of the host lady, who at the end somehow comes out and becomes her own person. In the words of your main character, "What just happened here?"

 • Phantasy Star III: What did players think when they began the game, expecting to find further tales of Motavia, Desoris and how they were faring after the destruction of the technically-advanced planet Parma, original home of the Algol race, only to find themselves playing in some kind of medieval world in which the kingdoms of the Orakians and the Laylans, ancient enemies, fight each other through three generations. While mostly a world of swords and magic, many callbacks to Phantasy Star II remain: like the names of the money and equipment and the psy-powered "techniques." Also, travel between the seven "worlds" of the game is through a series of unexplained, technological tunnels, and there are also a number of androids, some of which are party members. In the end, it turns out that all the game worlds were areas on a gigantic colony ship, akin to the Star Trek episode "For the World is Hollow and I Have Touched the Sky." The ship carries survivors of the destruction of Parma from the second game, out in search of a new home.

Developing the Scenario

Okay, so you have your big idea. How do you convey it to the player for maximum effectiveness?

Oh boy. Oh boy oh boy. Here is where I reveal a bit of, not a secret, but I don’t mention it much. I write about video games, but secretly, I have a Master’s Degree in English Literature. Ah-ha! You thought I was just some opinionated nerd, but in fact I was an ultra-nerd, and practically unemployable! I should be able to tell you a thing two about story construction. Here goes.

First, storytelling is fundamentally a matter of communication. You have ideas, and you wish to convey them to your audience in a way, that they enjoy yes, but more importantly, that they understand. If the player doesn’t grasp what you’re trying to do, then it doesn’t matter how much artistry with which you tell your story, or what graphics you have, you have fundamentally failed as a storyteller.

And, well, that’s not necessarily bad for a video game! Not all games have great stories. In fact, many good RPGs have a story that can be summarized in a couple of sentences. These games bring other things to the fore. But you’re reading a chapter on game storytelling, and so I’m going to assume that you at least want to tell a story.

There’s lots of ways to approach this, and no one is better than another. Different strokes and all that. So, here’s a few different ways to look at it.

If you’re of the O. Henry, or maybe of the M. Night Shyamalan. school, you may have a Big Reveal. Something about the nature of your game is not as it first seems. Many games save up information for a reveal later, but with this kind of story the reveal plays a big role in your climax. The positive about this is that it allows for a resolution to your story to come out of left field, so to speak, a problem that seemed insurmountable the whole story long could actually have a very simple solution once the player knows.

On the other hand, hidden information can’t just be pulled out from nowhere, it must be properly be set up or else it’s unfair to the reader/player. If the player comes across something that makes them exclaim aloud, "Bullshit!", then you have failed. That is to say (to borrow a phrase from the venerable website everything2.com), you must earn your bullshit. You must drop hints to the big reveal. If some players guess where the story leads, is not a failure on the part of the writer, but shows that the hidden element was properly alluded to.

For practical examples, there are some excellent examples in revelatory story points going around animation right now. Gravity Falls, the new version of Ducktales and Steven Universe all have shocking revels that have been foreshadowed, and guessed by viewers before the time of the great unveiling. Steven Universe, in particular, does this very well, and has multiple great reveals, finishing up with the amazing knowledge that [SOMEONE] is actually [SOMETHING] all along. (No, I’m not going to spoil it for you! Go watch it yourself!)

There’s the nuts-and-bolts, Aristotelian method, espoused by screenwriter Syd Field in his book Screenplay, the bible of screenwriting. Practically all popular movies do something like this. This divides the story into three Acts, divided by two plot points.

The first act is the Setup, which establishes the world of the story, whether it’s a whole planet or the life of one character; that ends with the first plot point, which takes this status quo and messes it all up. This begins the second act, the Complication, or sometimes Confrontation, in which the peace of the setup is disturbed and the characters find out why, and what they have to do to fix it. The stakes may increase at this point, due to the characters’ actions or as they gain knowledge of the true nature of the problem. This is the meat of the story and is typically longer than the other acts. This leads to the second plot point, and then the third act, the Resolution, where we find out whether the problem is solvable or not.

Now unless you’re going for a bummer ending (which few RPGs do, so props if you try it, but know it’s an unpopular choice), the answer to that is yes, but the player may not know it yet. Because of the nature of video gaming, the question could just be left up to gameplay: if the player can overcome the last boss or dungeon, then hey, Happy End! Or, you might want to have the player assist other forces in concluding the game.

All of this is in service to the major dramatic question of the story. What is the characters, hence the player, trying to do? Save the world? Save a cat? Find love? Find a parking spot? Overthrow an evil empire? Overthrow your property’s residence agreement? There can, and probably will, be subplots. It may not be obvious which question is actually the major one at the start (this doesn’t work too well for movies, but RPGs are longer and can better afford to have meandering plots).

What does "Aristotelian" mean? It means coming from Aristotle, one of those smart Greeks that set up the basis for a lot of our civilization. Although he lived over two thousand years ago, an awful lot of our storytelling traditions still spouts from him. Syd Field’s book is basically elaborating on Aristotle, applying him to a specific domain.

But while the three act structure is popular and satisfying, it is not the only way to construct a story, and in fact by working in a medium that is relatively new, having "only" been around about 35 years or so as of this writing, you have more license to mix things up. At the very least, most RPGs have a much longer second act than other narrative works. The Setup may be over in five minutes, and the Resolution is just the endgame; everything else is just a really long Complication. Or, elements of the Setup may come into play after the first act. There may even be a Second Ending, a trick the Lunar series is known for, where there’s battles and story progression even after the world is saved!

It should be noted that most JRPGs actually have twin stories. There is, as I’ve said before, the Scenario, the world, its inhabitants, and what is done in it to progress the game. But there is also the story of the characters becoming empowered, gaining experience and cash, powerful items and abilities, with which they will be powerful enough to overcome the final boss. This is the buildungsroman story I mentioned, the gameplay story of the characters gaining the strength necessary to win the game.

Most JRPGs try to balance these two: they try to make it so that, if the player progresses at a normal pace through the scenario, they will have enough power at the end to defeat the endgame without grinding. There might be other challenges that might necessitate some grinding (expert subquests, Second Endings, and the like), but the game should still be designed to be possible to a party that does none of that.

Do More With Fewer Words

In the early era of CRPGs they had an almost literary reputation, if just because so much of the game word was presented with text. Other than text adventures, RPGs are the genre of computer game most likely to force the player to read.

Yet, I find a lot of this reputation was undeserved. When you actually track how much text is in an 8- or 16-bit JRPG, there’s usually a lot less than you would expect. Most NPCs only have a sentence or two of dialogue. Part of the reason for this is that written text is actually fairly expensive in terms of cartridge memory and floppy disk space. Straight ASCII text cashes in at one byte per character; a paragraph of text can easily take a whole page (256 bytes) of memory, a monologue a whole kilobyte. Because of this, most classic RPGs used data compression to reduce the size of text.

But there are advantages to using less text. There’s the basic virtue of there being less to write of course. Getting across as much information as you can in as few words as possible naturally leads to better writing, at least according to my copy of Strunk & White. (Look it up.) It saves time. It leaves gaps in the depiction of a town or castle that the player’s imagination is free to fill. And, if it’s not important to the progression, it helps to focus attention on the focus of the current subquest if non-essential information is reduced. Don’t assume that the player will be as enamored with your characters as you are; some may be, but some will be more interested in the overall story, or even just playing your game.

There is also the issue of the player’s attention. Games that prove themselves unworthy uses of the player’s time and focus will find themselves relegated to the half-finished pile. A well-constructed story takes the time to establish its characters efficiently, and sets about constructing its tale as soon as it can. Side quests aren’t just opportunities to increase the player’s level and equipment, but can also present opportunities for further storytelling.

When it comes down to it, there are not actually that many opportunities to get important information to a player other than through NPC dialogue or cutscenes, so it helps if you use whatever means you have at your disposal, especially if it is optional information that fill in blanks while not being relevant to the main quest. One sneaky thing you can do is put interesting information on the flavor text attached to important plot items. Final Fantasy VI does this memorably with the text on the Memento Ring, which, combined with noting which characters who are allowed to use it, provides an intriguing hint as to the identity of one of the game’s most mysterious characters….

Show, Don’t Tell

This is an old adage regarding storytelling, and it matters even more in game writing. No one likes infodumps. If a character is overbearing, don’t tell it to the player, show it in their words and actions! Have them make unreasonable demands, like having the best armor or insisting on being the party leader. A useful trick is to have NPCs who know the character remark upon their personality, telling stories about their behavior. Hearing other characters complement this one can also help establish the character’s distinctiveness, but be careful with this as it can make them seem fame-hungry.

This is especially important with characters who are supposed to be respected, capable, powerful or have other superlative qualities. A character who says that they’re the best in the land at fighting is just going to come across as boastful. You must seek out ways to demonstrate their positive attributes through action or reference by others. You might want to put in cut-scenes specifically to illustrate their skills and personality.

Strong, Exaggerated Characters

Video games are a medium in which it is difficult to do subtlety. Again, there is really not that much text in the game when you put it all together, and if there is a lot of text, you had better hope it’s really well-written, I’m talking Earthbound-level quality, if you don’t want to bore the player.

One result of this is, when defining your characters, it’s usually best to use bold strokes. A character who’s the silent type really has to be silent for it to read. In a novel, the speaking style of Cyan, from Final Fantasy VI, a traditional knight-type who speaks in an antiquated style, would probably come across as cartoonish. It’s still cartoonish in the game, mind you, but it comes across as more believable, and even makes his character more endearing. Games are a medium that has traditionally lent itself to bombast, and part of the result of that is that subtlety is more difficult to convey. There’s a fine line between "endearing" and "unbearable," thought, and every player draws it differently. When in doubt, consider bouncing it off of your friends.

These kinds of characters, in literature, are usually considered "flat," or "two-dimensional" characters. Force-of-nature types, characters with strong opinions or prominent personality quirks, the kinds of people who you can often predict what they’ll do ahead of time. Two-dimensional characters do not commonly change much as the story continues. This is as opposed to "three-dimensional" characters, who are harder to read, and who may change substantially over time. Main protagonists in literature are most often three-dimensional, and since they’re supposed to be a proxy for the player in games, are a good choice there as well. The old trope of the silent protagonist plays into this, the character’s lack of speech serving not just to avoid putting words into the player’s mouth, but also preserving the mystery of what is going on in their head.

Side characters, auxiliary party members and NPCs work best as shallow characters. Give them one major personality trait and work backwards from there in developing them. Give each a major shtick, a gimmick or gag, that they can show off at many opportunities.

A strong character is one where you can easily imagine how they would behave. I read someone describe it once as if the character were an old friend with reliable habits. "Good old Character, you can rely on them to always do (that thing)!" This can end up being a little annoying, but generally, it’s okay if they’re a little annoying.

A good trick is to use this to set up an expectation in the mind of the player, then, at a time when they’re most expecting it, either to deny their expectation, or go way overboard with it. Like, if you have a character that loves knock-knock jokes, and you’ve worked to present several of them in the game up to this point, to come up with a threshold gag, a crowning moment, at some point later in the game, maybe they’re asked to knock on a door. This takes good comedy writing skills however. If you can’t come up with a good payoff for a running gag, it may be better not to use the gag in the first place.

Common Traps

Mary Sue

It’s become internet legend at this point: a "Mary Sue" character is one that’s both transparently an authorial self-insert, and one that’s great at everything, that’s universally admired, that is the love interest of all the most interesting and beautiful people, who the villains despise yet grudgingly respect, if they don’t actually have secret crushes on, and so on. Basically, the most self-indulgent daydreams of the author made visible.

I understand. It’s all too human an impulse. But please, be strong. The world doesn’t need to know about your hauntingly beautiful half angel/half demon bad-person with a heart of some over-precious metal. In fact, a good way to create is if you actually don’t like your protagonist a little. Give them a flaw. Maybe one you really hate. Are they a whiner? Do they not shower that often? Are they a little too willing to forgive? That kid no one liked back in high school. Write a story about them. Try to understand what made them tick. Everyone has their reasons: what are your character’s?

Doing Things Just Because

A JRPG generally has a structure, a progress, an ideal route through the game that the developer thinks will give the best experience, and if they’re good he’ll try to coerce the player onto it. I think, if they’re really good, they won’t be too insistent on this, they’ll find way to clue players in if they’re about to enter an area that’s thought to be too difficult for them, but will still let thrill-seeking players, and speedrunners, jump the tracks if they’re insistent. This opens up a game to a greater variety of approaches, letting players have the kind of experience they’re seeking, rather than forcing them to have the one you intend.

This is off the subject a bit though. What I’m talking about here is in the way of player coercion methods, which is a pretty wide-ranging subject. The traditional way to do this is with a roadblock, one that requires a subquest to resolve. In many classic JRPGs, this comes in the form of an exploration tool, commonly a ship or something like that. Final Fantasy IV is intricately plotted in this regard: by the end, the player has used multiple colors of Chocobo, two airships, a hovercraft (that can be carried with that hook), and eventually a spaceship. The game’s maps are constructed carefully to prevent you from going too far off-track.

Creating a Villain

Don’t make any character too powerful on their own. You might except the main villain in this, and granted, with this style of story an ultra-powerful badass works very well if the party can destroy him in the end. There’s a reason why characters like Sephiroth are so popular. But, if I may advise?

Sephiroth is a little too perfect. Final Fantasy VII almost worships him, in his bishonen glory. Then it has him murder (like, permanently, in a cutscene, not the fakey kind of death ordinary enemies can inflict) one of your party members at the end of Disk 1. It’s revealed he’s put some mind control whammy on your main character, which is a tricky move from a scenario perspective, it can’t help but distance the player from being in Cloud’s head, because Cloud himself doesn’t know his own mind. He’s not tragic in the classical sense, of being great except for a fatal flaw. He has no flaws, and you only take him down by becoming even better than him through the usual process of building a high-level party.

Personally, I think Kefka, the villain of the previous game, Final Fantasy VI, is a better villain. He’s a real jerk! You can’t feel sympathy for him at all. He’s not a Beautiful Person. He did awful things before the story, and during, and at the end when he gets his Ultimate Cosmic Powers he just wipes towns off the map because he thinks its fun. Yet for the first half of the game, he’s really just this insane guy who happens to be in a position of importance. There is nothing tragic about him either though. Kefka basically becomes the final boss because he’s in the right place at the right time.

Sympathetic villains, I believe, work best when they’re flawed but not unlikable. "There, but for the grace of God, go I." Maybe give the party a situation where they must ally with them for a common purpose. Present insights into their motivations for being on the other side. Maybe the real villain is manipulating them—or maybe they’re manipulating the player, and they don’t know it yet?

Working with RPG Maker: Some information that may prove useful when constructing with it

A Suggested Work Order

RPG Maker contains around a dozen different editors, each devoted to a different aspect of your game. To a first-timer, it can be overwhelming to know where to start. In fact, no matter how you go about it, unless you start with an iron-clad design and then go about the process of making it, start to finish, you’re probably going to return to some things you worked on before, to edit them, make more of them, or fix errors. This is fine; all developers make mistakes, for any project of more than trivial complexity, it is bound to happen.

I believe, however, that the way the tools are made, there is something of an order you can proceed in, a way suggested by which editors make available which options, that, if it doesn’t eliminate backtracking, at least reduces it. I present that order here, along with my justification for it.

I should say that, in general, I am covering the design of a pretty basic, by-the-numbers J-style RPG for your first project, without work-heavy features like a job system, real-time battles, or or a party whose construction changes over time. All of these things are ultimately possible; there are user-made plugins to help you implement many of them. By building a relatively simple game like this from start to finish needn’t take a huge amount of time, especially if you keep to the default resources or those you can scavenge from third-party packages or software. If after you’ve finished, you play through and decide you like what you’ve made, you can use it as the starting point for a more detailed version, either building onto your early version, or remake it starting from scratch, or beginning anew with a new design, this time better prepared by knowing what’s involved in the basics, and so able to devote more time and energy to more experimental work.

Before you even open RPG Maker, or whatever system you’re using, it’s worth brainstorming what you want your game to be like. Easy or challenging? Casual or involved? Straight-forward or with lots of subquests? If you answer some questions to ask yourself before you begin, you can make the overall job of planning your game a lot easier:

A. How long of a game are you going for? This will give you a length to aim for. No one says it matters if it ends up short or long, but having a target helps you pace the trip.

B. Of how many "legs," that is, major steps, does the party’s journey consist? Classically, each leg consists of an overworld trip, a town to visit with a problem to solve, people to talk to, another overworld trip to the dungeon and the dungeon itself, with two texts to be written for each townsperson, pre-dungeon and post-dungeon. If your game doesn’t have fast travel (like an item to return to town), you may also want to factor in the trip back.

C. What does the party generally do in each leg? You don't have to get all the specifics down at first, but you should have some idea of where you're going.

D. How does the journey begin and end? At the start of the game it may be worth creating a cutscene to introduce your characters and set the stakes. At the end, you’d typically put in a big fight with the game’s final villain.

E. How difficult do you want the game to be? We talk about balance in the foundations section, but here is where your ideas concerning balance must take form. How difficult are battles, how much experience and gold are they worth, how much experience is needed for each level, how fast should characters grow in stats, skills and spells, and how power and expensive should equipment and healing items be?

F. What subquests will be available, and what will their rewards be? How much easier should they make the rest of the game? How long should they take?

One thing you should give thought to early on is, how will your game track player progress? This is a subtle issue that may end up biting you if you don’t think about all the possible ways your game could be played. If you don’t have a complex story, you could handle progress entirely through the key items your party finds. Then important cutscenes would be trigger by the presence of the item, setting a flag after running to prevent them from happening every time you enter an area.

If you have a complex story, however, the easiest way to track player progress through the scenario is to use a single number variable to represent story progress. We’ll call this a state variable. The game may begin with the variable being 0. Then maybe when you talk to a village elder and find out what ails your game’s world, the variable might be advanced to 1. That may be a signal to the equipment shop to sell you weapons and armor, for instance. You might have to talk to someone in town to get the key to the first dungeon; that could advance the variable to 2, which would be the signal to display a "your key opens the door" message upon reaching that dungeon and allow the player inside, which would set the variable to 3, and so on.

This system has the advantage of simplicity and being generally bulletproof. Unless something sets the variable to an unaccounted-for value, the story must be at some definite place at all times. The problem is, it make no allowances for sequence-breaking. If the player somehow performs one of the steps out of order, then suddenly all the previous steps in the scenario just "happen." In the above example, if you somehow got the key early, setting the scenario state variable to 2, then the game thinks the elder has already told you the problem, and the shop will start selling you weapons and armor automatically. This could be a good thing, in a way, because the game has coped with an unconsidered state in a way that doesn’t block progress. But it also means you must be careful not to let the player enter later areas before the scenario state has caught up, or else, unless you’re careful not to let the player move on unless everything before has happened, you risk the player getting credit for things they haven’t done.

The safest way to avoid this is to only advance the state to the next value in an even triggered by the state being the previous value. That is to say, the only thing that advances the state to 7 would be an event only triggered when the state is 6. That would force the player to do everything in order.

There are games that rely on a single scenario state variable, but it’s generally better to split the game up into various sub-scenarios, each with their own state variable. Then the player could work on progressing multiple quests at the same time. Or, you could use key items to track state, as above.

It is possible to construct a game without any such state tracking at all; older games were most frequently like that. Consider: a town has a problem, that requires clearing a nearby dungeon to solve. At the end of the dungeon, the party gets a key item for finishing it. Everyone in the town has a check in their dialogue event to look for the key item, which might be one of the major McGuffins the player needs to win the entire game; if it is in the party’s possession, they give their after-quest dialogue instead of their pre-quest dialogue. Do this with every town. At the end of the game, you would put a check before entering the final dungeon for the presence of all the McGuffins of all the towns. It could be as simple as that.

More recent JRPGs have quite complex state systems, and constructing those is probably best done with a flowchart. If the player manages to accomplish things out of order, it could have bizarre consequences. A game with such complex state tracking is the first Paper Mario for N64. YouTuber Stryder7x has a collection of in-depth videos demonstrating glitches in this game, some of which involve sequence breaking and messing up progress states. Some of them can make the game unwinnable, or even outright crash it. 2D games are generally easier to guard against such glitches than 3D ones, but they are by no means immune to them.

Basic Math

Generally speaking, in RPG Maker’s system….

 • One point of Attack (your character’s stat plus that of your weapon) adds up to four points of damage, for player characters or enemies.

 • One point of Defense (your character’s stat plus all of your defense equipment added up) subtracts one point of damage received.

 • The effect of Intelligence on magic power varies according to the spell (if there is any effect at all; infamously, because of a bug, the original Final Fantasy doesn’t take it into account for anything).

This can actually be adjusted in MV and VX Ace: the first Skill in the list in the Database, called Attack, that is used whenever the basic Attack action is taken, and as we mentioned earlier, its damage formula is a.atk * 4 – b.def * 2. "a" is the attacker in this system, and "b" is the defender. If you wanted to make this more exactly like the Dragon Quest norm, you could put in a.atk / 2 – b.def / 4. If you’d rather attack or defense power be stronger relative to each point gained, then increase or decrease its multiplier. It’s your game, do what you want. The key is, it’s all arbitrary, scaled according to whatever choices you set for player growth, skill and equipment power and monster stats. Whatever you choose, it is probably best if you did it early then designed the game around it; it sucks to make a change to a basic battle formula and then have to re-design all of the items, magic, skills and monsters to make it work as you want.

The attack and defense calculations are subject to enemy attack and defense as well, which makes the precise numbers difficult to deduce in practice. Still, this ratio, two points of defense match one point of attack, is generally true of the two largest JRPG series, Dragon Quest and Final Fantasy. There are definitely exceptions, and I couldn’t even begin to tell you what they all are. At the very least there’s damage variance, a randomization factor that, over the years, has generally decreased in prominence, but still can vary output by a few points. But this is generally the default effect of statistics in the RPG Maker series.

It’s important to know these numbers because it gives you a baseline to design opponents from. If you gain one point of Attack upon gaining a level, that adds up to four points of additional damage, which may not seem like much. But often monsters are designed so that your first attack upon entering a new area is just enough to get you within just a few hit points of defeating them. Thus, it only takes gaining one or two levels, or upgrading a weapon, to get you over the line to killing one in one. That makes a minor advantage seem more substantial. More difficult opponents may be designed so that two attacks just barely fails to defeat a foe, and the next increase crosses you over that line, and so forth.

Even though each individual advance may seem minor, you should remember that a character typically gains in multiple areas upon each level gain: their Attack increases, their Defense increases, their Hit Points increase, their Magic Points increase, and your Magic Attack and Defense increase. Each individual advance may seem tiny, but taken all together, they have a substantial effect.

Attack is a basic thing that almost all characters can do in battle. Skills and Magic, by virtue of being extra, are a little more difficult to balance, as they vary based on character, level and sometimes even having used skill-granting items. One thing they have in common is that they must be more powerful than basic attacks, or provide some benefit not available through normal attacking, or else why bother using them? On the other hand, if there’s no cost to using them, then why should the player not use them all the time? (These are not rhetorical questions; depending on the game’s design, either of these questions may have a satisfactory answer. A good brainstorming exercise is trying to invent reasons to use skills if they’re less powerful, or have no cost!)

Spells and skills must usually be significantly more powerful to merit spending your turn on them and spending some additional resource, like magic points, technique points or even hit points. And attack magic and techs must usually compete with healing and utility spells for a share of a character's magic tank, and those are often worthy competitors for these resources. Some ideas for such abilities (I call them spells here, even though most apply to techs as well): low-cost, modestly more powerful elemental attack spells that affect a group of enemies or all opponents in the battle; a high-cost, extremely high damage elemental spell that affects one foe; powerful status infliction; status curing (for party members); enemy magic blocking; or a spell that has a chance of instantly defeating one or more foes.

So, the following is all my suggestion. For HP, give the enemy, in hit points, just over some multiple of the damage an average character would be doing when they first step into an area. So, if you gave a mook-type of enemy just over twice the hit points, the first level gain or two, or equipment upgrade, will have an immediate, visible effect.

For eney attack strength, the amount should rightfully vary according to both expected party size and available healing. I suggest enough power to do just over 1/24th a character’s maximum hit points, times the number of expected characters in the party plus full magic heals available. If the only heal spell the party has takes three uses to fill a character’s hit points, and the group has six uses of it, that’s like if the party had two extra characters’ worth of health to spend. (I suggest not taking much account for item healing resources, as the party must pay for, or otherwise win them.) This assumes that the party will roughly suffer twelve encounters between inn visits, against the same number of enemies as characters in the party, and that each enemy will get off two attacks.

Here’s the formula printed out all math-style:

Average Enemy Attack = (1/24) * (Avg. Char HP upon entry into area * (Expected Party Size + Full Magic Heals Available))

[image: table]

Note, as the party gains more heals, the more the amount of damage done in a single action matters more than the total healing the party has. And if a large group has a lot of healing available, this formula will eventually suggest attack strength of 100% a character’s HP, or greater, which is not usually a good idea; it’s usually best to top damage done in a single attack off at about 50% of the average character’s HP. This formula is only offered as a starting point; there is no substitute for solid playtesting to determine final enemy strength (especially once you roll in player and enemy special abilities), but this formula gives you a decent place to start from.

One flaw of this chart is that it doesn't account for player Defense. Keep in mind the meanings of Attack and Defense. If an average player just entering an area has 12 points of Attack (from character stat plus weapon) and eight of Defense (from character stat + sum of Defense of worn protective equipment), then their attacking power is 48 points of damage (four times Attack), and their defensive power is 24 points off incoming physical damage (Defense divided by two). Enemy normal attacks are similarly affected.

If the party encounters groups of this enemy, then the amount should be adjusted based on that group’s relative size compared to the player’s. In particular, if the same number of PCs fights the same number of monsters, then the monsters should do just over 1-24th of an average character’s maximum HP. If the distance between towns is such that more than 12 encounters are expected, then decrease these amounts; if fewer, then increase them.

This assumes that the game is a traditional resource-management kind of game, where the challenge isn’t just from individual encounters, but the cumulative weight of many encounters over an expedition. If your game refills party health entirely between encounters… well, personally I think you’re abandoning an important and useful game design tool, but if that is to be, enemies should do a lot more damage than this or risk falling into irrelevance.

Again, I must emphasize this is only a guideline, a starting point in your efforts to balance your game. If in doubt, or if it’s not important to the monster concept, you can fall back on this as a default. Monster design is more of an art than a science, and you should always play your own game extensively to ensure it goes how you expect. Also keep in mind, at Level One, "one 24th" of a PC’s HP may be less than one, in which case you should probably go with a minimum damage of one to three in the first leg of the game, or else start the player at a level higher than first. In any case, so long as the weakest enemy attacks cannot obliterate a first-level character at max HP, there’s always healing items and inn stays to help the party along.

How Do I?

 	Help! I made an event and now nothing in my game works! What the hell?
You probably created an event set to Autorun. This gets everyone eventually, and most people quite soon. Anything set to Autorun runs extremely greedily; no other events can happen while it’s running, and even the player can’t do anything! If you have an event set to Autorun that doesn’t somehow disable itself will softlock your game. This even happens when testing games in RPG Maker Fes, although thankfully the game will still let you abort it and return to the editor.
Because of this, all your Autorun events must have a way for them to turn themselves off, because nothing else can run to disable them. You do this by doing something in the event that causes their event page to deactivate, by causing its condition to fail or not be reached. You must do this if you use Autorun.
Why would such a thing be included in RPG Maker? The canonical use is to run cutscenes; while the event is performing functions, the fact that the player can’t do anything is a virtue. But since, if active, they run at the soonest chance and before the player can do anything, it’s a good way to execute setup functions, like things that must be run once and never again. If an event activates another event that’s set to Autorun, it’s like a continuation of that first event.
If you don’t want the game to lock up when an event does something, then instead of Autorun you probably want to use Parallel, although it’s unavailable in RPG Maker Fes.

 	How do I do something once, and exactly once, the first time a map is entered?
This is a very useful trick to have for randomization purposes. This is where Autorun shines. Remember, if you do this, and its contents don’t do something to deactivate that Autorun page, then it will continue to Autorun, forever, and lock up your game. But Autorun is still useful because of its primacy: as long as any event on a map is set to Autorun on its activate page, then it will happen before the player gets to do anything. It is a way to ensure something happens before the player can mess with it.
The easiest thing to do is to have the event’s Autorun page be its "fallback" page, Page #1, with no conditions so it’ll run so long as no other page is activate. In its contents do whatever setup you need to do, then at the end set a self switch to ON. Then create another, higher-numbered event page set to activate when that switch is ON, and you’re safe.
You could do this with every event that needs to perform first-time setup. You might prefer to do it in a more coordinated way, though, especially if you have to do some central coordination first. In the example game, I use a "game coordination" event (at x0,y1) with page 1 set to no conditions and Autorun. It does some first-time stuff
Note: one thing you might try is setting the event to erase itself, with Erase Event. But erased events return if you leave the map and come back, so the setup will be performed each time the map loads. But if that is behavior you want, then that is a way to do it.

 	Are there any tricks to using the various editors?
There are a few keyboard tricks that might help you out. (These, of course, are mostly useless in Fes.)
Ctrl-Z
The first of these I must tell you about is the Undo keystroke, Ctrl-Z. (On Macs, you usually replace the Ctrl key with Command.) There is an Undo command under the Edit menu, like all good work programs should have. If you’re drawing a continent and your hand slips, putting a line of impassible mountains through through Central New York, instead of going back and finding all the tiles you overwrote, just press Ctrl-Z and the last action you did in the map editor will be reversed. This is essential to know when working with the Flood Fill tool, as a single click can instantly fill your whole map with desert or snow if you’re not careful.
It works more than once in a row too, so if you keep Undoing, you’ll keep going back in the map’s edit history. There is a limit to how far it’ll go, but I’ve not encountered it.
"Actions" are recorded when you lift your finger from the mouse button. So if you drew an entire continent with your finger on the left button but then accidentally made an extra peninsula resembling a penis (that shape being the eternal bane of abstract artists everywhere), if you then hit Undo, the entire continent will be gone! This is a good reason to lift your finger every few seconds, no matter how big the thing you’re drawing is.
Note, unlike many other programs, there is no Redo command. If it’s Undone, it’s undone for good. So, revert with care.
Cut, Copy and Paste
In most programs, Ctrl-X is Cut, Ctrl-C is Copy and Ctrl-V is Paste. In the map editor here those are less useful than elsewhere because it doesn’t follow strict editor protocol; there are no "marching ants" selection boxes. However, one place where they will work is in the event editor. And they’re super useful there too. To copy and paste tiles on the map, see the tip after this.
By the way, notice how all these useful hotkeys, Ctrl-Z, Ctrl-X, Ctrl-C and Ctrl-V are next to each other on the keyboard? That is no accident.
CTRL-A means Select All. It doesn’t work everywhere, but it’s useful where it does work.
CTRL-S means Save. If you get into the habit of just pressing it every few minutes, it’ll work in your favor eventually.
OK, Cancel and Apply
In a Database, Event Editor or other dialog box, the changes you make are never permanent until you either press the OK or Apply buttons. If you make substantial changes to a huge event but realize after that you were misguided even to begin changing it, you don’t have to change it all back; just click Cancel.
To confirm your changes, press OK, and to confirm them without closing the dialog box, click on Apply.
To some people this is old news, but if you don’t know it, finding it out can be very useful.

 	How do I copy and paste sections of the tile map in the editor.
Yeah, this confused me a bit too. Use the right mouse button to draw a box around what you want to copy. Once the box size is set, you can move the box around and click to duplicate its contents. To abort the process, right-click again. For some reason this only works properly if the Pencil tool, the freehand tile drawing mode, is active.

 	How do I build a house exterior in the tools?
You’d think there’d be an automated system for this, since as of MV RPG Maker even has automatic dungeon generation. It doesn’t help that, depending on your screen size, the tiles are very small in the editor and cannot be zoomed-in on.
To help here, in both VX Ace and MV, the name of the current tile pointed at in the editor is displayed in the bottom-right corner of the map editor window, in the status bar. This is very useful in keeping tile functions straight.
Another thing that helps is the Copy and Paste trick described in the previous item also works in the tile palette. If you drag the right mouse button over a region of connected tiles in the selection palette, the selection box will expand, and then you can click on the map to place those tiles as a unit.
As for the outside of a house, the way I make them is to split them up into four parts: the roof, the front wall, the door, and dressing. Roof parts are on tile palette Tab C (you may have to scroll down). Walls are on Tab A. There are doors on Tab B, but you probably want to make your doors into transition events that lead to a house exterior; there’s a !Door collection there. Dressing is things like windows, yard boxes and business signs, for those check the top of Tab B.

 	How to display values and other changeable information in message boxes?
There’s a number of special codes you can use in message boxes that insert a variety of values into the text. For a reminder of what they were, let the mouse hover over the input box in the Show Text editor. You can do things like output the values of variables (\V[1234]), the names of characters (or "Actors") by overall index or by party slot, the amount of money the party has and whatever the name for money is in your game, and even some dramatic things like increasing and decreasing font size and adding dramatic pauses. Note, when printing variables, the editor doesn’t grant you access to your variable names. You’ll have to enter their numbers from memory.

 	How do I change miscellaneous settings that don’t have specific editors, like the graphic and music on the title screen?
For stuff like that, investigate the System tab of the Database. For testing sanity’s sake, it’s useful to turn off title screen music while working on your game.

 	Argh, joining together all these maps is super annoying! Is there some way to automate the process?
You should be using the "Transfer" quick event template! In the event editor, right-click the place where you want to be the entrance to the other map (in Fes, Transfer should be one of the options in the Event Creation menu). A box will open up asking you to pick the map to lead to, and when you pick a map, it’ll pop up a map of it and ask you for the destination tile. It even asks you what direction you want your party facing on arrival!
Note that Transfers are one-way trips. If you want the party to be able to go back the same way, you’ll have to create a second transfer, going the other way.
If your towns have open borders it can get annoying creating a transfer for every open border tile; in these cases, you might want to put a fence around your towns to reduce the number of exit points, and hence transfer tiles you’ll have to have. Another thing you can do is copy the town exit Transfer event and paste it everywhere the player can leave. You can do this with less clicking by using the keyboard shortcuts for Cut (CTRL-C) and Paste (CTRL-V); these shortcuts, if you didn’t know about them, work in all kinds of programs.

When connecting building interiors to their exteriors, you’ll probably want to use the Door quick event instead, as it includes animation.
The Quick Event list is great; it’s a shame there’s so few items on it, and that you can’t add your own. Fes actually makes out a little better in this regard, as it has a fuller list of templates to choose from, including shops.

 	Why do my long Show Text messages always get cut off on the right side of the screen?
Aah, you’re a victim of culture there. Most JRPGs, even surprisingly modern examples, don’t give much thought to word wrapping. This is probably because, in Japanese, all the characters are about the same width, so they can be laid out on a grid, so the length of lines is usually constant. Because of this, they can generally tell how much space they have on a line in the editor.
The Roman alphabet that forms the basis of English, of course, has characters of differing lengths, and furthermore it takes more characters to say the same thing than in Japanese, but seeing how RPG Maker is a fairly direct translation, special facility has not been added to accommodate English, meaning you must watch your line lengths, and preferably test out all your strings in-game.
It’s quite annoying considering that word-wrapping algorithms are widespread and have been since the microcomputer era, but what are you going to do?
By the way, it’s not that this problem is completely absent in Japanese. Players can enter names of differing lengths, for example, and any place where a variable must be printed of a variable number of digits this problem has the potential to crop up. For numbers, this problem is sometimes "solved" by printing them with a number of leading spaces, or even zeros, to space out the text, and short names sometimes padded out with trailing spaces, which looks a bit funny. But English names can vary tremendously in length. Even if you limit text to six or eight characters, a player could end up entering all Ws and make a name that could, in special cases, overflow a message box. Word wrap is hard, is what I'm saying, and I don't blame them at all for overlooking it.

 	What the heck are Terrain Tags?
They are a way to assign special meanings to various kinds of tiles in your events. By default they do nothing, but you can read them in your scripts. If terrain tags are not used, then event commands by themselves cannot tell what kind of tile is on a map. (You can tell in Ruby/Javascript scripting. You can do almost anything through those facilities.) In current versions of RPG Maker, they can be a number from 0 to 7.
They’re a bit like Region IDs (tab R in the map editor palette in RPG Maker VX Ace and MV), except Region IDs must be painted onto your map manually (but thus can be used to define arbitrary regions), and Terrain Tags are something that comes from the terrain types automatically.
If terrain other than blocking movement is just used for decoration in your game, then you probably don’t care about Terrain Tags. The example game that this book follows uses them to determine what kind of terrain the party is moving through, and applying movement speed penalties accordingly.

 	What are Common Events?
Common Events are created and edited from a tab in the Database from VX Ace and MV. They can be run from other places, or set to run all on their own. They don’t have an explicit event attached to them; you can think of them as existing across all maps, all the time.
Common Events set to Autorun, like all the other Autorun events in the game, must deactivate themselves or they lock up the game.
Common Events can be called from other events, and then execute in the context of those events. This makes them like procedures, or functions that don’t return a value (you can drop values into variables if needed), and open up a lot of expressive power. It also means you can create something once, and then just call it from all the events that need to do that thing, which is wonderful for when you make 100 copies of an enemy on a map, make a design change, then realize you now have to go to each one and make a little change. If you implemented most of the enemy behavior in a called Common Event, you’d just have to make the change once and all the enemies would immediately get those changes.
Unfortunately, RPG Maker Fes doesn’t support common events.

 	How do I extend RPG Maker with new functions?
Until MV this, while possible, required mucking about in the Ruby code that comes with the system, which is made available to you in the Script Edior, under Tools. MV helps automate the process and compartmentalize the changes by giving you a Plugin Manager. But for a plugin to be visible in the manager, it must first be manually copied into the plugins folder within the js folder of your project! Then it should show up the next time the Plugin Manager is opened.
For a good number of plugins to get you started, check the dlc folder within your RPG Maker MV installation. Under Steam, this is probably:
C:\Program Files (x86)\Steam\steamapps\common\RPG Maker MV\dlc\RPGmakerWeb_plugins

 	How to display floating text?
In RPG Maker VX Ace, there’s a simple Ruby script command you can use:
$game_map.show_text(actor object goes here, like $game_player, "text to display")
In MV it’s a bit more complicated, but there’s multiple plugins that’ll do it for you. One of them is the Gab Window plugin, described in the following article.

 	Argh, (something to do with Parallel events)?
This is something you’re probably going to get bitten by eventually. Check the article on RPG Maker MV events later for one surprising gotcha concerning Parallel events.

 	Which version of RPG Maker to use?
Different people have their preferences, often for good reason. Me, I like to implement custom behavior and new play systems, so event system power and script functionality means a lot to me. Unfortunately, RPG Maker Fes doesn’t have a lot of that, perhaps from necessity.
XP, the oldest, can often be gotten really cheaply, but is missing some features like Terrain Tags and Common Events.
VX Ace was good enough that a lot of MV feels like just updating it to use Javascript (which greatly increases the number platforms it can make games for), which matters because MV is a lot more expensive. MV is also getting console ports, although it seems unlikely that you’ll be able to import your designs made on computer or write custom Javascript for those. VX Ace does use Ruby instead of Javascript, which is a much cleaner language if you’re used to it.
So, my recommendation is get which you can afford, VX Ace or MV. VX Ace is cheap enough that it’s worth getting just to tinker around with, and can be a testbed for ideas you later implement in more generalized development environments.

Yanfly’s Plugins

RPG Maker MV has a thriving community of plugins, collections of Javascript scripts that extend the system’s features. One particularly prolific maker of these plugins is Yanfly, who presents their work free of charge (although donations are welcome) on his website and on itch.io at https://yanflyengineplugins.itch.io/.

Unlike most things you can change in RPG Maker, which have Database pages, Plugins are installed from a special item in the Tools menu, the Plugin Manager. Also unlike the usual setup, you have a little extra work to do to make plugins available. Each plug-in consists of a .js file, as in "Community_Basic.js". When you download (and probably extract from its archive) a plugin, you must copy it into a folder in your project. Under Windows, RPG Maker MV defaults to saving its projects into the Games folder of your users’ Documents folder. If your username happened to be [blahblah] on your C drive, you would look in C:\Users\[blahblah]\Documents\Games for your project. Within its folder, you’ll additionally have to drill down to js\plugins to find the folder into which you’ll want to copy the plugin’s .js file.

Once the file is put into its proper place, you can add it to the list in the Plugin Manager by right-clicking the first empty spot, selecting Edit, then choosing your newly-copied plugin from under Name. Two plugins come installed by default in current RPG Maker MV projects, one adds that "Made with RPG Maker" splash screen that appears when your game runs, so here it can be easily disabled. The other Community_Basic, adds support for changing some display properties of your project, but can usually be ignored.

A few other plugins are available for immediate installation; you can install one with the plugin manager to see what it does. (It is easily removable again by right-clicking its entry and selecting Delete, or just disabled by setting its status to OFF).

Now that all those technical details have been duly given, we can get to the goodies. There’s tons of useful plugins out there, and Yanfly in particular has made well over a hundred plugins! A lot of them have to do with visual effects or styles, which are not our focus in this design-oriented book. Note that RPG Maker’s plugin system doesn’t change the UI for event modification, so often they mean you’ll have to take extra steps to use them, such as providing information in (otherwise syntactically-null) Comment commands, or in the "Notes" text space provided on some elements. A well-made plugin (such as those made by Yanfly) will provide all the information you need to use it effectively.

Here’s a small selection of plugins that give RPG Maker MV new capabilities. Yanfly offers some other useful tools too on his site.

• Region Events

VX Ace and MV make available a facility where you can "paint" region marker tiles over your map in a special mode of the editor. Only one Region tile can be on a given space, but it can have a number from 0 to 255. These tiles are invisible in play and don’t mean anything during the game unless you make them do something. The intended use for regions is to customize where random encounters occur, but they’re useful for a lot more than just that, especially if you don’t use random encounters. In one project, I divided the entire game map into continents and islands, with names stored in a Javascript snippet, and had it display the name of the location in a little window while the player was standing on it. Yanfly’s plugin #17 allows you to define (in the plugin’s properties) a connection between certain Region tiles and Common Events, so whenever the player steps on the right Region, a corresponding Common Event is fired. This could be used to implement a customized random encounter system, but could be put to many other uses too.

• Floor Damage

RPG Maker’s support for damaging floors is limited. They only do a flat 10 damage per step, and all tiles do the same damage. In contrast, even the original Dragon Quest supported two different levels of damaging floor, and a spell that let the player get over them safely. This plugin lets you pick different damage for different kinds of floor.

• Event Copier, Event Spawner & Event Morpher

One of RPG Maker’s trickier limitations is the inability to create new events at runtime. You can permanently disable events, but you can’t change their number using the normal tools. But many things impossible with the event system can be done with Javascript. This plugin makes a copy of a pre-existing event and places it where you want. It helps if the other event is off-stage somewhere, inaccessible, and since it’s "active" even before being copied, so set not to do anything until you’re ready for it. The Event Morpher plugin works similarly, except instead of creating a new event, it makes a specified event into a copy of another one. RPG Maker’s event system is detailed enough that it can do most of the effects Event Morpher can do, with switches, self-switches, variables and such, but the plugin does it in a way that you may find easier to conceptualize.

Event Spawner behaves similarly to Event Copier, but can pull a source Event even from another map. You could have a map that the player never enters in your game, that’s just used as a place to keep events that you spawn from other places. That’s pretty useful!

• Event Mini Label & Event Icons

Event Mini Label simply places a text message near an event. It can be used to identify locations, provide information on an NPC or monster, or potentially put to other uses. Event Icons is similar, but lets you place a small symbol over the event. Short, simple, sweet.

• Event Proximity Triggers

Events are a form of event-driven programming. Traditional, imperative programs begin when run and then single-mindedly execute until they conclude. Event-driven program instead spend most of their time waiting, usually executing code in response to some outside stimulus. RPG Maker’s Events are usually set to activate when a player touches or interacts with (presses a button while facing) an event, or are set to "Parallel," which means periodic, recurring execution. (There is also Autorun, which follows more of an imperative, even obsessive model, to the exclusion of the party being able to do anything without good planning!)

The problem with RPG Maker’s event model is that there’s only a few ways to trigger an event. This plugin remedies that, although it doesn’t add new options to the Trigger box, it lets you get around that by supplying the triggering conditions in a Comment.

• Auto Switches

This plugin lets you automatically set switches based on not-easily-available game states, such as if the game is running in a specific browser or if it’s running on mobile. It’s got limited application, but if you need it, you’ll be glad you have it!

• Button Common Events

In normal operation, RPG Maker seeks to emulate a console JRPG’s control scheme using the keyboard. But PC RPG Maker has a whole keyboard available to it! This plugin breaks the stifling paradigm of limited control access! Go crazy! Implement your own NetHack! Er, well maybe don’t go that far. Remember, with great power comes great potential to make an obnoxious user interface.

• Gab Window

Normal message windows in RPG Maker are modal, that is, when one is displayed you can’t interact with anything else in the game, because it’s in message mode. The Gab Window lets you provide the player with modeless messages. They don’t block movement or actions. Thus they can’t be interacted with, but sometimes you just want to provide some side information to the player, or present a passing conversation between two characters. Helpfully, Gab Window messages are kept in a queue, so you can send several at once and the engine will display each in turn, with a few seconds delay between each.

About the Database

The Database, under the Tools menu, is where you put in all the "facts" of your game. If you want to define how many hit points a slime has, you do it here. If you want to specify what skills a Wizard has, you do it here. It’s also where you define what a "Wizard" is, what the skills are and what they do, what characters have the "Wizard" profession, what those characters look like, and almost anything else that has to do with a name or number that’s set and unchanging during gameplay.

Things in the Database remain set during the game. A character has a certain maximum number of hit points at a given experience level. The character may lose some hit points, true, but their maximum is a constant. Well, if you change a character’s profession it may change, but my point is, it’d still change to a number stored somewhere in the Database. While you’re making the game, that is to say at design-time, you can change those constants, those facts about your game. When a game is running, at run-time, that is not possible.

There are also things about your game, called variables, that can be changed at run-time, by events triggered by the actions of the player. Some of these variables, like hit points and technique points, are managed by the game engine, although events can affect the too. Others, called event variables, are set aside specifically for your game’s own use. You have a lot of these to work with, although there’s more in the computer versions. Some versions of RPG Maker let you define how many there are; console versions usually set a high maximum that cannot be changed.

[image: database_classes_small]

Above is THE DATABASE, opened to the Classes tab. There's an awful lot of power contained within this screen alone, and it is just one of fifteen tabs.

To me, paging through the Database, tab by tab, is one of the secret joys of RPG Maker. Every tab is rife with potential for making weird, quirky, challenging and unique games. There is one overriding thing to remember when browsing the Database: practically every option in every tab and dialog box here has "hover-over" tooltips. That is, if you ever want an explanation for what a specific thing does anywhere in the Database UI, first click it to make sure the control has focus, then, leave the mouse cursor to hover over it for a few seconds. Usually, this will bring up a small rectangle with text to explain the purpose for that thing; if it doesn’t work the first time, try it again. This works in some previous versions of RPG Maker, too! This also work in the Event Command editor.

Here’s a brief description of all the many useful Database tabs:

 • Actors

This is where you define party members, those that are in your party at the start and those that may join it in the future. Although you pick what graphics are assigned to the actor here, and some of its gameplay characteristics, for the most part what matters to how a given actor performs in battle is determined by the character class you decide to give it. Through scripting events, you can change a character’s class.

RPG Maker MV also contains, under its Tools menu, a "Character Generator," which can be used to assemble PC and NPC faces and sprites alike in an additive, paper doll-style manner. For serious projects you’ll probably want to create your own graphics, but for placeholders, and for cases where you want to create a large number of characters quickly, it can produce adequate output.

 • Classes

And lo, this is the tab where you define what each class means. This is where you define experience point levels to gain a level, and what happens to characters of a given class as they rise in level. You can also define skills for the characters of a class to learn as their rise in level, and what innate abilities characters of a class possess.

In RPG Maker’s way of doing things, Player Characters, what traditional RPG people call PCs, are termed Actors. Every Actor has a Class, which is akin to D&D’s idea of a character class, which determines most of that character’s abilities.

RPG Maker games use a Dragon Quest-like character growth philosophy for the most part. Levels increase your stats, and stats are what improve basic combat performance. RPG Maker since VX uses eight basic stats: Maximum HP, Maximum MP (SP in XP), ATTack, DEFence, Magic ATtack, Magic Defense, AGIlity and LUcK. RPG Maker XP calls Attack "Strength," Defense "Dexterity," appears to conflate Magic Attack and Defense as "Intelligence," and doesn’t have Luck.

Depending on the version, you (the designer) might decide how many stat points a character gains when it advances a level while having a specific class, or you might adjust a graph that shows graphically what happens to a character’s ability in a statistic.

It is worth taking a moment go over the basic stats, and what they each do, in game mechanic terms:

Attack/Strength: Raw attacking power. This is included whenever you make a basic attack, even if you are unarmed. To remind, by default, one point of attack means about four points of damage. On the average, two points of this add up to one point of damage when you hit in battle, but high enemy Defense can nullify this. Very high Attack means your normal attacks do a lot of damage; very low Strength, if not made up for by Item Power, may mean normal attacks do no damage if they fail to overcome the enemy Defense. "Strength," or "STR," is what RPG Maker XP calls this parameter.

Defense/Dexterity: Raw enduring power, which has a role even when your character wears no armor. Unless you change it or define a skill that goes outside the norm, two points of Defense nullify one point of enemy Attack. In the battle formula, defense is halved before it is subtracted from the opponent’s attack strength. On the plus side, if Defense is very high (preferably, from a design standpoint, because it’s supplemented by good armor), it might mean an enemy’s normal attack does no damage at all.

Note that RPG Maker XP uses "Dexterity" or "DEX" instead, which has a different function. Instead of defense, it affect how likely an attack by a PC is to strike its target. In XP, Defense is more a property of your equipment than your character.

Agility: Affects the chance of dodging a hit, and chances of running away from battle. XP calls it "AGI." The effects of this are more vague, and not exposed to the player.

Magic Attack and Defense/Intelligence: This is essentially Attack and Defense, but is checked when using spells. "Intelligence," or "INT," seems to play this role for both stats in RPG Maker XP. Since there is no generic "Magic" action, there is no default relationship between these two statistics and damage. Every spell defines this separately. My advice is to keep spell formulas roughly in line with those of Attack/Defense for weak spells, and increase the multipliers for stronger spells. As in, for a simple, low-cost spell:

a.mat * 4 - b.mdf * 2

As with the Attack formula, "a" refers to the attacker, and "b" to targets. Then a mid-range spell might use * 8 for a.mat and * 4 for b.mdf (relatively speaking, that's double the damage), and a high-level spell, * 16 and * 8 (quadruple damage). These values might be scaled too low for you however; magic points are an important resource, and if a spell cost a lot of them, the player should do a lot more damage than a plain old Attack, which only costs a turn.

Luck: The traditional role of Luck in a JRPG is kind of a lesser version of Defense or Agility in regards to evade chance, but that also affects monster item drop rates. I am not actually sure of its use in RPG Maker’s engine, but it’s probably subtle in any case. RPG Maker XP doesn’t even have this.

One thing you’ll have to determine is at which rate each stat increases per level. All three of the computer versions of RPG Maker that are covered here use the same interface: a graph that shows how the character improves in as it rises in level over levels 1 through 99.

[image: parametercurves]

The best way to use this interface, in my opinion, is to click the Generate Curve button. You can then specify what value the stat should have at level 1 and 99, and use a slider to determine how it gets there over the intervening levels.

[image: generatecurve]

Note that the labels are misleading. "Normal" or "Average" growth means a straight linear progression from Level 1 to 99; the character will gain a roughly constant number of points in that statistic each level. "Fast" curves the graph; the character will gain points quickly at low levels, but at high levels will gain less and less. "Slow" reverses this; growth is slow at low levels, but accelerates as the character approaches maximum level. No matter what you choose, the character will still top out at the value you specify for Level 99. If the character never reaches that lofty height, then it’ll never reach its statistic cap.

If you’d rather be more hands-on in a character’s development, you can actually manually determine what stat a character will have at each limit. In the Parameter Curves box, if you fill in the number of a level, you can directly determine how many points the character will have in that statistic. The graph will change in real-time (although it may take a screen update to display it). Notice, however, that the system will do nothing to prevent you from taking points away as the character gains levels, or even giving the character random values across its levels. You did that, your players would probably not appreciate it. Also, you can outright click a spot on the graph that

Version differences: In RPG Maker XP, statistic growth is tied to the Actor, not their Class. The same interface is present there, but look for it under the Actor tab in the Database. Also, in XP and VX Ace but not MV, you can drag the mouse directly across the graph to draw a curve yourself. (In Fes, there are no graphs anyway.)

Unfortunately, the graph for experience points is not as customizable. But remember what I said before: RPG battle systems are, ultimately, pretty arbitrary. So what if you can’t easily set the precise number of experience points you need to gain a level; you can precisely determine the number of experience points an enemy gives you for defeating it! In those few places where RPG Maker doesn’t allow you to set up a system with fine detail, there is usually a workaround, somewhere.

But there is one place I've found that doesn't seem to have a workaround.... There is a "Class Change" option, among the many options in the event editor, that lets you change the class attached to a given actor. While it doesn't affect the character's appearance, this changes a character's abilities profoundly: it basically makes it a new character of the given class, with the same stats of that class, although it will remember any skills it learned before. If you don't click the "Save Level" checkbox on the event property window, the character will even return to level 1! In most published JRPGs, changing classes doesn't throw away your old stats, but causes them to grow according to a new system, so if you're used to how other

So now that I’ve explained all of that, do you want my advice? The defaults are pretty much fine. Even if they weren’t pretty much every aspect of the characters is tested by other aspects of your design. If all your characters’ Attack scores are too high, you could fix it either by reducing Attack, or by just giving all the monsters extra Defense. As I’ve been telling you, most of these things are arbitrary that way.

One thing I can suggest, and note this is just a suggestion, is that you should keep numbers as low as you can. Start characters with fairly low stats, and increase them only a little at a time as they gain levels, and balance your game around this. The reason for my suggestion has to do with number inflation. Because it doesn’t actually matter that much whether characters have ten hit points each, or a thousand, so long as the monsters are scaled to attack each for an appropriate amount of damage, using large numbers unnecessarily subjects the player to extra information, the tens and ones digits of all those inflated numbers, that don’t actually play much role in the game. Like a pinball machine that scores you in the billions for no good reason, the numbers are big just for the sake of bigness. By keeping values small, you help reduce the amount of informational clutter in your game. Like the static of a radio station at the edge of reception, it slightly obscures the intent of your various systems. It’s not a huge thing, mind you, the Final Fantasy games have trucked with values in the thousands, sometimes tens of thousands, for many years, and no one’s complained much. Think about it though, and see if you agree.

 • Skills

Skills are a broad category, and can include abilities that can be used inside and outside of battle, as well as magic spells, special moves and even abilities used by monsters to attack you. Of particular interest is the box in the upper-right of the window; the text box here is actually a small Javascript expression that determines how much HP/MP damage/healing/drain will be done by this skill. You can actually write arbitrary Javascript here, separating statements with semicolons; it is the last statement in the box that is evaluated and the value of which is returned to the battle engine. You can use this, for instance, to log something to the debug console with console.log(), which can be accessed during a test run by pressing F8.

Mostly you’ll assign skills to be automatically gained as characters rise in level, but you can also create items that bestow skills permanently on the user. Where do you do this?

Skills are used both by professions and monsters to describe what options are available in battle. It’s okay not to have all the answers yet; you may decide you need more skills to work with later. But it helps to have a vision for some of your characters and enemies, so you can give them skills that fit in with their natures.

The definition of "Skill" changed a bit between RPG Maker versions XP and VX, and Fes hews closer to XP’s definition. In XP and Fes, a Skill is either a spell or a special move. In VX Ace and MX, more things fall under the definition’s purview. Most importantly, the Attack command itself is now considered a special kind of Skill, meaning you can define "pacifist" classes that cannot attack the normal way, and change the properties of basic attack action itself using the skill edit UI. These two versions also open up the underlying math of basic attacks itself, so if you want to change it from the default, you can.

You can also define skills that operate out of battle, either in a passive sense or for being usable from the Field menu. The Effects box on this tab lets you choose exactly what happens. I suggest before you change an awful lot here that you study the defaults, which make some assumptions that you may not wish to monkey with. Skills that are considered "normal attacks" should get the Add State: Normal Attack 100% effect, for instance, and Guard should get the Add State: Guard 100% effect. A particularly powerful effect you can add, by the way, is Common Event, which lets you fire off an Event regardless of whether you’re in battle or the map. This is a subtly powerful facility.

There are two primarily kinds of skills listed here. Magic costs magic points (MP), and Skills cost TP (technique points). Magic points are a resource that is regained by staying at an inn or otherwise resting, while technique points grow as you perform actions in battle. Traditionally MP is a resource that persists over time, and is only regained sparingly or with the use of an item, while you get TP incidentally. Importantly, it’s possible to run out of magic points over a long period, while technique points can generally be recharged just by getting into more fights. Magic points also tend to have prominent out-of-battle uses, such as for healing or return spells, while TP doesn’t even exist outside of battle.

 • Items

Why, in the Items tab! Most of the stuff here is self-explanatory, especially if you use the tooltip trick I mentioned previous, but I’d like to draw your attention to the Effects list, which also exists in the Skill tab, which allows you to define complex behavior for items. One of the things you can do is call a Common Event, which lets you bring in RPG Maker’s powerful event scripting function.

 • Weapons and Armors

These two tabs are largely similar. When worn, these items have a general effect on your stats which can be defined by changing the values in the Parameter Changes box. In this regard, weapons and armor are largely the same. Nothing technical prevents you from making armor that increases attack, or weapons that increase defense. You can also define negative bonuses, to produce equipment that decreases your stats when worn. I’d suggest restraining in this area however. Remember: a game, of any type, is an arbitrary system that we only accept as being a representation of some underlying reality because we agree that it does; if that system doesn’t work as we expect it to, the less it feels like you’re on an adventure and the more like you’re just pulling levels on a badly-made computer program. You should only violate those expectations sparingly, and with good reason.

One difference between the Weapons and Armors tabs is that Weapons lets you define a type for the weapon (which determines which classes can use it) and what attack animation the weapon uses, while, since a character usually wears several pieces of armor at once, the Armor tab allows you to declare which body part the armor goes on.

 • Enemies & Troops

Enemies is a very important tab, since without combat most RPGs are rather less challenging. Yet, the Enemies tab, while it lets you declare the properties of individual enemy combatants, doesn’t do anything useful unless you then declare a "Troop" for the enemies to be a part of.

A Troop is what other systems call an encounter, a group of foes that is thought to all be allied with each other, and is encountered in the field as a single unit. In some TTRPGs, and even a few CRPGs, just meeting the enemy is not a guarantee that they are hostile, and some of those games allow you to approach, negotiate and perhaps even befriend the opposition, all without swinging a blade. Most JRPGs, however, in the name of simplifying the play, omit this phase, and get right down to business.

Enemies have pictures, statistics, experience points, gold, traits and attack patterns. Troops contain a number of enemies, and provide a facility to direct their actions in battle. This means you can use the same enemies in a number of different ways, by including them in a number of different Troops, each with different scripting. You can really keep players on their toes that way, by making them think they’re going to get one kind of encounter, but have the enemies use entirely different attacks.

To be a fair challenge, you probably should know what your characters will be like before you build monsters for them to fight. You could do it the other way around though, making monsters then characters who are strong enough to beat them. Of course, either way, you’d have to take the PCs’ level and equipment into account.

A basic workable scheme for designing your monsters is included elsewhere this book. A few things to remember until then:

* Player power = Stats (which come from Level) + Items + Skills (spells, special moves, items usable in combat, etc.). Any of these three things can turn a character into a winner, if they have the opportunity to gain them.

* Assuming you don’t change the formula, basic attack damage is character attack strength plus item attack strength, times four. Against an enemy with no defense, that is about how much damage will be done, plus or minus some variance.

* Basic defense is character defense plus the sum of worn armor defense, times two. This number is subtracted from damage done unless it’s a critical hit, which typically ignore damage.

* Magic and Skill power is more nebulous and can use entirely different formulas with each ability, but in general, if it does less damage than basic attack then it’s a weak ability won’t see much use, and if it does more damage than basic attack it should carry some cost to use commensurate with excess power.

I identify three particular kinds of enemy encounters:

Normal, or "build up" encounters: Called this because they’re mostly there to allow the player to build experience points. These should cause players to lose some resources (like some hit points, magic or healing items), but not be significantly dangerous unless the party has been seriously weakened.

Challenge encounters: Infrequent on the overworld, a bit more common in dungeons, these should be a good fight for players. If all encounters are build-up encounters then combat becomes too predictable. Challenge encounters represent the variance in the environment, they prevent the player from viewing fights as purely transactional, that is to say, just a trade of resources for experience. These should represent a significant threat to an average party. It is up to you if you wish to do the player the kindness of making them easy to escape from, but they should be worth extra experience if defeated.

Boss encounters: Should be about as powerful as a challenge encounter, maybe a little harder, but may be less depending on your game model. Remember, bosses are usually set encounters at the end of a dungeon. If the dungeon is long then most parties will be worn down by the time they get there; in those cases, it’s worth making the boss a bit if a paper tiger, maybe with high attack but low hit points or defense. There is nothing wrong with giving the player a break once in a while, especially in a boss fight, which generally can be faced just once and cannot be farmed for experience.

 • States

States are special modifiers that can affect either PCs or monsters in battle. The most common states we call "conditions," and include things like poison and paralysis, negative effects that sometimes even persist outside of battle. But nothing says conditions must be negative. You can create buff conditions, that increase character ability, even greatly. Guarding, as with the battle command, is implemented in RPG Maker as a state, just as one that sets a flag that decreases incoming physical damage, and goes away at the end of the turn.

"Knockout" the deceased state, is also implemented as a state in RPG Maker. Like the "Skills" Attack and Guard, it has a special place in RPG Maker’s system: the first state in the state list is automatically applied to characters when they run out of hit points. If you change the Knockout state’s properties, or move it to another slot, then suddenly your characters may not be able to properly die, and you’ll wreck the gameplay. Some other aspects of RPG Maker’s systems rely on Knockout, so monkey around with it only if you’re willing to put up with how it might break your game.

 • Animations

The Animations tab has no affect on gameplay; it is just a list of animated graphics that the game can display at different times, usually with the expectation that they will play when someone is struck with a weapon, a magic spell is cast, or something else occurs around which a little visual flair might aid in punctuating the event. RPG Maker MV comes with 120 different animations, which is generally enough for basic use. You can also create your own animations, although that is a bit more in-depth than I’m prepared to aid you with here.

 • Tilesets

Custom graphics are the most impressive way to set your project apart from the sea of quickly-made RPG Maker output out there. The images under the Tileset tab are used to construct the map graphics that you set down in the Map Editor. There is a special format in which you should make your tiles; later in this book I offer some tips for getting your images into the form that the editor needs to construct its "metatiles," to allow you to make seamless terrain features easily.

 • Common Events

RPG Maker’s map editors don’t just allow you to lay down terrain tiles and "encounter chips," but also events, which are the core of how it allow you to construct interactive content. In its event system is what amounts of a fairly complete programming language, although one that you write code in, not by typing, but by using its "Event Commands," which you select individually from a multi-tabbed editor. The Common Event section of the Database lets you make events that are not contained within any map, but that can be called by other events, or by Skills or Items upon use, in a manner not unlike subroutines.

RPG Maker uses this system partly because of its origins as a console product. Also, for Japanese and other non-English speaking users, typing in scripting commands is a bit less intuitive than it is for the rest of us—I don’t know if you’ve noticed, but most programming languages are written in English. By selecting commands from a list, its scripting language can be made more accessible to users speaking any language, just by using a different language resource file. It also serves, in its way, as a means of self-documentation: you don’t have to look up commands in a reference manual or on Stack Exchange, because all of the possibilities are given to you in the editor dialogue.

It’s still true, though, that it’s a bit more clumsy for experienced programmers to code using this system. Intermediate and expert coders may want to look into customizing the system with Javascript (or Ruby, if you’re using past versions), using the Script option, or even by writing your own Plugins.

 • System

This tab is a miscellany of individual customizations. It is here where you decide what the Boat, Ship and Airship look like, vehicles that your party can use to travel over ordinarily-impassible terrain types. You can decide which characters are in your party at the beginning; what the currency of your world is called; whether "TP" are displayed in your combat screen; whether the normal of Final Fantasy-styled "side view" combat is used; what music is used on the various screens and modes of your game; which commands are available to the player by default on the Menu Screen; and more.

 • Types

Throughout the other screens, reference is made to the Elements of your spell system and the types of weapons and armor there are, among other things. By default, a new RPG Maker project contains a commonly-used set of defaults for these lists, but they, too, are customization. In particular, to my taste, there are too many element types, so on this screen I would remove some of the types and rename the remaining ones to my liking. You might prefer there to be more types.

The lists you edit on this screen affect the options available elsewhere in the Database, so it makes sense to come here early on, in editing your project, and finalizing what the names and types of elements and items that you intend to use in your game.

 • Terms

Finally there’s this rather-overloaded screen, which allows you to edit nearly every engine-provided string of characters that the game runner displays to the player. If you prefer that HP, rather pedantically, be called "hit points," you can do that here, as well as renaming many other things—just about everything except gold, or "G," and that’s only because you can rename it back on the System menu. You can even change the default messages presented by the system in narrating the outcome of attacks, level increases, game saves and other things.

Truthfully, you will rarely have cause to change most of this. But if you do have reason to, you’ll be glad this screen is here.

Maps

Most Events need a map to even exist, and Regions and/or Encounter Chips must have a map to reside on. Further, maps are one of the more entertaining things to work on in RPG Maker. The map editors are usually pretty easy to use, and constructing them both immediately makes something pretty to look at and forms the structure of your game. I suggest at least making the world map first off.

There’s two "kinds" of maps in RPG Maker generally, distinguished by what kinds of automatic tiling the system does for you. They are Overworld, and Area. Other than that, maps themselves are completely freeform, and can be connected together and use for whatever purposes you want. If you want your overworld to be a tavern cellar infested with rats, go for it. Or you could have a palace full of magic portal to other places, or make your game just be a huge overworld area, or whatever.

The catch is size. This is one place where, as of this writing, RPG Maker MV actually lags behind previous versions. XP and VX Ace both support maps of up to 500x500 tiles, but MV only lets you create spaces of up to 256x256 in size out of the box. That is about the size of the main overworld from Dragon Quest III, so generally a good deal of space for housing adventures, but special tricks like Mother 1-like on-map towns won’t be easy to accomplish. The RPG Maker games are extensible, however, and MV’s plugin system is an excellent way to install such extensions. YouTuber Kane Hart has a short video (two minutes!) on how to use larger maps. Basically, the size limit is implemented in the map properties editor, so changing the information by editing the map’s definition JSON file can overcome the limit.

It is worth noting that, back in the days of the NES and SNES, game maps were only rarely stored on ROM cartridges in native form. They used different means of data compression to fit their game worlds into the game’s limited memory spaces. Many NES games in particular used bank switching to supply far more ROM than the NES’ 6502-style processor could address. Dragon Quest III’s map, if stored single byte-for-onscreen tile, would completely fill the NES’ address space by itself!

So a variety of tricks were used to represent world maps with less space. For example, while there’s 256 values possible in a byte, there’s far fewer types of tile in a game map, so bit packing tricks could be used to hold more than one tile in a byte. Usually maps were represented as regions of the same type, so a good compression scheme would seek to hold the size and/or shape of a region and its tile type, a huge savings. Many games have objects that are larger than one tile in size, like the trees in Mother, and those could be stored as a code instead of a set of tiles. And this isn’t even getting into standard tricks like RLE encoding and other forms of data compression.

My point in this is, if you’re trying to make a game in the old style, RPG Maker’s limits should be okay for you. If you’re trying to do special things, like really big game worlds (thousands wide and high), it will require a little hacking around, and the resulting maps are not supported directly by the tools, but they’re also possible.

RPG Maker Fes, by the way, is even more limited, only allowing maps of sizes 32x32, 64x64 and 128x128. And in general, any version of RPG Maker running on a console is going to be much more difficult to hack, and will likely not support plug-ins.

Feature alert: RPG Maker MV Automatic Dungeon Generation

It’s not exactly runtime random dungeons, but RPG Maker MV offers the ability to construct the rudiments of a dungeon layout for you. In the map list (by default in the lower-left corner of the main window), right-click the name of the map you want to use and select Generate Dungeon. It’ll ask you for tiles to use for walls and floor. Note that you don’t have many options to specify to affect its output. You can decide if it’s composed of rooms and passages or a maze, and you can choose if it has wide passages or "margins," whatever those are supposed to be. In order to get good output, be sure to set the tileset of the map to something appropriate before generating. Even then, the room builder tends to waste a lot of space leaving big black areas at map edges and rooms way too big than you’d want, so be prepared to treat what the generator makes as a starting point more than anything else.

Creating an Overworld

These map creation sections are all, of course, a matter of taste. There’s lots of ways to construct interesting areas to explore. This is just how I go about it. For some people, discovering how to do this themselves is part of the fun! If you are looking forward to that process, by all means, do not let me discourage you.

Here is what the tile selection for Palette A, for Overworld maps, looks like by default:

[image: overworld_tiles]

This may not look like that many choices. Part of this is because all the really special tiles are on the other palettes, but it's also because these tiles are all metatiles, constructed by the RPG Maker system as you build the maps. What these tiles look like in their source images is quite different:

[image: worlda1_small]

[image: worlda2_small]

These two images (shrunken down and with transparency removed) show the structure of the base image RPG Maker uses for its metatiles. You can get the originals out of a blank RPG Maker MV project for editing to suit your own project: go under Tools > Resource Manager, click img/tilesets, and Export the files World_A1.png for animated tiles like water, and World_A2.png for terrain. It'll probably take some tinkering to make tiles that work perfectly well, but I've managed to do it, and I'm sure you can too. It's kind of beyond the scope of a book like this though.

As far as drawing the overworld itself in the Map Editor, the rest of us may find it daunting to figure out where to start. Here is one process you could use, to produce a generally Earth-like world. YouTuber BenderWaffles has his own technique, which can be used to produce great results pretty quickly. He shows it off in a five minute sped-up video here.

1. Fill the world with ocean. This is as simple as taking the Deep Sea tile (the second one in Overworld Palette A) and Flood Filling it across your entire map. You now have the endless formless waters, much as in the beginning of Genesis before God came by and mucked everything up.

2. Draw continents. I use the Grassland A tile for this (third down in the first column of Overworld Palette A). Look at the continents in our world. Those are some pretty weird shapes. Big huge blobs, curved coastlines, sharp bits jutting out, inland seas, island chains, and so on. It’s hard to believe that some folk think this thing was designed. The upshot of all this is, no matter what shapes you choose, they’re not really going to be bad ones. I do try for corrugated curves and a lack of straight lines. Those are a little to neat and orderly for a proper planet.

3. Now you can fill in the terrain on and around each continent, maybe putting sandy areas near the ocean, shallow water around the land masses (you can make them able to be traveled by boat but not by ship), hills and mountains in the interior, woods and forests between them and the sea, rivers running from some of the mountains to the ocean, deserts in arid and tropical places, ice in the extreme north and south, and so on.

4. The last major step is to place locations like towns and dungeons, but as that may vary greatly depending on which areas the scenario demands be walkable from each other, you might want to place those later.

This is as good a time as any to start thinking about game progression. In your textbook JRPG, players encounter areas of sequentially increasing difficulty. This is not realistic, but it’s a generally-accepted concession to playability, so you may want to decide right around now what path a typical party will take through your game. You could either leave it to the monsters to enforce gatekeeping, which would be more of an old-school, open-world approach, or you could do what more-recent titles do, and use a series of scenario-based checkpoints to keep the player from jumping out into the deep end before they can swim.

What do checkpoints look like? Here’s a few examples:

 	A bridge blocking the only way forward is broken! Arbitrarily, it won’t be fixed until the main quest in the current town is completed. Blatant, but effective.

 	The only way to the next area is through a locked gate, blocking the way forward. The king won’t give you the key until you do him a favor first. "Favor" is another word for "subquest."

 	You gotta cross a stream, but you can’t do that without a boat. Getting a boat is a reward for a quest.

 	You gotta cross the ocean, but you can’t do that with a ship. See above.

 	You gotta go somewhere isolated and can’t do that without an airship. See above above. Final Fantasy used to love this technique.

 	Sometimes the quest passage needs to go across the sea, but you’re not ready to give the party a boat or ship, and possible full access to your world, yet. You could have them "book passage" in a town, then cover the voyage with a cut scene that moves them to the next destination. That could be a two-way passage, or maybe a shipwreck strands them in the location they need to be in for the next leg of their journey.

 	They’re teleported by a mysterious force! Don’t you hate it when that happens?

 	Classic Dragon Quest had "travel gates" that connected continents. Final Fantasy IV had the "Serpent’s Trench." Final Fantasy VI had Gau, Sabin and Cyan find a weird one-way, underwater passage that gets them from the Veldt back to the mainland in time for the big multi-party battle that concludes the first act of the game.

Point is, there’s lots of ways to do it. Part of the fun of making a game in a fantasy world is you can have all kinds of arbitrary magical things in it, so, be creative.

One thing to look out for is the phenomenon where a lot of the areas of your world look similar to each other. If you have a very large map, the possibility increases that a player might lose track of their position, and the relative location of important landmarks. One way to help players keep their bearings is to use some of the unique tiles on tabs B and C of the palette to make unique spots that are instantly recognizable, and to make "macro-level" structures, like interesting shapes for terrain features, that stick out in the mind and are memorable.

Creating Towns

The biggest problem with using the supplied assets in a package like RPG Maker is that, not only does it mean your project looks like those of a lot of other people, but without special attention paid, even areas within the same game bear an amount of sameness. It may seem like there’s a lot of tiles at first, but it doesn’t take making many towns before they start to merge together in the player’s eye.

But I’m getting a bit ahead of myself. This is a screenshot of Tab A of the default Outside tiles palette:

[image: outsidetiles_key]

It’s divided into four sections. Section A are animated tiles; in the Tileset section of the Database, these are the tiles in the file assigned to "A1 (Animation)." Like the tiles from the Overworld, these are all metatiles: they are constructed out of a set of images in a file arranged in a special format that RPG Maker uses bits and pieces of which so that, if the image is well-made, appear to join together seamlessly in the editor. Additionally, the tiles in Section A1 are animated, usually because they’re watery and animation will allow for animated waves, but nothing prevents you from making other animated terrain, provided you follow the same format at RPG Maker’s built-in assets. Maybe create animated flames to represent burning forests, or bubbling lava, or glowing energy fields. In order to actually assign special functions to different tiles, check a bit further below.

Section B in the above screenshot contains metatiles from A2 (Ground) in the Database. Other than the fact that they’re not animated and so there’s only one set of metatiles for each terrain type, they work the same way. They’re just not animated.

Section C contains resources parsed out of A3 (Buildings), and is also made of metatiles, but in a different format (see below).

[image: outsidea3_small]

The tiles in the Animation and Ground sets are constructed so that they look nice, without any hard, discontinuous edges, no matter how you draw your terrain. On the other hand, the tiles in the Buildings set look the best when they form rectangular edges. While you can still drop them down wherever you want, they’re not designed to look nice unless you mostly make rectangular shapes with them, with maybe the slight variation for doors, windows and roof features.

Tiles from Sections C and D (of the Tileset tab in the Database), shown as groups 3 and 4 on the palette screenshot up above, are your primary worksets when drawing buildings. There’s a lot of decorative tiles on palette Tab B to spruce them up a bit, identify buildings and the like, but if you just place them where whim takes you you’re likely to end up with a bunch of samey buildings.

One thing you can do is, for each town in your world, to pick out a certain roof color and wall style, and stick with it throughout that town. Give its buildings consistent dressing with other places in the same town. You’re still using the basic tiles

Another thing is to try to give each type of building, across all your towns, certain attributes in common. Inns, for example, are frequently large buildings, so maybe give all of them a second floor, visible from the outside. It is thematically appropriate to give churches and other places of healing pointed roofs, maybe with some holy symbol near or at the top. Shops have a need to attract customers and so often have fancy storefronts, so it makes sense to add extra decoration to their outsides. Giving extra attention to the appearance of these buildings, and being consistent with their appearance throughout the game, will help the player to discern their function without having to scroll their sign on-screen, and so will help them find essential services faster.

Beyond that, it pays to give towns a bit of extra polish beyond just buildings. In real life, towns were often founded along rivers, lakes or the seashore, and it makes sense that those that are not would have at least one well. If there’s sky-facing water nearby, that implies erosion, and elevated ground. That might mean cliffs, and perhaps, at the top of the cliff, the house of some important person, or a lighthouse. In all cases, places where people are likely to travel will either have paths worn in the grass, or cobblestone or paved walkways. Not only do these subtly point out to players points of interest, but you can also make clever use of these to point out hidden items, either by explicitly laying out a path to it, or by making it prominent by absence; a field in the middle of town with paths around it, but not into it, would seem like it must hide something of interest.

There is one additional possible thing to keep in mind when designing towns, and it’s more of a storytelling thing. Towns tend to be the sites of a lot of cutscenes. I don’t mean the kind where large cartoon images move around, but the more basic kind where character-size images, usually events in RPG Maker’s system, move around the screen doing little skits. The dancers in Final Fantasy IV are a good example, but these little sprite-animated vignettes were all over the place in the 16-bit JRPG field. These animations add a lot of life to the game.

Now, creating these little scenes is not a simple task, and I’m afraid I don’t offer much guidance into their creation. But you do have to beware of something in their creation: making sure, when begun, typically by a character talking to a specific NPC or stepping on a space, that their operation is consistent, that it’ll always play the same way. This means, for example, that if any sprites do any movement during the scene, that they don’t end up behaving in an unexpected manner, like by attempting to step into a space into which it cannot walk. If the event you speak with in order to begin the scene is capable of movement before the scene starts, then its starting location will not always be the same place, and you will have to account for any place it might need to move to. This can be a surprisingly difficult problem no matter what system you use, but designing your town around these cutscenes, if you have any, can help to reduce problems down the line.

Creating Dungeons

What is a dungeon? Generally speaking, it’s a challenge area, a place with more monsters than the overworld that serves as a destination, and a step towards completing the game. If the game uses McGuffins, often they will each be, individually, at the end of dungeons. Dungeons are often caves, castles, strongholds, ruins, or other, weirder places. They aren’t limited to these: forests, hills, abandoned towns, or castle basements can be dungeons too. The term more applies to a place’s role in the game than what kind of place it is.

Dungeons often form much of the challenge of a game, both in terms of combat and navigation, but they can also be a way for players to receive substantial rewards. If you’ve played a lot of JRPGs, you’ve no doubt encounter game where you really come to dread exploring dungeons. For me, one game with absolutely tortuous dungeons is Phantasy Star II. I liked it when it first came out, but I can’t say that it’s held up really well. There’s surprisingly little story in the game in retrospect; almost all of the character of your party members is in their introductory scenes, there’s not a huge amount of dialogue, and ultimately huge multi-level dungeons, many of which look depressingly similar to each other, are sometimes extremely challenging. When the game was released in the US it originally came with a guidebook to get you through many of the tough moments, including maps of the dungeons. It was needed.

Dungeons came from Dungeons & Dragons which, in its original form, was mostly a dungeon exploration game. A "megadungeon" is a term for a single gigantic dungeon that serves as the entire exploration area of the game, with the possibly the exception of a town. CRPGs that follow the megadungeon design are classic Wizardry, the original Bard’s Tale, and, among JRPGs, Shining in the Darkness. "Dungeon crawls" are games where there might be a rudimentary overworld, but most of the gameplay is in dungeons.

Most JRPGs use dungeons as challenges to overcome, and possibly to conserve resources in conquering, but in their original forms they could contain strong monsters, powerful treasure, lots of gold to loot, wonderful magic, deadly traps, and other, even weirder, things. JRPGs tend to neglect these possibly helpful aspects, with the exception of valuable treasure.

I observe that dungeons that only serve as challenge areas can easily come to feel like a chore to explore, especially if their encounter rates are high, their layouts are very complex, or if they don’t have much special treasure to find. To keep dungeons interesting and fun to explore, and not wear on the player’s attention too much:

	Keep the encounter rate from getting too overbearing. Dungeons require considerable player effort to fully explore, and every time you throw monsters at the player you distract them from focusing on solving the greater challenge of the dungeon. It also helps if the monsters themselves are interesting, and different from the ones found outside in the overworld.

	Complex dungeons can be fun to explore, but they can also quickly become a hassle. Giving the player some minor aids to exploring them, like partial maps, symmetrical layouts or a memorable large-scale structure can help reduce the cognitive load on the player. Remember: your job as a designer is not to defeat the player, but to challenge them.

	Try to make sure you include at least one unique, wholly optional item in each dungeon, like equipment with special powers, items that cast attack magic when used, or other cool stuff that cannot be found in shops. Remember, this is on top of any essential items located there. Finding a required item isn’t a reward, it’s what you have to do to finish the game!

	Interesting dungeons have many branches, and locations of varying difficulty. A good rule of thumb is to not make the hardest area in the dungeon the required area the player must go to to proceed. Instead, put your best optional treasure in the most challenging area. Every area the player must enter to complete the game is a potential sticking point; if any such required-to-visit place is too hard for the player to finish, then the whole game is too hard to finish. Any truly difficult areas to explore, relative to the average player’s power level at the time of exploration, should just be for bonus rewards. Also remember that, while you might know a given branch isn’t necessary to complete the game, the player doesn’t know that. It might be useful to subtly clue the player that the main objective is not at the end of your killer death gauntlet.

	Dungeons in TTRPGs tend to be more interesting places than dungeons in CRPGs or JRPGs for some reason. I attribute this to two things. One, in tabletop games, dungeons are likely to be much more complex places in terms of history and enemy motivation. A dungeon is much more like to have a story, a justification for being, in a TTRPG, and monsters in the dungeon have more complex ways to approach the player. They may try to trick them, or they might try to befriend them, or they might flee, or even alert the other monsters in the dungeon. This allows the whole dungeon to be like a cohesive place, a challenge entire, rather than a place where you encounter around 30 individual, random fights. The other thing TTRPG dungeons have over CRPG ones is that their situations are usually a lot more interesting than "Here are monsters, let's fight!" There could be treasure buried in the very walls, magical puzzles, ingenious traps, and all kinds of other things. Each room is like its own individual situation for the player to examine and try to overcome, instead of just the place where monsters happen to be found. If you can impart some of this character into your dungeons, you will automatically be ahead of most other computer RPGs out there, whether they be C- or J-. I suggest looking up some old school D&D dungeons especially to get ideas for what your own game could be like... but remember! Taking inspiration is okay, using similar situations is okay, but just changing the names on a situation someone else created is not. Build on the ideas of others, but do not reuse their work without permission.

Creating With The Event System

We have at last come to this, the most complex part of RPG Maker, excepting writing Ruby or Javascript code to mod the engine: events.

RPG Maker’s event system is a programming language all to itself. It’s one of those systems where you select options from a list instead of type commands from memory, and so it’s easier to get started in, but that’s also a drawback, because you’re confronted with the complete list of what RPG Maker’s event scripting can do every time you open the editor. RPG Maker MV has one hundred and five options to choose from, divided into three tabs, and a few individual buttons, such as Control Variables, are deceptively powerful all by themselves. Lest you think going back to an earlier version will reduce complexity, even XP has 90 different options, and all versions have the Script option, which opens up, for those willing to take a deep dive, the full power of the system’s underlying scripting system, Ruby in the case of XP and VX Ace, Javascript in the case of MV. Bring oxygen tanks! Even RPG Maker Fes, which has a much simpler and much reduced system, can do some surprising things.

But there are some surprising things that, by default, RPG Maker’s event system cannot do. Let me preface this by saying all of these are to my knowledge:

 	RPG Maker has no way to create events at runtime. ("Runtime" means, when your game is running. "Design time," by contrast, is when you’re building it in RPG Maker.)

 	RPG Maker has no way to permanently destroy events at runtime. There is an Erase Event command (which only works on the event currently running), but it only lasts until the map is reloaded.

 	RPG Maker has no way to modify events at runtime. (An event can exhibit different properties situationally, however, using Conditions.)

 	At design-time, only one event can be in a given square of a map. (During the game, events can move around, and depending on their settings possibly overlap.)

 	The tiles of the map cannot be changed at runtime.

 	A great strength of the RPG Maker series since XP is that they are backed by Real Live Languages, first Ruby then Javascript, and the above issues can be addressed there. If you’re willing to dive into such coding, which I’m going to call modding because in my own attempts that felt a lot like what I was doing, then most of these problems can be resolved. RPG Maker MV even offers a "plug-in" system, where people who create useful mods can distribute them, and you can install them with a Plug-In Manager to extend MV’s capabilities.

I’m a big fan of this kind of extension to RPG Maker MV, but I regard this as an advanced topic. In the appendices I suggest a number of interesting and useful MV plug-ins to try out.

In any event, RPG Maker Fes doesn’t support such modding at all. The only coding it allows is through the event system.

How to Design With RPG Maker Events

A traditional computer program is imperative and procedural, that means it does things right away, and performs its actions consecutively, in a row, until it is done. RPG Maker’s event system works that way only in part.

An event is a self-contained entity on a map that follows its own set of instructions, on its own. A map may have many such events. Despite the name, they don’t just occur when a player activates them, but can move around and perform instructions autonomously, although when they can do this depends on the version and the event properties. What follows is generally applicable to all the versions of RPG Maker covered here (XP, VX Ace, MV and Fes), but there may be some exceptions with older versions, and especially with Fes, which has unusual technical constraints.

With the exception of Common Events, every event has a map that it lives on. Events are stored with the rest of your game in the program file the editor creates when you decide to build your game, but at runtime they don’t really "exist" until the game loads the map they’re on. While your party is on a different map, they sleep. They’re only instantiated in a usable form once you enter their map, at which time they start processing Event Conditions.

Fair Conditioning

[image: mv_eventwindow]

This is the Event Editor. You get to it by either double-clicking an empty map square or existing event, by right-clicking an empty square and selecting New, or by right-clicking an existing event and selecting Edit. It may appear forbidding, but it’s quite powerful. Everything in this box is useful, but some of it is subtle. This screenshot is from MV; the other versions may have slightly less here (much less in the case of Fes), but a surprising portion of it goes back as far as XP.

The key to making good use of Events is making proper use of the Conditions and Contents sections of this dialog box. Pay close attention to the following description, for making good use of this information is the key to unlocking a lot of RPG Maker’s power. I’m going to be a little redundant here to ensure these facts get through, for realizing their full implications will immediately advance you one level in RPG Maker proficiency.

Every Event checks the Conditions of its event pages every frame, and decides which one, if any, of them is its active page.

Each Event may have one, some, or many of these pages, but every Event always has at least one page. If you try to delete an Event’s last page, it won’t let you. However, that doesn’t mean any page ever has to be active.

The image, options, checkboxes and Contents of the active page are the only ones that matter.

The image, options, checkboxes and Contents of the active page are the only ones that matter!

If the active page of an event changes, then everything about that event changes to match what’s on the active page. Nothing on any of the other pages at a given moment matters at all. If a page never becomes active, then it’s as if it wasn’t even there.

You can change an event entirely by carefully controlling which page is active, which is checked every frame. If the old active page has a picture of a young boy for its Image, and the new active page has a picture of a cat, then the boy will turn into the cat. If there is no image, then the boy will appear to vanish, but the event will still be there, behaving according to the events on the new active page. If the "Through" checkbox on the new active page is checked, then the player’s party can now walk through that square. If the speed increases to 4x Faster, then that will become the new movement speed of the Event. Every apparent thing about an event changes to match the active page.

What is more, the Contents of that Event Page are the only ones that are active for that frame. That doesn’t mean that they will execute, that’s determined by the Trigger, but if the Contents aren’t on the current active page, then it doesn’t matter what the Trigger says, they won’t happen. The active page takes precedence over everything.

So, how do you pick which page is active, if any? That’s where Conditions come in. Every page has a set of Conditions that determine under which circumstances it can possibly become active. Every frame, the game engine will go over all the conditions on its Event Pages, starting with the one with the highest number. Event Page #2 is checked before Event Page #1.

If the Conditions on that event page are not met, it will go to the next-lowest numbered page and check its Conditions. It will do this until it either runs out of pages (in which case there will be no active page this frame), or it finds one where all the Conditions are satisfied. In that event, that page becomes the Active Page. the Event’s appearance and behavior will change to match that of this page, and the Contents of this page will be the ones that may (or may not) execute. Then, the Event stops processing for this frame. None of the lower-numbered pages will be checked, because there can only be one active page. Another way to put it is, in the event that multiple pages have met Conditions, only the highest-numbered one has any effect.

What happens if all the Conditions on all the pages fail? Then there is no active page this frame, and the event disappears. There is no image that can be displayed for it, it becomes walkable, and none of its Contents can execute, regardless of anything else. For the Event to wake up again, one of its Event Pages must have its Conditions met, and that can’t be caused by the Event itself because it’s basically asleep. The change in circumstance must come from some other source, like the workings of a different Event or the actions of the player.

Remember, all of this happens for every Event on the current map, visible or not, and regardless of when its Contents are set to execute, every frame. The Conditions are all-important in this. Each Condition, notice, has a checkbox by it. That controls whether that Condition matters. A given Event Page can only become active if all of its checked Conditions are met. This might seem counter-intuitive to your, but if a page has no checked Conditions, then they’re automatically considered to be met. This means a page with no checked Conditions, if it’s reached, will always become active, and any lower-numbered pages will never be active. This makes Event Page #1 a good place to put a fallback page, with none of the Conditions checked, in case nothing else is going on with the Event that has to take precedence.

There are six different conditions, which you can use in any combination. Four of them are set by variables and switches, which are explained better in the next section. Switches (which I sometimes call global switches) are on/off kinds of settings, and Variables are numbers that you can add to or subtract from. Both can be modified by other events. Self Switches (aka local switches, which are not available in Fes) are different, in that each Event (the whole thing, with all its pages) can control them, but they cannot be controlled from outside that Event.

Switches and Variables are numbered from 0 to some maximum. In Fes there are 500 of each, which may sound like a lot but can run out quickly, especially since that version doesn’t have Self Switches. The other versions have changeable maximums, but they all top out at 5,000 at most. Global Switches and Variables can be named to help you remember what they do, but these names don’t matter to the game engine itself, and so are there only to remind you of their purpose. Each event has four Self Switches, each of which can only be on or off. All Switches, Self or no, start out set to Off when a game starts, and all Variables start out set to 0. Importantly, the Conditions on Event Pages can only check if a Switch is on, or if a Variable is greater-than or equal to some number.

One convenience feature offered by all four programs is, when you set (global) Switches or Variables through an event command, you can either do one at a time, or ranges of them, which can be useful for clearing out temporary data when you leave an area.

So, what can you do with event contents? Hoo boy, are you ready? THIS:

[image: mv_eventchoices1_small]

[image: mv_eventchoices2_small]

[image: mv_eventchoices3_small]

It's almost ludicrous how many options are available! You can string them together, make loops and decisions out of them, add comments, and tons of other things. It really is its own simple programming language, although you select options from these Event Command dialog boxes instead of typing them in. Unlike a normal programming language, there is no syntax to memorize: every option that's available is in one of these three tabs, although it's easy to forget which tab it's on. There is a deceptive amount of power here, and it's worth spending some time familiarizing yourself with them.

An Aside to The Computer People

If you’ve never wielded a compiler in anger you can skip this section. It’s for my fellow supernerds.

If you’re from computer programming circles, you may be annoyed not to be able to use Conditions to directly check if a Switch is Off, or if a Variable is beneath a value. All I can say is, that’s the way it’s done here.

Another thing programmer people will be wondering now is if there’s relative addressing of Switches or Variables, that is, can they be treated as Arrays. The answer is, no, and yes, depending on your version. In Fes, the answer is a hard no. In XP, you will probably have to use the Script event command and perform your addressing in the Ruby scripting language. In VX Ace and MV, the Control Variable command has an option to execute a bit of custom Ruby/Javascript right there, which you could use to perform relative addressing. That’s beyond the scope of this book, but it’s not hard to do at all. (To get your started: in VX Ace, which uses Ruby, the global Switch array is named $game_switches, and the Variable array is named $game_variables. MV uses Javascript; you can read variables with $gameVariables.value(index), and set with $gameVariables.setValue(index). Switches are analogous.)

Wait a moment—you can’t address variables by index? A lot of the power of modern computing comes from being able to access data in an array kind of format. How can one do serious work in RPG Maker, the computer people reading this, if you cannot do that?

The answer is, you can do that, outside of Fes, with custom scripting, but explaining that is outside the scope of this book. However, you can do a surprising amount without it.

Think of it as like a puzzle to itself. Can you do this thing you’re thinking of through clever use of Events (which can operate in parallel, in a fashion)? Some things cannot be done, but some things can. And a lot more can be done if you’re willing to dirty your hands with some old-fashioned coding.

Well, those are the facts. RPG Maker does a lot for you, but it’s not made to let you easily do a lot of arbitrary data manipulation. So it goes.

Being Content With Contents

[image: eventtrigger]

So, when do the instructions, the "Contents," on a page get carried out? That’s determined by the setting of the Trigger option on the active page. Here are the possibilities. Fes uses somewhat different names for these, which follow in parenthesis:

	Action Button ("Investigate")
This means the event will go off when the player faces the event and presses the "action button," which is Z by default in current-day computer versions of RPG Maker and the A button on the 3DS. Until the player accesses it, it does nothing other than possibly animate and move around some, depending on the options on its active event page.

	Player Touch ("When character touches")
This means when the player attempts to move into the event’s space.

	Event Touch ("When touched by event")
This means when the event tries to move into the player’s space.

	Use Item (only in Fes)
It’s odd for a feature to only be in the 3DS version. If the character is standing next to the event, facing it, and uses the specified item from its inventory, then the event will go off. Note, this won’t perform the item’s usual function if any, and it won’t consume the item by default if it’s consumable. If it’s important to do so, you can then use event commands to remove the item from the event’s command list.

	Autorun ("Auto execute")
This one is powerful, but easy to mess up with, and if it doesn’t work the way you expect it to it locks up your game! Because of this, the first time you use an Autorun event, or if you’re doing something complex that relies on it, it’s a good idea to test it thoroughly.
Autorun events execute to the exclusion of other events, or the player's controls. They are kind of "modal" in that way; until the event page with the Autorun execution type is no longer active, it'll be the only thing that runs, and, since it is the only thing that runs, whatever deactivates it has to be something within that event's contents. For example, if the Autorun page is set to be active when a given variable is equal to 0, it's up to that event's contents to set that variable to something other to 0, to deactivate itself.
It is a weird way of designing, and even people who are experienced computer programmers may get caught up with this. The best uses, in my opinion, of the Autorun event trigger, are one-time setups upon entering a map, to prepare variables, switches and the like that other events in the same map will use, and for cutscenes where the player's actions should be locked out until the scene concludes.

	Parallel (not present in RPG Maker Fes)
These events run their contents, once per frame, without blocking the execution of other events or the player's actions. Parallel events are powerful, but they also open up entire cases of worms. While I am not certain (I haven't seen anyone else talk about this), it appears, to my experiments, that RPG Maker MV, at least, is serious when it says "Parallel": events don't execute one at a time, but kind of simultaneously.
Try this. Create a new project in RPG Maker MV. On the starting map, create two events. Set the first one to execute with a Parallel trigger, with the contents
Control Variables: #0001 = 1
Show Text: "Event 1: Variable #1 is:\V[1]"
The purpose of this is to set one of the engine's variables to the value 1, and then identifies itself on-screen and display that value. Now, on the same map, create a second event in the same way, its contents also set to trigger with Parallel. Give it almost exactly the same contents, but with a slight difference:
Control Variables: #0001 = 2
Show Text: "Event 2: Variable #1 is:\V[1]"
See the difference? This event sets the variable to the value 2 and reports it, and also identifies itself as Event 2.
Give this simple game a test run, and watch what happens when the events report their messages. On my copy of RPG Maker, I get:
Event 1: Variable #1 is 2
Event 2: Variable #1 is 2
Event 1: Variable #1 is 1
Why this behavior happens I'm not entirely sure, but it sure looks to me like Event 1 is running its Show Text command after Event 2 has set the variable, overwriting the value Event 1 itself put there. What is more, then Event 1 runs again, this time with the correct value reset. I'm not sure how to completely explain this, but it looks evident that, when events are set to execute in Parallel, that RPG Maker MV is being literal: The events really do run at the same time, and can mess with each others' workings, which is an unexpected wrinkle that I've not seen anyone else mention--which makes me more than a little nervous about reporting it here, I must say, but it's tripped me up, and my tests are consistent, at least.
Computer people reading this may see what is happening: it's as if each event is running in its own thread, like each is its own separate computer, working on its own, heedless of the work of any others. There are ways to overcome this problem; the one that I use is a computery thing called a semaphore, basically a separate switch you set when one event needs exclusive access to a variable, reset when you're done with it, and always, always check before using it yourself.
Explaining semaphores in detail is way, way beyond the scope of this book. If events had much of what we computer types call "local storage" this problem might be more avoidable, but we don't: all variables and switches, except for four "self-switches" per event, are "global," accessible to every other event. When using common events this problem is especially prone to bite you: if you set a variable to pass data to a global event, and another event tries to do the same thing, the two are liable to have a hilarious/tragic mix up.

I wish I had a better solution for you there. It's an RPG Maker issue I've struggled with for some time. All I can offer there, for now, is a warning to be careful, and if common events you've made seem to be working in a way you didn't intend, check into this.

What the Heck are TP?

Explaining the extra combat statistic RPG Maker gives you by default.

I’ve mentioned TP before. No class, it does not here mean "toilet paper," please pay attention. While it’s obvious that MP, means "magic points," it’s not obvious what TP stands for. Most people figure it means technique points, and use them as an alternate form of magic, but one that has to do with powering special combat moves, or psychic abilities, or high-power attacks like the Limit Breaks of Final Fantasy VII.

If you have no use for TP in your battle system, you don’t have to use it. You can uncheck a box in the Database > System tab and they’ll be hidden in battle; then, you can just not make any abilities that use them. You could also change the name of TP in the Terms tab and put them to use as something else. By default TP starts each fight at a small random value, but there is a type of trait (a special flag you can attach to a character class) called Preserve TP, that instead carries TP over from the end of the last fight; using all of these functions, you can use TP as an extra kind of statistic that a character can have, customized to your liking.

TP are not gained (automatically, at least) when a character gains a level. They are never completely replenished, and by default the most a character can have at once is 100. Some Google searching should uncover some plug-ins that allow you to further customize TP without having to resort to coding. Here is one forum page describing such a plug-in.

If you customize the use of TP, then all rules are basically out the window, so the rest of this article discusses its default function.

If you don’t modify or hide it, then you could think of TP as serving as a simulation of the changing flow of battle. In the "Theater of the Mind" style that JRPGs emulate, your characters, in addition to scoring hits themselves, are also presumably jockeying for position and advantage, in order to get off their powerful, yet situational, special moves. By default, TP models this: using some skills and taking damage and using the Guard command increases TP, so it is both a reward for fighting more carefully, and a bit of a consolation prize for taking damage. Each fight is a new situation, in a new place against new opponents, which is why TP usually resets at the start of a fight. It takes time and, often, some intentionality to gain it, which is why it tends to increase and why you can affect its gaining through your actions. Additionally, there’s a limit to how much of this advantage a character can build up, at which point if it’s not used no further gain is possible, which explains its cap of 100. And because the player must build TP up over multiple rounds, it both means the player can’t use high-TP attacks at the start of a fight, or very often in a single fight. High MP attacks rely more on the player’s MP max, which is a per-expedition limit; nothing stops the player, if they choose, from expending all their MP in one fight, except for the probable requirement of having to go to an inn immediately after.

One popular trick is to create a skill that does nothing but increase TP. By choosing it, the player has opted to give up a turn in order to use a more powerful skill later. Note that Guard does this, but carries the side-effect of reducing physical damage until the next turn, so if you create such a skill (everything else the same) you should make the TP gain more than that of Guard (10 points by default).

When using TP, one should be careful about the potential of farming it. TP abilities that give the player a lasting effect should be considered carefully. Nothing prevents you from creating a TP skill that heals party members, for example; this gives the player an incentive to get in a fight against weak enemies and Guard over and over, in order to build up TP to heal up. You can even create TP abilities that restore MP; considering that healing spells and ultra-high-powered, screen-clearing spells are traditionally the province of magic, think carefully about whether you want to do this.

Getting Assets For Your Game

The most work-intensive part of creating a game varies from project to project, but frequent effort and time sinks are the creation of graphics and sound elements.

Your options are:

1. Use what comes with RPG Maker.

This is the easiest, but probably the worst, answer.

2. Use DLC resources.

3. Use third-party resources.

4. Make your own.

5. Get others to make your resources for you.

One thing I recommend you don’t do is go around asking people to make content for your game for free. As you will no doubt become aware if you try making resources yourself, making good graphics and music is a process that takes a lot of effort. If the person making the resources is directly involved with your project, is a personal friend of yours, or it’s a co-production thing between you, then you may be able to work something out that is fair to all involved that doesn’t require immediate payment. In these cases, a share of the income is reasonable to give them in the event your game goes commercial.

One thing you can do is go on the website Fiverr and put out an ad offering to pay someone for the resources they create for you. Often people who answer your ad will provide samples of work they’ve done in the past, so that you can gauge the quality and suitability of their work. In these cases, you should make it clear that the resources they make must be theirs, created by them and not ripped off of some other person or website, and that their creations are to be considered a work-for-hire, which gives you ownership of the material created in exchange for the money that you give to them. Note: ownership of a work does not mean you can say you created it! They are still entitled to credit for their efforts. For more on this, you may want to consult a lawyer.

Some of you may be concerned with the costs involved. It is true, getting good resources that you don’t create yourself is not cheap, although it may cost less than you expect. In any case, if you agree to pay someone for their work, and they do that work, it is essential to pay them for it. The world is full of cheaters who try to get people to do things for them for free. Please, do not be one of those people. If you have friends who might do things for you that is different, but not everyone has that available to them.

Another thing you should not do is steal the work for others. Just because you see it on the internet does not mean it is proper to just use without permission. If the game is for the use of just you and friends, and you never intend to make it available to the public, then that is an exception, but if it turns out that you’ve made something actually playable that way, then before you can release it to the greater world you must switch out everything you don’t have a clear rights trail for. Others have made this mistake and paid for it. Please don’t follow in their unfortunate footsteps.

There are still resources available if you can’t afford to pay people to do custom work. There’s not a bad selection of artwork that comes with the RPG Maker software. If you have multiple editions of RPG Maker, you may be able to use use art from one version in another by importing images out of the install folder of the other version. Under Windows, start looking in C:\Program Files (x86)\Steam\steamapps\common, then look for the appropriate folders; all the RPG Maker versions covered here have install names beginning with RPG. Alphabetical order is your friend. Once inside, the stock images for VX Ace and XP are in the \rtp\Graphics folder. If you spot a DLC folder, you might want to check inside it for even more options. You can purchase more DLC from the Steam storefront, or from the Steam Workshop, depending on your version. Some of it may even be free to use!

There are also websites where people make art available for low cost for free. itch.io (https://itch.io/game-assets/free) is an excellent site on which to look for packages of pre-existing art. There is also Open Game Art (https://opengameart.org), on which you can find a lot of art with reasonable terms for reuse. It may seem like a hassle to keep track of it all, but it’s a requirement. It may help to keep a record of where you’ve found collections of art you choose to draw from and their licenses. You’ll have to do some searching and sifting, but you always end up paying something, if not money, then time and energy. Big shot game devs have to do this too; consider it a step on the path towards becoming a professional.

Remember, even if you have the rights to use something, that doesn’t mean you have the right to say you created it. Always properly credit your assets. A simple line on the title screen, in the ending, or in an accompanying readme text file should suffice. If there are other use requirements tied to the assets, be sure to follow them too. It’s just basic decency.

The 3DS version of RPG Maker, "Fes," does not let you have as fine a control over your resources as computer-based versions. You can download some packs of additional resources to use as DLC (some for a fee), but you cannot create your own resources. If you have an epic design planned with tons of unique characters this can be a huge drawback, but on the other hand, since it’s impossible to change the graphics and sounds, no one has reason to expect them to be customized, which takes a huge weight off of the creator’s shoulders. It does mean that there is a sameness of appearance between Fes projects, however.

Appendices: A miscellany of ideas, references and prior art to inform your game

A List of Monster Gimmicks

This is a list of ways, mostly gathered from other games, of ideas to make individual enemies interesting to fight. Use as you will, or take as inspiration for unique battles.

	Normal Enemy
That’s right, no gimmick is a gimmick. In fact it should be a fairly common gimmick. Allowing the player to see for themselves how their party’s growing power is progressing is important, and ordinary schmoes to beat up gives them an unambiguous yardstick to see how they're improving.

	High Attack, Low Defense
A monster hurts a bit more than usual when it strikes, but is what some term a glass cannon: it can dish out damage but cannot take it. A single good hit will take it out. From a play strategy perspective, in groups these targets should be prioritized first, to limit the total damage accrued from them.

	High Defense, Low Attack
This is the opposite of the previous gimmick; defense is higher so it takes extra turns to take the enemy out, but to compensate, less damage is done each turn. Likewise, the optimal strategy is reversed too: these guys should be saved for last, after more pressing dangers have been dealt with. But notice, with a glass cannon monster, if a PC happens to get the first turn on it, it could be destroyed before it gets a chance to act even once, while a high-defense, high-attack foe is difficult to defeat before it gets its first hit off. So, it’s a more consistent doer of damage.

	Very High Defense, Very Low Health, Likely to Flee, Very High Experience
JRPG aficionados will recognize this as the Metal Slime gimmick. Metal Slimes are a monster in the Dragon Quest series, and they go all the way back to the very first game. Their defense is very high, so that PCs almost never do damage to them, with physical attacks or magic. In the Dragon Quest engine, attacks overwhelmed by high Defense still have a 50% chance of doing one point of damage, which provides a rare way to beat a Metal Slime: they only have four hit points, but the player must pass that coin flip chance four times before it runs away to get rewarded. In some games critical hits bypass Defense when they connect, which is another way to beat these enemies.

	High Attack, High Defense, High Experience
Beating a Metal Slime is like winning the lottery; beating one of these enemies is like working a 12-hour graveyard shift for overtime pay. The player has earned their reward for beating it, although it usually doesn't feel quite worth the expenditure of resources afterward.

	Weak Spell
This and the following spell-using gimmicks assume that the enemy has a good supply of magic points to power them. A weak spell tests different statistics than do physical attacks, and so usually damage physical attackers a bit more than just beating them. This can be a disruptive pattern, since a lot of the purpose of a tank is to take damage; this results in one taking a bit more damage than it was expecting. Since the spell is weak, it probably has low cost and can be used every turn.

	Strong Spell
This monster has access to a powerful spell perhaps a quest leg or two earlier than the player does. The balancing factor is that the monster doesn't have extra magic points, so it can only use a high-cost spell like this once or twice and then it's doomed to use weak attacks. The player has an incentive to try to take it out with high Agility characters before it can get its spell off. For extra evil, give the monster a magic drain attack, so it can refill its tank, at the party's expense, and potentially use the spell more often. I'd give the monster a substantial amount of extra experience if it can do that. It's a trick worthy of a boss monster.

	Party Effect Spell
Like the above, but with the effect spread out over the whole group. Even if the total amount of damage is the same, so long as neither case wipes a player out, this hurts a bit more than if the spell strikes one character, since it potentially wastes four turns to heal all that damage, until the player gets a party heal ability, and even then those spells tend to cost a lot of MP.

	Poisoning
We're getting into status effects here, and there's a lot of room for new and inventive statuses you can put on players. Most JRPGs uses the same old boring statuses, like poison, paralysis, blindness, charm and death. Poison is most interesting if its effects extend after battle, which has become less common in more recent games. RPG Maker MV provides support for out-of-combat poison damage, and you can adjust how much damage is done by editing the Poison state in the Database, but it is harder to adjust how frequently its effect is applied, which by default is one poison event happening for every 20 steps taken out of battle. This applies to all states that you allow to exist out of battle, so you could create a "mind poison" kind of state that drains magic points at a similar rate.

	Sleep Spell
Sleep is potentially a dangerous effect to use if it affects the whole group, since there's always that chance it'll affect everyone at once. The default RPG Maker MV Sleep state is set to remove itself when a character receives any damage, which severely lessens its impact. That makes it a state that feels worse than it really is, which is a good way to make the group feel stronger without risking game imbalance.

	Breathes Fire
Fire breath, like from a dragon, is, by tradition, is a spell-like effect that is not actually a spell, so magic evade and defense doesn't matter against it, and it affects the whole party. To create this in RPG Maker MV, you'd create a skill with a fire animation, set its Hit Type to Certain Hit, its target to All Enemies (since it's going to be used to attack the enemy of the enemy that uses it) and it's message to "breathes fire." For Damage, give it HP Damage with a Fire type, so fire resistance or vulnerability will still be checked. Then comes the matter of how much damage it will do. You could just put a flat amount of damage here, like "23," but if you tied the damage to a stat of the monster, you can reuse the same skill across many opponents. There is a useful forum thread that describes a lot of the variables you can use in writing damage formulas.

	High Defense, Uses Spells
Most monsters that can use spells have low defense, so this can catch a player off-guard. Remember though, players rely on past experience and traditions to make intelligent decisions in cases where they have no prior experience. Changing this up too often gives the player a feeling of the game world being an arbitrary place, where there is no way to know what a creature's strengths and weaknesses will be except for trial-and-error, and probably taking notes. A field mouse can have 10,000 hit points; that doesn't mean that it should.

	Low Experience, High Gold or vice versa
Instead of giving out experience points for a battle, set its award to a low number, or even 0, and give out gold in its place. It's an interesting idea, but why? Well, sometimes the player has a need for gold more than experience; by putting this kind of monster somewhere in the game world, they can choose to grind there as a way to prioritize one at the expense of the other. By the way, it's usually a good idea to keep experience points and gold awards scaled about the same: a basic monster might give out 10 experience points and 10 gold pieces; a more powerful version would scale both values up, but keep the same ratio. When one is greater than the other, it is making a subtle statement to the player about its worth as a grinding focus.

	No Defense, Uses Many Spells, High Experience
Randomness plays a big role in most JRPG combats by their nature, and attacking one of these would be like paying roulette. Maybe it'll cast something weak this turn, or maybe it'll cast a powerful spell that wipes out one or more characters. For experience points to mean something, there has to be some challenge to make them earned instead of given away. Over the course of many fights, the individual challenges, and experience, from each battle adds up to a substantial number. This kind of monster takes all that individual danger and focuses it in one fight; since the risk is great, so should be the experience given.

	Heals Monsters Randomly
This is the kind of opponent that players love to hate, but having some monsters like that helps ensure that combat remains challenging. Remember, while from a gameplay perspective a monster is just a stand-up target for a player to take down for experience and gold awards in exchange for whatever resources must be used in its defeat, from the scenario's perspective, monsters are creatures with lives of their own, with their own purposes and instinct for self-preservation within their ability. If a monster has a healing theme, then why wouldn't it heal its allies? If it is of limited intelligence then it might not have the wit to do this purposefully, but everything that acts randomly has the potential to seem like it is acting intelligently if it happens to do the right thing at the right time.

	Full Heals Self When Low On HP
This is the counterpart to the last concept, a monster that actually watches its health and replenishes it when low, much like a PC would. This kind of optimal behavior is the kind of thing that makes gameplay sense, but can really wear a player down if they end up encountering a lot of them. This increases the monster's difficulty, and thus it's probably worth more experience points than a monster that can't heal at all.

	Sometimes Causes State On Hit
Sleep spells are one thing, but here, the monster causes the state as a natural effect of attacking. To implement this in RPG Maker, you'll probably have to create a special attack type for that monster to use, with the added random possibility of inflicting that state upon use. If the state is Sleep then you've made a monster with a "knockout" attack. If the state is Poison, maybe it has a poisoned blade or a venomous bite.

	Charm Spell
One of the most feared monster abilities in TTRPGs is the one with a charm ability, temporarily turning a PC into an enemy, not only because the other players will be reluctant to kill one of their own, not only because it takes one ally out of their side fight and puts it on the other, but because PCs are among the most dangerous creatures in Generic Fantasyland. Players can invest the creation and equipping of a character with a degree of loving malice that a GM or game designer cannot afford to lavish on Monster Type #46, and so PCs are among the most dangerous foes a party can face. Keep this in mind if you give a charm ability to a monster.

	Instant Death Attack
These are the ultimate of cheap shots, a chance that a monster will just go "BOO" and a PC just falls over dead. I can't shake the feeling that they became a JRPG staple just because similar spells are in D&D. Earlier I talked about the importance of state, of a player's decisions playing a role in their current condition, and how a refresh just throws all that away. Well, instant death spells are the same: it doesn't matter how many hit or magic points a character has, the engine rolls a die, and if it comes up bad the character just perishes. I can't think of any good things about them; even if level or magic resistance provides a protection from them, it still amounts to a kind of enforced experience requirement. I would avoid this one.
In the hands of players, these spells can be a useful way to lessen enemy numbers when used against groups.

	Spell-using Monster, Weak to Opposite Element
The basic elemental-themed monster, a fire user that takes extra damage from water. But here's a question to think about: what effect upon it should ice do? Should it do extra damage, because the monster is all fiery, or should it be resistant to ice, because it's hot? Different games answer this differently. My suggestion is, is the monster an elemental in some way? Is fire a part of its nature? If so, then ice should harm it. If it's just a monster that produces fire then it should either take normal damage or resist it. But in different cases it's possible to come up with different answers. And no one says you have to stick with the old boring Greek element system. Why not use Adventure Time's, and have your elements be Fire, Candy, Ice and Slime? Or something else entirely? Aren't you tired of thinking of earth as an element anyway?

	Buffs Defense
For most standard level-building monsters, a monster that wastes a turn increasing its defense is like a free plate of experience points. For this to matter, the increase must be significant, like, half damage.

	Debuffs Party Defense
This has the same problem as the previous one, that is, unless it's a big fight, increasing the damage PCs will tank in following turns is just not going to matter. Both of these things can be useful tricks for challenge encounters or boss fights though, anything where it's expected the players won't be done in two or three turns.

	Wastes a Turn Once In A While
This is a favorite thing to happen in the Mother game, and once in a while you can spot a monster doing it in a Dragon Quest game too. Instead of taking a step to win the fight, the monster just... does nothing. Sometimes it does so in a humorous manner, sometimes it doesn't, and sometimes it does something fairly useless but that still has a minor game effect, like Guarding a turn. It's a way to make an otherwise superior foe a bit easier.

	Explodes
Oh no, if you don't defeat the monster in some number of turns, it explodes! It destroys itself, but it also inflicts heavy damage on the players unless they run it out of hit points themselves before that happens, the video game equivalent of cutting the red wire, not the blue wire. A monster should probably be worth a modest extra number of experience points, whether defeated the right way or the painful way.

	Explodes Upon Defeat
Oh no oh no, this time the monster fights normally, but explodes when it runs out of hit points! There is no way to prevent the explosion! What is a player to do?
It's simple: you run away. There is no rule that every monster has to be defeatable. It's good to make players resort to unconventional solutions sometimes. To put extra emphasis on the fact that the way to win this fight is not to play, don't give out extra experience or gold for beating it. The spoils here are meant more of a consolation prize than a way for players to advance.

	Tends to Run
The problem here isn't surviving the fight, it's beating the enemy before it runs away, taking its experience points and cash value with it. Perfect balance for this is a fight that probably can't be finished in one turn if attacks are used, but likely can if magic is cast, so high physical defense and low magic defense seems like a good idea.

	Calls For Help
Three Army Ants turns into four, or five or six, until the player manages to whittle them down. Note that, in the rules of most JRPGs, the whole enemy formation must be destroyed in order to get anything for monsters you've destroyed, so the sunk costs keep going up and up the longer the fight lasts, which is an interesting way to teach unsuspecting players about logical fallacies.

	Spends A Turn Building Power, Then Issues Devastating Attack
This is another monster that, if it doesn't have a bit of staying power, is just a snack for the players. And for this to matter at all, the attack must be at least twice as strong as the monster's normal attack.

	Commander and Subordinates
A group of monsters that works as a team. As long as a superior officer monster exists, it issues orders to attack that its squad executes. These attacks are pretty powerful. If the commander is killed, its subordinates continue to fight, but using lesser attacks, and some may even run away. This might be a bit challenging to implement in RPG Maker, but the fact that you can use the event command language in combat will be of use.

	"Croak, My Dears!"
A memorable encounter from Final Fantasy IV is the ToadLady, a mysterious woman encountered surrounded by toads. The toads individually are not strong, but periodically their mistress utters the words "Croak, my dears!", which her amphibian wards take as a signal to each cast the Toad spell on a random PC. Each cast either turns a character into a weak toad or turns a befrogged character back to normal. If all the toads are defeated, she casts Toad on herself. If she is defeated first, remaining toads do absolutely nothing.
This is an example of how a battle can suggest a larger world. What is the story of this woman and her amphibious followers? Is this some kind of cult? Are they a family? Is this just what witches do for fun in the underworld? We have no answers to any of these questions, but it's certainly a memorable encounter.

	Zeros-Out All Buffs and Debuffs
This is a popular ability to give to a final boss. It’s notable because it feels significant, has a real battle effect, and prevents the party from building itself up, but it’s often a wasted turn, and so it can be a way to decrease the difficulty of an otherwise imposing fight without it seeming like the game is pulling its punches.

The Awesome Factory

It is a plain fact: some ideas are more awesome than others. There is a reason 3rd grade notebooks tend to be full of robots and unicorns, and not accountants and frumpy dresses. The former things are fun and unconstrained by feasibility; the latter are things that are more conciliatory to painful reality.

But just being cool is not enough. To be truly awesome, there must be that twist, that thing that warps the basic idea out into a transcendent plane. You could combine two things that aren’t ordinarily connected (but not plain opposites—that’s often trite), or examine the implications of something and ground it in the real world – unicorn accountants, robots in frumpy dresses! Or, take a style of story that’s not usually applied to that thing.

If you take your key, or "high" concept, and think about its implications, you might find it’s interesting enough to come up with enough for the scenario for your game, but more likely you'll discover a memorable aspect of it.

Really here, there is no substitute here for reading. Not just game stories, but written ones, and lots of them. Adapt and convert the things you like – your players/readers will sense your energy, and you’ll be better able to see the hard work of creation through to the end. The great secret of writing has ever been that there has never been new ideas, just combinations of prior ones. Creation has always involved taking prior existing things and making something new out of them. The more things you have in your mental toolbox, the more creative you can possibly be. So, fill that box!

If you don’t know what something in one of these tables is, Google it.

Table: Cool Characters

Supposedly exciting people to meet or be. Note: For conciseness some gendered forms are used here, but should not be considered exclusionary. By "King," I mean, a royalty figure; you could use a king, queen or genderless version.

Ninja, Pirate, Monkey. There, now that we've gotten those out of the way: Star Trek Alien (appears to be wearing rubber masks and makeup), Really Alien (Space Squid and the like), Fairy (multiple options: amoral and calculating Beautiful People, mischievous Garden Dwellers, Tiny Helpers With Wings, Smurfs), King, God, Angel, Demon, Vampire, Werewolf, Anthropomorphic Personification (like the Discword’s Death), Hero, Villain, Super Hero or Villain, Monster, Soldier, Tank, Robot, Spaceship, Dragon, Zombie, Skeleton, Ghost, Slime, Goblin, Wizard, Witch, Thief, Alchemist, Animal (any really, in general or specific species, like: Cat, Dog, Bird, Tiger, Elephant, Giraffe, Horse, Zebra, Lizard, Snake, Bat, Amoeba, you get the idea), Mole Person, Golem, Plants, Unicorn, Chimera, Toy, Spy, Imaginary Friend, Galactus-style World Eater, Puppet, Abstract Creature (like, whatever the hell Pac-Man is supposed to be), Genus Loci (spirits of places), Thing Given Life (Frankenstein’s Monster), Unexpected Thing Given Life (Superintelligent Shade of the Color Blue)

Table: Mundane Characters

Supposedly boring folks to greet or flee.

Doctor, Teacher, Professor�, Clerk, Taxi or Rideshare Driver, Scientist, Hotel Staff, Tax Person, Baker or Cook, Waitstaff, Pilot, Steward, Butler or Valet, Stockbroker, Grocer, Farmer, Knitter, Programmer, Cashier, Janitor, Fisherman, Sailor, Fire Fighter, Police, Poor Person, Rich Person, Politician, Travel Agent (remember Grim Fandango!), Computer, Miner, Construction Worker, Author or other Writer, Reporter or Journalist

Table: Modifiers

Fill something from a character table in the blank.

Character is secretly a ___.

Character is prominently a ___.

Character desperately wants to be a ___.

Character dearly wants not to be a ___ anymore.

Character is half ___, half normal.

Character is very very slightly a ___, but it’s enough that it matters.

Character is the best ___ in the world.

Character is the last of the ___s.

Character is the first ___ to ever exist.

Character is the first ___ in ten/a hundred/a thousand years.

Character is leader of the ___s.

Character who can turn others into ___s.

Character can make others not a ___ any more.

Character is a defender of the ___s.

Character is the mortal enemy of the ___s.

Table: Things

Mysterious and interesting objects to build part of a story around.

Electricity, Steam Engine, Music (any genre), Game Show, Book, Movie, Balloon, Machine, Agony Booth, Orgasmatron, Taser, Gun, Game (Board, Card, Video, Computer), Illness, Poison, Sword, Wand, Shield, Armor, Axe, Coin, Chest, Box, Bottle, Tablet, Helmet, Mirror,

Table: Story Styles

Themes and flavorings, for the whole game or just one town.

Western, Picaresque, Adventure, Classical Epic (ala The Odyssey), Comedy (standard, Situation, Romantic, Of Errors, Black), Fantasy Epic (ala Tolkien), Mystery, Space Opera (need not be in space—this is basically a Picaresque on a mission), Gothic Horror, Cosmic Horror (ala Lovecraft), Steampunk (any a tale of Adventure with an ironic technological twist), Opera, Reality Show, Referential (like MST3K, in some way – you’ll have your work cut out for you on this one)

Table: Places (large scale)

Big places to poke around.

Town, City, Field, Forest, Hill, Mountain, Valley, Lake, River, Cave, Mine, Tomb, Ruins

Table: Places (room or building)

Smaller locations to rummage through.

Library, Sports Bullpen, Stadium, Arena, Courtroom, Computer Lab, Tavern, Ship, Cruise Ship, Blimp, Shopping Mall, Department Store, Bodega, Family Home, Single’s Pad, a Factory, Training Camp, Warehouse, School (elementary, middle, high, vocational, college, university or other), Museum, Castle, Treehouse (kid-style or Ewok)

Table: Settings

Worlds to adventure in, usable either singly or in plural.

An Underground World, a Tropical Island or Archipelago (like Startropics), a Floating Island, a Lost City, the Jungle, Post-Apocalyptic, the Wild West, a Media Production Office (Comedy Writer’s Room, a Newsroom, a Radio Station, etc.), a City (modern, industrial, medieval, future, space, magical), a Small Town, a Village (modern or tribal), a Historical Age, an Alternate History, Outer Space, Another Planet, Another Dimension, a Metaspace (like a dimension but with a weird relationship to something in our dimension, like Terry Pratchett’s L-Space, or the Platonic Sphere of Ideals), a Metaworld (like Pixar’s Cars), an imagined setting with an unseen underlying reality (think Craig of the Creek’s Creek, the kids see it as having a reality different from the factual), a single example of something from the Places table

Table: Adjectives

A list of modifiers you can apply to characters. To make a memorable character, think about what it would mean to take one of these qualities to extremes, or to be like that in secret, or to aspire to be that, or to be absolutely the opposite of it.

Proud, Modest, Greedy, Energetic, Violent, Pedantic, Studious, Trusting, Unintelligent, Disgusting, Disgusted, Pathetic, Emotionless, Incredulous, Hungry, Clumsy, Empathetic, Unheeding, Ingratiating, Happy, Morose, Mad at injustice, Mad at everything, Purple

The Plots of Popular CRPGs and JRPGs, Summarized

The stories, and in some cases gameplay, of a large number of prior JRPGs is explained here, in capsule. The following obviously contains heavy spoilers. We mostly cover classic games here.

Dragon Quest (aka Dragon Warrior)

T��he evil Dragonlord is trying to conquer the world with his armies of monsters. The King of Alefgard, safe in his castle of Tantegel, asks you, descendant of the legendary hero Erdrick (Loto in Japanese versions), to take him down. Along the way, if you’d be so kind as to rescue his daughter, who is held captive in a cave along the way? On your quest you must find Erdrick’s Token, a symbol that identifies you as Erdrick’s Heir, allowing you to be granted the Stones of Sunlight, the Staff of Rain and the Silver Harp. Also along the way you must accumulate other items that belonged to Erdrick, as well as generally gain in experience and power, for only then can you possibly be able to challenge the Dragonlord in his lair, Carrock Castle. Once done, you obtain the Ball of Light, which instantly destroys all the monsters, lets you walk back home in safety, and watch the ending.

Most of the story comes down to "Hey you, go get these things!" but interestingly, you don’t actually have to rescue the princess. The item she gives you, Gwalin’s Love, aids you in tracking down the space that Erdrick’s Token hides on, but it’ll be there whether you rescue her or not. The ending changes slightly to compensate. You could also defeat the Dragonlord and rescue her on the way back home, which will leave her cell unguarded. The ending will also compensate for the fact that Gwalin is already in your arms, instead of standing in the throne room.

Dragon Quest II (aka Dragon Warrior II)

You’re the descendant of the hero and Gwalin from the first game, and once again a monster is trying to conquer the world. This time you eventually lead a party of three characters, and all of you are descendants of the heroes of old, and royalty in your own kingdoms. The Prince must be found roaming the world, and the Princess has been turned into a dog! Once located and cured, respectively, you have a longer and less linear quest to accomplish. Eventually you happen upon Alefgard again, but the world is much bigger than the confines of the first game, and eventually you end up traveling by ship to explore it all. Dungeons are also a much bigger part of this game; the original game had the occasional small cave, but here they’re sprawling, and consume a substantial portion of your exploration time.

Dragon Quest III (aka Dragon Warrior III)

The game begins on your character’s 18th birthday; you’ve been called to the King’s castle to hear about your father, Ortega, who left to fight evil years ago but never returned. No one says a word about Erdrick this time, for some reason. You’re told that the Archfiend Baramos threatens the world, but most people haven’t heard about him yet. Instead of seeking out your teammates, you actually create them! You give each a name, sex and class, the game rolls up their stats, and you construct your party in this way. (Or alternatively, you could go with three pre-made characters who are waiting for you.)

As you play, it eventually becomes clear that the game world is not the same as that of Dragon Quest II. Alefgard and the other places from DQI and II are nowhere to be found. The game world actually resembles a version of the Earth in fact, with various kingdoms roughly matching those of our world in about the places where they would be. After the first third of the quest, you’re basically left to explore the world on your own, with major plot legs that can be done in multiple orders. Eventually you confront and defeat Baramos, and after returning home to celebrate the festivities are interrupted by a mysterious evil voice, that of the Archfiend Zoma. (What is the origin of the title Archfiend? I guess it just sounds more impressive than Bad Guy.) You fall down the same giant hole your father did and end up in a dark underworld—which turns out to be Alefgard, the world from DQs I and II, which has been cast into eternal night by Zoma. (That is to say, there no day/night cycle down here.) Zoma would never have gotten the heroes after him if he hadn’t gloated like that! Anyway, you can’t explore the expanded world of DQ II, just the areas from the first game, which unlike DQ II is presented in around the same detail it was in the original game.

You have to find roughly the same items you did in DQ1 to access Charrock Castle, which is rather bigger than it was in the original game. There you find your father!--who falls in battle with a boss monster right before you arrive. D’oh! Why couldn’t you have gotten here five minutes earlier? Ortega perishes before even finding out you’re his freaking kid! Low move, Yuji Horii!

Anyway, after beating up some bosses you kill Zoma and get his Ball of Light, which turns the eternal night into eternal day—ah, so that’s why it was never night-time in the first two games. It wasn’t story compression, it was just never night there! The hole to the world above seals up for some reason, and the Return spell no longer works for above-world locations; you’re trapped in Alefgard forever. (Unless you’re playing one of the remakes, which has a lengthy post-game that lets you go back.)

But wait just a second! It was never night in Alefgard all through DQI and II?! What about all those inns who say things like "good night?" The Water Flying Cloth maker who tells you to come back the next day! All I’m saying is, it don’t add up, but it’s still a hilarious idea.

Dragon Quest IV (aka Dragon Warrior IV)

The last of the Famicom/NES Dragon Quests, and the first game in the series to have nothing to do with all that Erdrick/Loto business. Divided into chapters, each following different characters, most of the play feels like multiple short games that a single long one, which is also true of Live-A-Live and Mother 3.

The ultimate goal of these chapters is to train up your characters, who belong of wildly varying classes including among them a princess and her two retainers out on a jaunt, a merchant trying to establish a shop, and a pair of sisters trying to bring justice to their dead father. Eventually the game comes to settle on a young refugee from a destroyed village, who then tours the world collecting the characters from the other quests. In the end the plot focuses on Psaro a generally kind-hearted demon guy who finds the inner strength to put aside that niceness to despise himself some humans. If he hated them before, he really hates them after random rampaging humans kill his love interest, Rose the Elf. Thanks a heap, guys.

This was the time when a bunch of Japanese games were fascinated with evolution, although almost always in forms that Charles Darwin would never recognize. A whole bunch of JRPGs took it as their theme, and so it is in DQIV, where Psaro discovers the Secret of Evolution, and uses it to turn into a huge ugly monster. Hey, don’t lie! You’d do it too!

Dragon Quest V

The series took a major step towards narrative complexity here, in the first SNES installment. Here, you begin the game as the child of a strong warrior, and you actually play out a few legs of the game as a child. Then, at the end of one adventure, your father is killed and your character is pressed into slavery. There’s a time skip and you grow up, then escape with another slave and resume the game.

Later on, you meet multiple women (one exclusive to remakes) and can pick one to ask to marry. Soon you have kids, but then you’re assailed by enemies and you and your wife are turned to stone. After a while the curse is removed from your character, and by the time you return home your kids have grown somewhat. Your kids are particularly important because, in this game, you are not the Legendary Hero who will save the world, and you cannot use the heroic Zenithian equipment. But your son is, and the final battle has you, your son and daughter teaming up to beat the bad guy.

Dragon Quest VI

This one’s kind of a mind trip, another two-world situation such as in Link to the Past. The group starts fighting an evil monster in the Dream World, but over time must extensively explore both worlds. It’s another prequel game, like DQIII, where it turns out the prior two games happen after this one chronologically. I can’t comment too much on this one, unfortunately.

Dragon Quest VII

The Dragon Quest game released originally on PlayStation, at the start the player is a youth living in a small village on an island that is the only landmass in the world. Huh. Not a lot do then, I guess? Short game! Moving on…

Wait a moment. The party finds a shrine with a number of pedestals in it. By collecting stone fragments and placing them on a pedestal, the group can travel in time to a continent that existed in the world’s past. Finishing the quests there allows the party to return to the present day, where, lo and behold, the continent now suddenly exists in a present-day version that you can travel to.

In this way, as the group continues adventuring, the world map gains more landmasses that can be reached. Eventually the bad guy shows up and seals some of them away again, including your home, but by reviving spirits that can be found in the world now, the group can find his castle, clean his demonic clock, and make the world complete once more.

Dragon Quest VIII

This one was the first game in the series to be named Dragon Quest in the US as well, and was made for the PlayStation 2. It was quite popular in the US, for a change. Its excellent graphics and animation were a great step up.

You start out with a party of three characters, but are accompanied by a short green creature who drives a horse-drawn wagon. The creature is actually a king but transformed, and the horse is his daughter likewise cursed, the people of their kingdom turned to statues; the group quests to defeat the evil creature that caused it, who used to be the king’s jester. After some subquests and making some friends, the party manages to defeat the evil being, only to find that he had been possessed by an evil spirit, who for a moment takes control of one of your party members before lodging in a dog for some time.

The spirit seeks the destruction of the decedents of seven wise men who sealed it away. It is successful in this aim, and is resurrected in body, and raises a dark fortress, ultimately merging with it and releasing further monsters to harass the world until the party puts it down, finally breaking the curse. (There is more, of course, but we’re just giving you the basic shapes and premises of these stories here.)

Dragon Quest IX

IX marked a number of changes in the series, first released on the Nintendo DS portable console, and the first mainline game to have monsters by visible on the world map instead of suddenly attacking randomly.

The player is a Celestrian, kind of like angels that live in an above-world watching over the people below, but early on falls to earth and appears like a human to the people there. The Celestrians have as their task the guarding or the world tree (a recurring element in the Dragon Quest series). On earth, the play encounters Stella, a faerie who pilots the Starlight Express, a train that can travel to the upper world. It can be repaired by collecting the good will of the people of the earth, called here "benevolessence," which, I note, is a fairly direct way to turn the completion of subquests into story progression. Once that is done, the player discovers that the fruit of the world tree, "fyggs," has fallen to earth too, and they now must go collect them; when eaten by a mortal they grant wishes, but usually the power involved turns the mortal into a monster that you must defeat. That kind of thing happens in fantasy worlds like every Tuesday.

Once those have been collected, surprise! Some of the Celestrians turn out to be opposed against you! Extra surprise! Celestrians are incapable of harming their superiors, which almost causes your character to kick the celestial bucket. But in the end they manage to overcome this limitation by eating one of the fyggs themselves and becoming mortal. Which, like, good job, I think?

Final Fantasy

Four heroes, the prosaically-named Light Warriors, show up. Where did they come from? Don’t ask questions. It’s a good thing they showed up though, because the King of Cornelia needs someone to go rescue his daughter from the eeeevil Garland, who’s holed up in the Temple of Fiends. But it turns out Garland’s treachery is only the beginning of the world’s problems, because the ORBs (always named in all-caps within the game) are losing their light, which is causing the earth to, well, go bad? Not grow things? Stink generally? Look, things are getting yucky and only restoring the ORBs will fix them. Get cracking.

Each ORB’s problem turns out to be due to the influence of a FIEND (again, all-caps). Beat up the fiend and the ORB glows again. Throughout the game you fight pirates, help a witch, beat a dark elf, find a fairy in a bottle, find stuff that lets you breathe underwater and get an airship. You might also class change to more powerful forms, but you don’t really have to do that.

In the end, it turns out Garland was the source of all the trouble again, but through a time gate to 1,000 years in the past! You beat him, now really powerful and called Chaos, but in the process create a paradox or something? The ending is unclear on that. Still, you beat the game, so good job.

Final Fantasy II

The first Final Fantasy to focus on fighting an evil empire (a concept that would return in FF VI and IX), and the first one to, in a series tradition, throw the game system up in the air and create a new system out of the broken parts that fell to the ground. Often that works out well, but for this one it’s generally thought not to have gone all that well. But that’s not our focus here.

The first game, despite its popularity, was pretty much just a series of disconnected episodes. Also in contrast with the first game, the various story legs of this one are a lot more soap operatic. There are three characters of your party that stick around the whole time, and a fourth party slot that changes as the story continues.

Final Fantasy II sets the overall stakes from the beginning, where the Empire attacks the heroes’ town right at the start. The Empire here is pretty much irredeemably evil, and summons monsters from hell to fight for it. There are four heroes, but one of them is lost when the others are rescued. Hmm, I wonder if that other hero will turn up later working for the other side… The other members soon join up with the rebellion that rescued them, and all together they go about doing the standard RPG itinerary of quest legs, involving getting then losing an airship, then getting a wyvern to ride, recruiting allies, facing superweapons, getting et by a sea monster, and rescuing the captured rebellion leader. Along the way they oppose a character called the Dark Knight, whose face is obscured by his helmet. In one episode however one of your party members recognizes his voice from somewhere. Gasp! Shock! Could it be…?! Hey, it was the second game, cut them some slack.

Eventually they manage to fly within the killer storm where the Emperor’s fortress is and beat the snot out of him. A job well done, right? Well no, the Dark Night turns out to have been Leon all the time what a surprise, and he declares himself the new Emperor. But before he can get around to attacking anyone, the old Emperor returns from hell, more powerful than ever, and Leon sacrifices himself to let the others escape.

Now the Emperor doesn’t just want to rule the world but destroy it. Fortunately the party it strong enough to beat up this more powerful form too, just going to show that sometimes even coming back from the dead out of sheer force of will just ain’t enough to do it. Leon survives, but leaves, sad about the whole fight-against-his-friends thing, as well he should be I’d imagine.

Final Fantasy III

After the second game’s somewhat broken systems, FFIII returned to a level- and class-based system. In fact, they returned extra-polished, as III was the introduction of the famous Job System, where characters can change classes and build up in multiple ways.

If I might take a moment, as an aside….

Class change systems are something that’s been in RPGs since D&D, where human characters could "dual class," abandoning their old class to begin again from level one in a new one. Ever since then CRPGs and JRPGs have played around with what it would mean for a character to arrive at a point in their live where they say to themselves, "I’m unhappy with wearing armor and hitting things with sharp metal for a living. I want to cast fireballs!" Wizardry may have been the first CRPG to allow changing class, and in fact two of its classes were impossible to start with from the character creation screen. Final Fantasy II didn’t have classes, but a level-less system where what a character does in battle, and what it suffers through, determine how it grows. (While sometimes derided, it was really very forward-thinking, though a bit buggy.) Dragon Quest III had outright class change, but a special item had to be found to allow for it (except for the "Goof-Off" class, where immediate class change was your reward for putting up with a nearly useless character the whole game up to that point).

The key thing about class change is that while the character begins from square one in the new class, some elements of its past history persist into the new one, like having higher stats, hit points and even keeping their old spells. Unlike other games, the ideas of character level and class level are separate; a character who starts over in a new job keeps their character level, and also remembers their old job level as well in case they decide to return to it.

It might be considered that III is the first "modern" Final Fantasy, not just because of the Job System, but because many jobs get their start in this game, such as Summoners. Like the second game there’s a more involved story, and party members join and leave of their own accord, although these characters don’t particulate in battle; all fighting is done with your initial four, highly-customizable characters.

Right at the start, one of the Crystals (they’re back) charges one of your characters with restoring balance to the world. Through the first part of the game, where you’re trying to break the curse on a town, you’re building your group up to the four characters who will be with you the whole game. They start as "freelancers," a basic default class, but soon gain the ability to switch to a number of other basic classes. Throughout the game, as they find more of the elemental Crystals, they gain more possible Jobs, increasing the range of the party, but also requiring more focus by the player to build an effective group.

As the party adventures they eventually learn that the world they are on is actually a floating continent hovering in the sky above another world, and they themselves were found in a wrecked airship from that world when they were young. Eventually the party gets their own airship and leaves to discover the world below, which has only a couple of areas accessible at first. Over time they manage to increase the area they can explore. It turns out there are three sages which were each given a gift by their teacher: one, magic power; the second, power over the world of dreams; and the third, mortality! Hyuck hyuck, he gets to die! Understandably, he’s pretty pissed off, and begins to cause problems.

He’s not the ultimate source of evil though, that would be a (literally) nebulous entity called the Cloud of Darkness, but the party kills it in the end anyway. And that is that.

Final Fantasy IV (aka II in the US)

The first SNES Final Fantasy of three, all of which are among the classics of the form. Final Fantasy IV’s story is even more meandering and soap operatic than previous games though, I mean it goes all over the place. This is just a brief summary. FFIV is notable for having a huge and changing cast of characters. Your characters can’t change jobs, but people join up and leave all the time according to the whims of the story, meaning the abilities of your party is constantly changing. Of particular interest is the fact that your party can go up to five characters. It’s also the game to introduce the "Active Time Battle" system to the series, adding a bit of real-time excitement to the turn-based combat mode, and improved scripting to enemies, including bosses, who can adopt special tactics based on the players’ actions.

In a neat inversion of the Dark Knight’s role in Final Fantasy II, The king of Baron sends his strongest fighter, Cecil the Dark Knight (your first party member) to capture the crystal from the people of Mysidia. Cecil doesn’t feel well about having to brutally suppress peaceful people; it’s even worse when, along with his friend Kain, he’s sent north to a peaceful village with a package for them, which turns out to be a bomb that destroys their town. From the flames he rescues a young girl, and from there, a truly convoluted story begins.

Lots of characters seem to die but come back. One actually does die. Your friend Kain betrays you, and makes up for it, fully twice. By the end you’ve been given the keys to two airships, a hovercraft and a spaceship, and get to explore three full worlds. The story is largely linear throughout, but there’s a few secret side bits to explore if you watch out for them, such as obtaining extra summons and the secret "Spoon" weapon, which can be thrown by a ninja character for gigantic damage but can only be used once.

Ultimately you find out both the King of Baron and Kain have been controlled by the eeevil Golbez. But then it turns out Golbez is your brother, and he’s been manipulated by the even more eeevil Zemus, who is a Lunarian, from a second moon that’s in the sky. Eventually you have to go to the moon yourself and stop that evil at its source. Those few sentences hide an astounding amount of game.

Final Fantasy V

Featuring the return of the Job System! Bartz, a loner type, is traveling the world, but gets sucked into an affair involving kingdoms pirates, an alternate world, and a seriously evil tree.

A word about that Job System. It’s been upgraded since its appearance in III. There’s more jobs to choose from now, and you can change at any time outside of battle. "Mastering" a job, getting it up to its maximum level, lets you keep some of its attributes even when using a different job. The game leans on its jobs, too; the difficulty is pretty high, and you can’t just throw any old party together and have a reasonable chance of survival. On the other hand, properly mastered, you can complete the game at surprisingly low levels; the record is level 6.

Long ago an evil wizard bound his soul to a tree, and now you and your group of four characters, Bartz the wanderer, Lenna the princess, Faris the pirate who turns out to also be a princess, and Galuf the old man who is replaced, with no difference to levels or jobs, with his daughter Krile partway through, must defeat the eeevil, although rather boringly-named, Exdeath, the afore-mentioned tree, who is actually an ancient sorcerer trying to escape from being sealed away. Those old wizards, always sealing dangerous people and monsters away instead of just killing them. It’s always like they want their hated enemy to come back stronger than ever in the midst of a world that has known thousands of years of peace in its absence. It is the power of the crystals that have kept Exdeath imprisoned, but now nations are using machines to extract power from them, and as they weaken Exdeath becomes restless and begins his (its?) escape. Does Exdeath finally manage to break out and have its fearsome final form be directly destroyed in battle with your characters? Hmm… could be!

Final Fantasy VI (aka III in the US)

The last of the SNES Final Fantasy games, and the best story in the series up to this point. Earlier Final Fantasy games, while great, have a quality where the story feels like things just sort of happen quasi-randomly, like the events were decided first then the story bent into their shape. In VI, it’s a lot more like the story came first. There is no Job System, but except for the beginning of the game and a few sections you have control over which party members travel at a time, which, with the game’s large cast, feels kine of similar; instead of making one of your few main characters take the Thief class, you just bring along Locke, who is a thief. The Esper system allows you to customize those characters even further, giving almost anyone stat increases and magic spells if you want them to have them.

What begins with a mission to a lonely mountain town turns into a world-spanning adventure of rebels against another evil Empire, like in Final Fantasy II, although this time there are some good folk on their side. The world isn’t generally medieval with brief glimpses of ancient tech; civilization has progressed to a steampunk-like level of technology, which is being enhanced by the rediscovery of magic, the nature of which isn’t presented as a matter of course this time. Ancient creatures called Espers, tools and survivors of a long-forgotten magical war, are being harnessed and drained by the Empire and used in their bid to conquer the world.

Final Fantasy VI is much more ambitious, both in storytelling and gameplay, than previous games. In one place the party splits in three, and you can complete the following sections in any order. There’s multi-party battle sequences that play out like a strategy game. The final dungeon has you making three parties out of your assembled characters, and has you solve multi-party puzzles; the final boss has you make a super-party out of everyone you’ve found, who face the multi-stage final boss in the order you choose.

In terms of story, there is a sense of sadness to it, fueled in part by the melancholy field music. One gets the sense the Empire was formed with good intentions, but that the emperor was tempted towards gaining power in some pretty cruel ways. In FFII, the Emperor is pretty much all bad; the one in FFIV has some good people working for him, including General Celes (who joins your group) and Leo (who meets a tragic end). But he’s also got Kefka.

Kefka is one of the greatest villains in all of JRPGdom. Not just evil but also a little insane, not just ruthless but also a bit petty, not just scary but also oftentimes very funny. He’s memeable. And at the point where earlier Final Fantasy games would be tying things up for the ending, Final Fantasy VI is just reaching the halfway mark, because at the Floating Continent where the magic goddesses are going to be revived, Kefka betrays the Emperor and grabs ultimate cosmic power for himself, and basically destroys the world, which is a shocking event after all the previous games let you prevent the threatened world-destroying cataclysm. Final Fantasy VI lets it happen, and the game is only half over.

After the World of Balance is replaced by the World of Ruin, things are real different, not just in story but in gameplay. You’re again back down to one character, and have to rebuild your party from scratch. All your old friends are still out there (except perhaps Shadow….) and the game takes a non-linear turn as you gather them up. You’re no longer strung along artificially by whatever transportation is available and what areas you’re allowed to enter; once you get the airship, you can go right to the final dungeon if you like, but you’d be going with a small party, and furthermore missing out on a whole lot of game.

Final Fantasy VII

This list is getting long as it is, so I’m going to stop the detailed descriptions, a shortened as they are, with FFVII, which marked a turning point in the popularity of the series in overseas markets. The first Final Fantasy for the PlayStation, and the first with polygonal graphics (although most backgrounds were rendered stills), FFVII remains one of the most a fondly remembered installments in the series.

Final Fantasy VII continues the series’ progression to technological themes, taking the light steampunk of VI and ramping it up into an entire floating city, Midgar, one of the great locations in JRPGs. It is also the first game in the series to trade kings and emperors for corporations and modern trappings, with its evil Shinra Corporation, basically an evil power utility, in control of the whole city. Midgar is huge enough and full of enough content to fuel a whole game, but then you manage to escape it, and you’re not even finished with the first of three discs yet.

Your group AVALANCHE (one of those belabored acronyms) amounts to a radical ecological organization, fighting for the future of the planet. If you want to draw parallels with the current-day situation I won’t stop you. Main character Cloud used to work for Shinra but had a change of heart (although it turns out its claws aren’t yet entirely removed from their hapless ex-employee). It is possible to dislike Cloud a lot (he’s not my personal favorite either) for really piling on the anime tropes, but you have to admit, the guy got dealt a bad hand.

The shape of the game follows AVALANCHE in their quest to stop Shinra from using Mako energy, which it turns out comes directly from the planet’s lifestream, leeching it out of the body of energy from which souls come from and return to, which is pretty despicable. The Esper system of FFVI is changed up a bit and becomes the Materia system; now instead of just holding one stat-and-magic-granting bauble at a time, you can have several, as determined by the number of slots on your weapon. Each Materia itself grows as it is used, and divides in two when it’s powered all the way up.

Anyway, the story. Cloud and company are soon joined by Aeris, who it turns out is the last remaining Cetra, a race of magic people which close ties to the planet. Working for Shinra is Sephiroth, an eeevil guy who it turns out is both controlling Cloud’s mind for the first portion of the game, and is also the offspring of Jenova, an extraterrestrial entity. Ultimately Sephiroth sides with Jenova, which is being kept harnessed by Shinra. Oh, he also kills Aeris, and it’s one of those permanent deaths that can only happen in cutscenes, never in battle. From there it’s up to the remaining members of AVALANCHE (and Cloud, who’s now only controlled by the player like a good protagonist should be) to stop Sephiroth from destroying the planet through the casting of Final Fantasy’s ultra-strong super-spell Meteor.

Some others….

There’s a ton of JRPGs out there, and there’s no way I can cover them all. Here’s a few sentences devoted to many other games that might be worth investigating when looking for inspiration for your own projects:

Final Fantasy Legend series, aka SaGa

It could be argued that the weird character advancement ideas of Final Fantasy II didn’t die out, but just transferred over to Square’s SaGa games, which are weird and wonderful and difficult and obtuse. SaGa games tend to be a lot more open-ended and gameplay-focused than their hugely popular counterparts. If you’re looking for cool mechanics and fun and exploitable systems to build into your masterpiece, you really need to check these out.

Live-A-Live

Another great gameplay experiment from Square at this time, Live-A-Live feels a lot like a collection of JRPG short stories more than a single game. A few are arguably failed experiments, but a few of them are terrific concepts that absolutely need someone else to take inspiration from and make a game informed by them. The best of the bunch, according to noted gameplay scholar, design authority and all-around terrific person me, are the Prehistoric section (which is funny, although a bit immature sometimes) where there’s no money and you have to barter for equipment, the Chinese segment where you train a student in your school of martial arts, the great Feudal Japan section, which offers an amazing wealth of play decisions to make, and the Western section, which has only two battles, but the difficulty of the second one depends on a timed exploration section right before it, and how you direct townsfolk to lay out traps.

Chrono Trigger

.Of all of Square’s many non-FF 16-bit JRPG gameplay experiments, among them Seiken Densetsu 2 and 3 (2 better known in the US as Secret of Mana), Romancing SaGa games, Treasure of the Rudras, Bahamut Lagoon and Live-A-Live, this is the one with legs, the one everyone remembers the most, and one of the greatest of all JRPGs. Crono is a teen living in Guardia Kingdom, Lucca is his best friend and a scientist, and Marle is the princess of the land. The three are in for a wild adventure when Lucca’s experimental teleporter unexpectedly sends Marle back in time. But that turns out to be fortunate, for in the distant past a Lovecraftian world-parasite called Lavos came to their world and burrowed deep within. It’s due to emerge 1,000 years in the future, and only by traveling back in forth, gaining friends and knowledge of the threat the awaits them, in time does their world stand a chance of survival. Lavos is another of the great villains of JRPG gaming, not a person at all but an utterly alien god-organism. It’s also the game that established the concept of a "New Game+," letting you replay the game’s story with the levels and equipment gained on a previous play, and it has over a dozen alternate endings to discover on subsequent plays. Even the combat system is great, an evolution of the Active Time Battle system of the Final Fantasy series. There’s a remake for the Nintendo DS that’s worth searching out.

Chrono Cross

Chrono Trigger got a weird visual novel sequel called Radical Dreamers that was only released for the Satellaview data service in Japan. Eventually its core concept was elaborated upon and greatly expanded into this Playstation-era sequel to Chrono Trigger. Not a bad game at all, it mostly suffers from the PS1’s horrible load times and from being in the shadow of the former game. Chrono Trigger’s gimmick was time travel; Chrono Cross’s is travel back and forth between parallel universes, one where Lavos was destroyed and one where it wasn’t. It also has New Game+ and alternate endings, but the really weird thing here is there is a secret special trick to perform to get the true ending to the game, which is kind of a jerk move on the creators’ part, especially since the special trick involves beating the final boss in a convoluted way. Still, this is definitely worth playing… just be ready to consult a walkthrough after you "finish" it the first time.

Secret of Mana

Another play experiment from Square, this time an action-RPG supporting up to three players with a multitap. It sold well enough for Square in the US that they made an in-spirit sequel, Secret of Evermore, through a US branch; it isn’t a bad game, but most consider Secret of Mana is superior. It’s another kids-with-magic-powers-save-the-world game, although one of the kids is a sprite. It’s got a light and whimsical air, and beautiful, delicately-shaded graphics that push the limits of the SNES console. It’s just fun to spend time in that world for a bit. In Japan it’s series is called Seiken Densetsu; there’s a third game in the series that came out on SNES that only playable in English through a popular fan translation until recently, with the recent release of Collection of Mana on Nintendo Switch.

Lufia and the Fortress of Doom/Estopolis

The Lufia series is one of those things that coulda-been. With a bit more developmental support from publisher Taito they coulda-been great, a series with a legacy on par with Final Fantasy, but alas after the first two games it fell into obscurity. It did get a couple of later sequels, but neither really measures up to the promise of the SNES originals.

Lufia and the Fortress of Doom is one of those games where the title is something of a giveaway. Titular doom fortress is obviously important to the game; the game begins there, with the player in control of a party of four adventurers out to beat a set of mad, evil gods, the Sinistrals, before they destroy the world. They do so because they’re vastly overpowered (this is a start-of-game tutorial section, after all); then it’s revealed that the opening bit is history, and happened a hundred years ago, and two of the four do not survive the destruction of the fortress afterward. In the present day you play a descendant of one of the original heroes, who as a kid meets a strange girl in his home village who’s name is Lufia. If her true identity doesn’t turn out to be important by the end of the game then you must be new around here. And yet, it’s still handled well, if just because the game is written with a lightness and wit uncommon to the form, and the game world is full of wonderful touches, like the water fairy who, for no good reason, appears on a black screen to wish you farewell when you save and quit the game, and the brilliant creation of Forfeit Island, a place in the world in which everything you’ve ever sold or discarded is mysteriously offered for sale. It’s a shame that the gameplay is super grindy, harkening back to the encounter rates and difficulty of games like Dragon Quest II. It’s worth putting up with to experience the story though; it truly is one of those games where the story makes up for the gameplay.

Lufia II: Rise of the Sinistrals/Estopolis II

Taking lessons from the failings of the first game, the second game fixes its gameplay issues, and more! One of the best JRPGs on the SNES, Lufia II was one of the first JRPGs to abandon random encounters in favor of visible enemies on the field screen. Additionally the player gains tools throughout the game that can be used on the field screen in a manner akin to Link’s equipment in the Legend of Zelda games, and these tool are used in the solving of many puzzles in the game’s dungeons, some of which quite challenging. Basically, every problem with Lufia I was fixed, and the gameplay itself made a lot more interesting, while having a story with the same level of writing as the first. You can even raise "capsule monsters" during the game in a manner akin to Pokemon!

The story is that of the heroes from the prologue of the first game, the ones who you played in its tutorial, and the journey that led up to that moment. Because of that, you know from the start that the two main characters are doomed ("DOOOOMED!"), but the tale of their dooming is still surprisingly fun and sometimes humorous, even if its end is sad. That kind of juxtaposition, that’s the kind of thing that makes a story great.

Earthbound Beginnings/Mother

An English translation of a popular Japanese game infamously canceled by Nintendo, after promoting it, due to the changeover from the NES to the SNES, the first game in the Mother series is kind of a relic today, with the punishing frequent random encounters and resource-depleting fights common to the genre in the early days. It’s still a unique and well-written story though, following a kid with psychic powers, yet still feels like a kid, unlike the cliché of the anime teen protagonist who’s the strongest fighter in the world, and also maybe a high-ranking military officer, despite the fact that the manual claims they’re 15 years old. While he goes around doing things no kid would honestly do, young Ninten and his friends still feel like children, and matters a lot to the feel of this clever and ultimately very affecting game. It was finally released by Nintendo in the US on the Wii-U Virtual Console, and it is very much worth getting if you were one of the roughly 28 people who bought one.

Earthbound/Mother 2

The US missed out on Mother, but we did get Earthbound, which was regarded as a sleeper at the time, well loved by those who played it then but ignored by the general gaming public. Over the years and decades since then its stature has grown tall, its shadow long, and now it can be seen as an incredibly important piece of gaming history. A lot of this is due to its hyper-devoted fanbase, who keep the game’s memory alive to this day. Famously, toby fox, creator of the massive JRPG-styled hit Undertale, cut his design teeth making Earthbound romhack games, and its breakout song Megalovania was originally featured in one of those hacks.

It is impossible to list all of Earthbound’s story and gameplay innovations in a short paragraph. It almost feels like an artifact from another world, where JRPG conventions both lagged behind ours, but also developed along different and exciting lines. There’s so much stuff here. It’s astounding. From the odometer-style hit point counters which give players a real-time grace period if a character falls in battle, to the well-realized visible encounter system, which is still among the best version of the idea yet developed, to how, if you severely outclass an enemy in stats, then instead of fighting a foe, on contact the game just goes WHAP--"YOU WIN!", and even awards you all the experience and items you’d have gotten from the fight. There’s so much more there too: a character can order a pizza at a telephone, then go into the woods or a cave, and the pizza guy will find you in the field some time later and deliver the pizza, even pathfinding from the edge of the screen to your location—amazing attention to detail! The game was actually partly implemented by the late, beloved Satoru Iwata himself, then a programmer at HAL Laboratory, later the freaking President of Nintendo!

And on top of all this, it has the single best JRPG storyline I have ever seen. Written by Shigesato Itoi, a famous Japanese copywriter (copywriting is the kind of thing you can get famous for over there), if anyone were to ask me to give them a game to play to prove the deserving-ness of existence of the whole dang JRPG genre, this would be the one.

It’s not perfect of course—nothing is. But it’s as close to it as you will ever find. It’s a huge influence on a small yet prominent category of games that includes Contact on Nintendo DS and, yes, Undertale itself. You know, you really should play it. You say you have? Then shouldn’t you be playing it again?

Mother 3

Mother 3’s sales must have been something of a disappointment after the popularity of the first and second games, which is a tremendous shame because its story and gameplay is still top notch. Released on the Gameboy Advance after the failure of the system, the 64DD, it was originally planned for, in retrospect it’s probably for the best that it saw light on a system of comparable specs to the SNES, since the game looks exactly like it could have been made for that system.

Mother 3’s story is a bit darker than Earthbound/Mother 2’s, and even ends its first chapter with the death of one important character and the disappearance of another, but it’s still hilarious and fun, the tragedy leavening the light-hearted happenings in that the way the soul comes to appreciate more and more with the passage of years. The fate of humanity is to die, and the Mother games know this and don’t let you forget it, but they also say, effectively, "Cheer up. You don’t have forever. But while you’re here, it is possible to be happy." It’s right in that. We, as in, the people in this world, we desperately need more games like Mothers 2 and 3. Maybe you will make one of them.

Phantasy Star

Hopping over the fence to the Sega side, the Mega Drive/Genesis didn’t get as many JRPGs as the Super Famicom/SNES did. It did get surprisingly great adaptations of the Western classic CRPGs Might & Magic II and King’s Bounty; you don’t often see CRPGs of the time translated to consoles that well. The Mega Drive also got the Lunar games, which are only not included here because of time constraints, Sword of Vermilion, which honestly hasn’t held up, and Fatal Labyrinth, a not-bad example of an early console roguelike. But the best Sega RPG series actually started on the Master System: the original Phantasy Star.

Set in a sci-fi setting with a bit of magic added in, Phantasy Star is the planet-hopping adventure of Alis and (eventually) her companions Myau, Odin and Noah across the worlds of the Algol star system, fighting the eeevil Emperor Lassic. Dungeons, surprisingly, are done first-person, Wizardry-style, and quite well animated at that, although fortunately they’re nowhere near as deadly. Still, the in-the-maze perspective adds a layer of mental overhead and difficulty that may throw off some players unused to the style. In the end, Alis discovers that the true thread facing the system isn’t Lassic, that he’s been corrupted by some other force, one that returns in several following games….

Phantasy Star II

One thousand years later, the Parmians have colonized the desert planet Motavia, terraforming it to better support life. Unfortunately something has gone wrong with the planetary control system Mother Brain, which has caused the planet’s factories to start generating biomonsters to terrorize the population. The task of resolving the problem falls to Rudo and his mysterious pointy-eared companion Nei.

Phantasy Star II’s story has some great developments, some of them a huge shock, especially to people who played through PS1. And there’s actually not a huge amount of text; PS2 is a good example of providing a lot of game economically. And it’s really got an unexpected, out-of-left-field ending you should see to believe.

Sadly… it is difficult for me to recommend PS2 in this age, because its dungeons will have you tearing out your hair. For the US release the game was distributed with a hint book that outright prints the layout of all of the dungeons in the game, and you are going to want to use it. Even so, the enemies follow that special kind of early JRPG design where most foes you face will present a substantial challenge, and it hails from an age where players were expected to grind for experience levels instead of incidentally gaining what they need in transit between locations.

Phantasy Star III

Lots of game series have one game that people regard as the "black sheep," and Phantasy Star has III. In gameplay it’s not actually too different from the others; its difference is in scenario, which is more of a medieval kind of world than the high-tech world with some magic thrown in of the others. Its subtitle, "Generations of Doom," regards the game’s main gimmick, that one-third of the way through your prince character picks a lady from one of two kingdoms to be his bride, they have a child together, then the game picks up a couple of decades later with you playing as that child all grown up. A while after that the same thing happens, and so you eventually end up playing the grandchild of your original protagonist. That presents up to four different final characters, each with their own story, and seven playable main heroes in all. Other PCs join up throughout each potential age of the game, but a couple of android characters persist across all three ages of the game.

The story deals with two rival nations, one of science and one of magic, and their ancient war. Your characters’ travels take them across seven different worlds, which, strangely, are connected by weird caves filled with techno stuff. In the end the series connects back with the saga of the Algol system, but in an unexpected way.

Phantasy Star IV

The first three games are more about fighting and exploration than story, really, although they do have their shocking developments all in all. For Phantasy Star IV, the last game in the classic series and the last one to focus on the Algol system (later PS games only connect with the classic series in name). Another thousand years has passed, and the curse of Algol, to be attacked by a terrible entity known as "Dark Force," is about to strike once more. In storytelling and presentation, Phantasy Star IV is a large step ahead of the previous games, with more detailed cutscenes and illustration, a lot more text, and a much more involved story more akin to the Final Fantasy series. It also, as opposed to most video game sagas which just sort of run until they don’t, is a definite conclusion, typing up the series and finally bringing an end to the troubles of the Algol system. It goes to several notable locations through, including the remains of Lassic’s Castle from the first game, which, for reasons people who’ve played through PS2 will understand, is kind of an amazing idea. It sends off the game in fine style, and is probably the best game in the series as well.

Note that the more recent Phantasy Star Online games, while they take several names from the series, are unconnected in story.

Skies of Arcadia

Oh, the Dreamcast. Sega’s last console, full of such promise, home to so many firsts, only to be knocked out of the marketplace by Sony’s PlayStation 2 juggernaut. Such a shame.

One of the most saddening things about Sega’s white wonder is how few RPGs it got. There’s a few minor games out for it (particularly Evolution, Time Stalkers and a weirdly out-of-place Record of Lodoss War game that’s mostly inspired by Diablo), but the only two major JRPGs to see release on the system was Game Arts’ Grandia 2, a fine game that, unfortunately, is very easy to finish, and Sega/Overworks’ own Skies of Arcadia. Skies got a release on the Gamecube, which is good, because it’s a terrific game, with a great adventurous atmosphere and a terrific setting, an age of piracy in a world of floating islands.

Skies of Arcadia is a game brimming over with innovative ideas. The game’s world is in an age of discovery, and you can participate in that yourself; in the towns there are adventurer’s guild locations that mention rumored locations in the game’s map that you can discover and report the location of for extra money; there’s hidden treasure around the world to find; there’s air pirate bounties to turn in (in the Gamecube version); there’s epic ship-vs-ship battles that use a different battle system than the rest of the game; later on there’s a salvage minigame in the depths beneath the sky, on the Dreamcast there’s a VMU subgame that you can play to get more rewards; and there’s still a great main quest with an imaginative and exciting scenario to complete. And unlike with many ROM-based games, being hosted on optical disk means the game got the kind of script an epic story deserves. The game is filled to overflowing with great ideas, that, sadly, didn’t sell extremely well, probably because of the poor performance of the Dreamcast and Gamecube. Still, if you get a chance to play this game you should jump on it, it’s excellent.

Super Mario RPG Paper Mario series and the Mario & Luigi series

All the Mario RPG games are light-hearted, humorous affairs with ingenious gameplay, simplified battle systems and surprisingly interesting characters. Let’s cover the series one at a time.

Super Mario RPG is a one-off, and famously was the final fruit of the long working relationship between Nintendo and Square before the latter jumped ship and became a Sony-excusive developer for a while. Before they left they created what some consider to be one of their greatest games, an entertaining and witty adventure that greatly expands upon the Mario universe… but of which everything about it was immediately forgotten afterward, which is a common thing with Mario games in case you hadn’t noticed. Its story sees Mario and long-time antagonist Bowser joining forces, along with princess Peach, fluffy cloud creature Mallow and emissary from the stars Geno, to fight against an outside threat, the invading gang of Smithy, a kind of celestial blacksmith. All kinds of silly and hilarious befall them along the way. The battle system is not active-time based, but is one of the earliest RPGs to use the concept of "timed hits," in which button presses precisely input at the precise moment of giving hits, or taking them, in battle can serve to increase/mitigate the damage done. The concept works so well that, while the events of Super Mario RPG’s story were of course quickly forgotten in later games, all of the later Mario RPG games use some version of a timed hit system.

The best games of all of these are probably the first three Paper Mario titles, with emphasis on the first two (the third is verges more towards being an action game). I’ve suggested earlier in this book that it’s not a bad idea to keep numbers in your game relatively small; well, Paper Mario takes that idea pretty far. At the start of the game, most attacks do one point of damage, and increases to that number tend to be single points at a time. If you succeed at a timed hit attack, you might do one or two more points; if you perform a timed hit block, you might reduce incoming damage by a single point. Yet the values in this game are scaled down enough that these increases and decreases are significant. There is also no "damage variance," that weird nod to uncertainty that most JRPGs do to pretend that they’re rolling dice for damage; in almost all cases, if you do a certain amount of damage, you can work out where every point of it came from. The strategy for battle comes from figuring out the best way to attack different classes of opponent, who have strengths and weaknesses taken from the Mario platform games: Jump attacks don’t work on enemies with spikes or that are on the ceiling; Hammer attacks can flip shelled enemies over, reducing their defense; Fireball attacks only work on enemies on the ground, but not against monsters that are traditionally fireproof. From that basis, a fairly complex system was created, and it works very well!

The highlight of the design of the first two games is the "badge system." As the game continues the player collects badges, each of which has a special rule attached to it and a cost, in "Badge Points," for using it. When Mario gains a level, he can choose to receive more maximum Heart Points (basically hit points), Flower Points (like magic points) or Badge Points. Badge points are not consumed on equipping a badge, but returned by taking the badge off, so they’re like a capacity for rule changes. Some badges change the game considerably, but these often take up many Badge Points; players are free to add or remove badges at any time outside of battle, based upon their strategy or personal preference for playing the game.

As for story, it tends to be fairly light-hearted, even more so than Mario RPG, with a wide variety of crazy characters, as well as, once in a while, one that really isn’t. The highlight of the series, I think, is the second game, The Thousand-Year Door, which is one of the best-written RPGs I’ve every played, and by the end will make you think twice about the depths of the Mario universe. Sadly, the general consensus is that after Super Paper Mario on the Wii, the series has gone considerably downhill.

The Mario & Luigi games were staples of the Gameboy Advance, Nintendo DS and 3DS product lines, which sadly have come upon hard times as Nintendo’s product strategy has become more Switch-centered. Word came down a couple of weeks ago that Alpha Dream, developer of the series, had to file for bankruptcy, possibly due to diminished sales of what had become its signature series. What I say about that? Simply: It’s video game development Jake. If I said "It’s a goddamn shame" every time a company that made great games went under I’d never stop saying it. It is a goddamn shame though.

The Mario & Luigi games were similarly light-hearted as the other games. In each of them, some outside force comes to the Mushroom Kingdom and causes havoc, which often (but not always) forces the brothers to join up with normal antagonist Bowser. Throughout the series they’ve visited a land of bean people, shrunk down and operated Bowser from the inside like a mech, teamed up with baby versions of themselves, adventured in the dream world inside Luigi’s head, and even met with the 2D version of Mario from the Paper Mario games. The series seems to pride itself on throwing unexpected curves into the story, like throwing in the seven Koopalings from Super Mario 3 and Super Mario World as boss fights, or making minor villains talk in l33t-speak. One trademark character of the first three games is Fawful, who became a meme sensation for a short time after the first game’s release. Henchman for the eeeevil Princess Cackletta, his catchphrase "I have fury!" and round-about way of threatening Mario and Luigi won him appearances in three games, including one spot as top villain in the third game, Bowser’s Inside Story.

Shining in the Darkness

Another non-Phantasy Star game that Sega put out, developed by quirky Japanese developer Climax, this is an example of a genre of game that was surprisingly common in the early days of the Famicom but has gradually decreased in significance in the years since: the straight-forward, Wizardry-like, first-person dungeon crawl. It is easy to overlook that Square’s first RPG was not actually Final Fantasy, but a series of four such games, the Deep Dungeon series, some of which were released for the Famicom Disk System add-on. Shining in the Darkness is another one, although for the Mega Drive/Genesis system, and with a surprising amount of character for this kind of game.

I include it on this list for its successor games, the Shining Force series, and in order to remind readers that, yes, dungeon crawls can be JRPGs too, and in fact, with games like the Etrian Odyssey series and occasional uses of the ancient Wizardry trademark, it is possible that they’re more popular in Japan than they are in the States.

Shining Force series

If Shining in the Darkness is Sega/Climax’s pass on a lighter kind of dungeon crawl, then Shining Force might be considered a similar attempt at strategy fantasy RP-gaming, although really only the first SF game was developed by Climax. While easy to compare with Nintendo’s Fire Emblem, the Shining Force games make use of more fantasy tropes like monsters, and fantasy races such as elves and dwarves. Additionally, while a defeated character is out of the rest of the battle, it will return for the next fight as good as new, unlike Fire Emblem’s infamous "permadeath" system where characters who die in battle are gone for good unless the player reloads from battle start.

Despite the cartoony character design, more humorous writing and lack of permadeath, Shining Force is still a fairly demanding war game. The AI isn’t as ruthless as that of Fire Emblem, but that’s made up for with the strength of opponents. It also has fairly significant "town" sections between battles, which fill in the blanks of the story, provide levity, and are where the games’ many extra optional characters are recruited.

Sadly, the series has stalled out with Shining Force III, which was released for the ill-fated Saturn console, and which didn’t even see complete release in the US, which only got the first of its three scenario disks. Playing through all three scenario disks is necessary to view the full conclusion of the story, a sales tactic that players might recognize from the relatively recent Fire Emblem Awakening games.

Some other games worth your time

There’s the Grandia games: Grandia, Grandia 2, Grandia X and Grandia 3! There’s Camelot’s three Golden Sun games! There’s Namco’s "Tales of" series, beginning with Phantasia! The later "Mana" series following from Secret of Mana, and called in Japan Seiken Densetsu! Climax’s action-RPGs Landstalker, Ladystalker and Dark Savior! Chunsoft’s generally interesting Mystery Dungeon games, those that involve other properties (like Pokemon Mystery Dungeon) and Shiren the Wanderer! There’s the Etrian Odyssey games too! Atlus’ weird and wonderful Western-developed "Citizens" series, Citizens of Earth and Citizens of Space! The Ogre Battle games, its spin-off Tactics Ogre, and then the creator got hired by Square and so we got Final Fantasy Tactics! Of course, we can’t forget the Fire Emblem games! Square’s early Deep Dungeon series, mentioned before! Of course there’s the Shin Megami Tenshi games, and its spin-offs the Persona series! Capcom’s weird proto-Resident Evil on the Famicom, Sweet Home! The wacky NES RPG Magic of Scheherazade! Interplay’s laudable attempt at a console adaptation of Western dungeon crawls Swords & Serpents for NES! Intelligent Systems’ For the Frog the Bell Tolls on Gameboy! Konami’s console roguelike Azure Dreams, and their fun and random Gameboy puzzle-RPG Cave Noire! If you want to broaden the scope a bit, there’s the innovative Barcode Battler games! If we’re going to go that far, let’s just bring in all the Pokemon games, why the heck not! Sure, include Legend of Dark Witch and sequel as well! It’s not like I don’t have other things to do!

Every one of these games has design lessons to teach the interested designer. Go forth, find them, play them, learn from them. They’ll teach you more, at this point, than I can. Good luck with your efforts!

Cool Subquests & Activities From Various Games

Most JRPGs settle down into a rhythm of exploring, fighting, and recuperating. On its own it’s interesting (depending on the terrain, monsters and treasure found), but monotonous. Which is why even the first JRPGs had interesting subquests to vary the gameplay. Not all of these are from JRPGs: some are CRPGs, and some are other kinds of games (but usually ones with RPG aspects). All should be helpful in fleshing out your own game with interesting kinds of things to do along the way.

Rescue Princess Gwalin! (DQ)

This is the original JRPG subquest. There are actually very few progress blocks in Dragon Quest that aren’t experience-based in nature, but the need to rescue Princess Gwalin, in order to get the item Gwalin’s Love, which, when used in the overworld, tells you how many steps you are away from Tantengel. That’s just the tool you need to track down Erdrick’s Token, an essential item.

Well, actually it isn’t that essential. Erdrick’s Token is in the same space every game, whether you get Gwalin’s Love or not. On a replay, you could just walk to its location and Search for it. Still, its status as a side-quest that gives you an item that’s very helpful to solve a puzzle is why I include it here.

Find the Magic Flute! (DQ)

An extremely difficult fight against a Golem at the entrance to Cantlin becomes a snap when you play this key item, which puts the Golem to sleep 100% of the time. It might not sleep forever, but the flute never runs out, so you can always just put it back to sleep again. The difficulty of the fight is high enough that this tends to be a blocking quest, one that ultimately prevents progress until it is done. Most subquests in JRPGs ultimately turn out to be blocking quest; the opposite would be an optional quest, something unnecessary to finishing the game but probably makes the game easier if you do it.

Explore Area Outskirts! (DQ)

This is one of my favorite design tricks, playing with the conventions of the genre the same way Nintendo did when they let Mario jump up and out of World 1-2 to reach the Warp Zone. At the edge of the map of Tantengel Castle in the original Dragon Quest, there’s an extra space of walkable terrain between the castle and the edge of the map that allows the player to reach a couple of areas. This area ultimately is important to finding an item required to win the game, making this a blocking quest. It’s possible for a player to get stuck here, but the design of the castle is such that it tends to inspire players to try edging around it, and thus eventually finding the passage.

Find the Prince of Cannock! (DQ II)

This is simultaneously one of my most-hated and favorite subquests. At the beginning of Dragon Quest II you play a solitary hero, much like the beginning of Dragon Quest, except that you now can face groups of monsters. Even a party of lowly Slimes, if arranged in a group of four, can do significant damage to you before you kill them all, one by one, especially since your starting hero doesn’t learn any magic in this game. Getting that second party member significantly increases your damage output (when the Prince of Cannock learns Fireball) and your survivability, plus you can’t proceed to Hamlin and Moonbroke while traveling alone.

The problem is, the Prince of Cannock doesn’t wait at home for you to recruit him, but is off on his own adventures while you’re building levels! First you must go to his home castle, where you’re informed that he’s headed for the Shrine of Bravery. Speaking with an old man there, you find out he’s just left. If you then return home to Midenhall, the king there (your father) lets you know he swung by while you were out!

The end of all of this chasing is almost infuriatingly subtle. Now, and not before, there is a new person in the town of Leftwyne. The Prince is staying at its inn! If you already spoke to everyone there and assume there’s nothing new to learn, you might walk by him several times before thinking, hey, was that guy there before? All you have to do is speak to him at this point to finally gain your second party member.

Search for Keys! (DQ II)

In Dragon Quest, keys were a consumable resource, while is weird since they don’t work like that in the real world. (Zelda keys have always worked this way.) There’s the Silver Key, the Gold Key and the Jailor’s Key. All three are required to complete the game, but none are immediately necessary; they don’t immediately block, which adds variability to the play. It does introduce the possibility, though, of the player getting stuck if they miss one along the way, for its location could be anywhere in the game up to that point, rather than near the blocking obstacle.

The classic Dragon Quest games handle this by just letting it happen, letting the dialogue with NPCs pass on the information necessary to unblock the player. All of the important info is passed along by someone in the game, somewhere, and being proactive about acquiring this information is part of the game. This is something that tends to be more true of classic JRPG design than more recent, to my experience; you cannot just follow the flow of the game from start to finish. You must explore outside the strict progression of the game to find things you’ll need later. You can’t just be pulled along by the story; you must push.

There’s three major keys in the game (a fourth, the Watergate Key, is only used in one place and is thus a more traditional subquest). The Silver Key can be found in a dungeon quite early, but because you don’t have to find it right away is easy to miss. A dog leads you to the location where the Gold Key is hidden. The Jailer’s Key costs 2,000 gold, but more importantly is sold as a blacked-out item, an empty spot, in a shop’s inventory!

Finding a new key is your prompt to backtrack through all the towns you’ve found throughout the game and see if you can gain access to new places within them. Backtracking has become a dirty word in gaming, and truthfully can be done to excess, but finding new places to use keys is one of the more entertaining things about classic Dragon Quests, as you can usually obtain a lot of new things and information with very little risk.

Use An Item Out Of Battle! (DQ II)

Most games these days, if you have the proper item to satisfy a subquest, are pretty forward about its use. Either the game will have your group use it automatically in the proper circumstance, or another character will outright take it from you when its use is appropriate. Dragon Quest II isn’t like that: if an item is needed in a situation, you must actually use it from your inventory, out of battle, for it to be used.

This brings an aspect of adventure gaming to an RPG. What is the proper tool to use to overcome an obstacle? To open a door, you must use the right key from your inventory, which is honestly a bit annoying, especially since most keys you need to use are easy to determine from the look of the door: silver door, Silver Key; gold door, Gold Key; iron bars, Jailor’s Key. You have to use the right key, which could be in the inventory of any of your party members, to gain access through the portal so warded. Some games give you a keyring, either explicit or implied, or at least keep the keys in a Key Items list (which can contain things other than keys).

But there is value in making players use items explicitly, too. At one place in the game a special item, the Eye of Malroth, must be used in one exact spot in the overworld to make visible the Road to Rhone, the endgame. Finding the Eye is challenging in itself, being hidden in one of the game’s largest dungeons, but half the challenge of Dragon Quest II is the gathering of information, knowing what to do with items once you’ve found them. It’s a game that really leans hard on its NPCs, you must talk to everyone in classic DQ games because usually it’s the only way you have of knowing what all your inventory-clogging items are good for. It is not necessarily a sin to force your player to take notes, although the best solution is to at least let players record such information within the game itself. (Later Dragon Quest games allow this to be partly automated with the Remember spell.)

Cure Your Sick Party Member! (DQ II)

There is a town in the game where, if you stay at the inn, there is a slim chance that a special subplot will activate where one of your characters will come down with a magic illness sent by the villain, Hargon, and won’t wake up. The solution to this is to go obtain a Leaf of the World Tree (if you don’t already have one), then come back and use it on the party member. It’s great for breaking up the JRPG play pattern (explore, combat, recuperate). Of course some players will just reload their last save rather than go through that, but if you’re going to treat it like "only" a videogame, you’re missing out on some of the charm of these experiences.

Sponsor the Building of a Town! (DQ III)

Towns that you help construct from scratch have become a recurring feature in Dragon Quest games, to the extent that they have a name, "Boom Towns," according to the Dragon Warrior Wiki. The third game was the first to have one. To start this subquest requires a unique step: you must actually go back to the restaurant in the starting town and create a new character of the Merchant class, then return to the site, at which time they will permanently leave your party. This means you must temporarily sideline one of your four major party members. In later games, the character will eventually rejoin you during the after-quest period, but in the original you could not get the character back.

Over time, the town will increase in size automatically through scripted events, gaining new businesses, NPCs and items to purchase. The culmination of all this is the gaining of one of the Orb McGuffins required to finish the game.

Find Your Lost Party Members! (DQIII)

Somewhat like the party member illness in DQ II, but this time your ranks are depleted due to an enemy spell. One of the spell types in the game is the Expel/Disperse sequence, which (if it works) removes one opponent from the fight without killing it. Because it’s not killed, you get no experience or gold for it, but it can be useful situationally to take out a particularly vexatious foe.

However, some enemies, notably the MadCondor, can use them too, and in whose hands there’s a troublesome extra effect. If the spell lands on your one of your characters, they not only disappear from battle, but afterward they’re missing from your lineup! It seems, at first, like they just disappeared from your game!

It turns out not to be as serious a situation as it may first appear. Apparently they make their way to that restaurant in the starting town where you formed your party at the start of the game. You have to get there without the party in your group, but once there you can easily re-add them to your ranks – and, in keeping with the theme of the spell, they won’t be dead either, and will be ready to fight immediately.

Find Your Lost Party Members (FFVI)

One of the greatest moments in the whole Final Fantasy series is when, halfway through the game, your entire party is disbanded in an airship disaster, and you spend the next quarter of the game getting the gang back together after they’ve been scattered throughout the world. Most of this part of the game is non-linear, and you can in fact go attempt the final dungeon as soon as you get another airship, but

unless you’re speedrunning, why would you want to finish the game without getting everyone back?

Take a Pregame Personality Quiz! (DQIII remakes)

The Western CRPG Ultima series started doing this with Ultima IV, asking you a series of questions that determined your starting class. Dragon Quest III, the first game in its series that gave you both a full party and control over its composition, does something similar in its remakes, where there’s a short pre-game sequence where you’ve given a quiz—of sorts—that determines your character’s starting personality. Unlike Ultima’s quiz, part of the process is something I think remains unique in JRPGs: it’s actually a very short situation where you can solve a problem in multiple ways, of varying degrees of obviousness and helpfulness, and get assigned a personality according to what your character does to resolve it. It’s one of the most brilliant moments in the whole series, IMO, and worth studying.

Collect Tiny Medals (DQ III remakes)

Tiny Medal collection is one of those traditional Dragon Quest subquests, turning up from time to time, although less often with recent installments. Basically, throughout the game world there is a number of hidden collectables that can be turned in for rewards of escalating power. Most medals aren't hard to find, but a few are very well hidden. Since the area the player has available to search increases as the game continues, and thus the number of medals that can potentially be found, it's not hard to match the power of the rewards to the current position in the game's story. If at most 25 medals can be found by the time the player finishes exploring Town #3, then the reward for getting 25 medals should be a bit stronger than the best equipment available in town #3, for if it's of the same power level, then why should the player bother collecting your sparsely-hidden gimmicks?

Investigate Interesting Places! (Zelda)

The Legend of Zelda sometimes gets grouped along with JRPGs. I consider it to be something aligned with the genre, although more of an action-adventure, but it still has much to teach RPG designers. One of its major things is the sense of ubiquitous secrets; the original LoZ is absolutely loaded with secret caves, there’s tons of stuff to discover, and I’m surprised that more games don’t take inspiration from this. Done wrong, of course, this can make for a frustrating game; the key is to make all those secrets optional, unnecessary to find in order to finish.

Save Chests For Later! (FF6, CT)

Chrono Trigger is a game about time travel, and there are a number of special treasure chests, recognizable on sight, that, if you open them later along in the timeline, give you different, usually better, items. What is less known is that Final Fantasy VI, a game without time travel at all, does the same thing. Some chests, it is known, if you leave them alone early in the game and come back to them later, will have different items in them. It's kind of a dirty trick really, there's is no hint in the game that this happens. This FAQ by GameFAQs user Corundum has the details.

Secret Area Accessible Through An Enemy Attack! (FF6)

There's a random monster accessible through an obscure fight on a random island called a Zone Eater. There is a secret area in the game that can only be accessed if all your party members are sucked in by its "Inhale" attack! It's an entirely optional area, but still, very interesting for its method of discovery.

Get an Item as Randomized Chest Contents! (DQ)

It's a little-known fact about the original Dragon Quest that a few chests in the game can contain different items, based on random chance. This is the only way to obtain the ultra-rate cursed item, the Death Necklace, which can be sold for over 1,000 gold.

Rare Drops! (FF4, Earthbound, many others)

Fans of the series probably already know of this, but there's always new players... in an obscure room in one of the last dungeons of the game is the infamous monster, the Pink Puff. When killed, it has a slim chance of dropping a Pink Tail item, which can be exchanged elsewhere for the best armor in the game. The chances of this happening, however, are very slim: 1 in 64 for the encounter, and then 1 in 64 for the drop. In Earthbound, defeated Starman Supers can randomly drop the Sword of Kings, the only worthwhile weapon that can be used by one of your party members.

Honestly, I'm not fond of rare items like this as players may fixate on it as a goal, something they "have" to get before they consider themselves finished with your game. But if you can persuade players somehow not to do that, they can be very interesting as a way to make individual playthroughs of a game unique to the player. If you have 16 items in your game that each, individually, have a 1-in-16 chance of appearing, then on the average a player will happen upon one of them, and a specific items, if its power is high enough, can greatly change the nature of a given character's role in battle.

Randomly Steal a Unique Item From a Shop! (Shir from PS2)

This is an odd one. One of the many side characters in Phantasy Star 2, Shir has a special ability in that, if you visit a shop, there is a random chance that she'll steal an item from it and leave your party. When you pick her back up at home, she'll have swiped an item from it. At least one item, the Visiphone, which allows for saving the game anywhere, can only be found this way. Being able to save anywhere greatly changes the nature of PS2, so it's worth hunting up.

Forfeit Island: Find Discarded Items! (Lufia series)

A ridiculous idea when you think about it, but still pretty cool to see in practice. Through some unknown means, every item you ever sell in the Lufia games can be found for purchase at Forfeit Isle, along with a lot of other useful objects.

Find Scattered Dragon Eggs! (Lufia series)

The Lufia games have an interesting subquest that sends you out in search of Dragon Eggs, which are hidden in various dungeons throughout the game. If the player finds them all they are given a wish, from among items on a list, and then the eggs are scattered to eight other chests for the player to find again. If this reminds you a bit of Dragonball, well, I expect it's not a coincidence. In the first game this is a very annoying subquest, since while the player finding them the first time is the result of suffering through the game's dungeons, with their highly annoying encounter rate, which they were going to have to do anyway, to willingly go back into them a second, or even a third or fourth time, to recollect the eight, seems like too much to ask. If your game has more reasonable encounters, though, it might not be so bad.

Buy a House! (Earthbound)

Earthbound has a house for sale. There is no great purpose to it. You can't sleep there, and there is no hidden object inside it. Inside it, there is a photograph spot (a long story) and a humorous story stuffed away in a drawer. But it's a nice touch, and it doesn't really cost that much money, considering how much the kids are pulling in towards the end of the game.

Fix Items To Make Them Useful! (Jeff, Earthbound)

One of the party members, Jeff, has no psychic abilities like your other characters, but can fix random pieces of trash, if they're in his inventory, every time your party rests. Some of these items are powerful weapons that Jeff can use, and among them are his strongest pieces of equipment. In balance terms, these items have two barriers on their use: first, they have to be found, and second, Jeff must have a high-enough IQ score to fix them, which ultimately means he must have a high-enough level, which gave the designers an opportunity to ensure they aren't acquired when they would be overpowered.

Recruit Extra Party Members! (Chrono Cross, Glory of Heracles 3) Recruit Almost Anyone! (Citizens of Earth)

Both Glory of Heracles and Chrono Cross give the party the opportunity to recruit many different kinds of characters throughout the game, with lots of unusual abilities. From a design standpoint, besides having to write out all that extra dialogue for game situations, this also means you have to decide what everyone's stats are. Generally, the more characters you have, the more generic they each end up seeming (which was a problem in Chrono Cross) unless you spend a lot of work making sure everyone has their own special niche within the game's systems. This idea was taken to its utmost in the more-recent Citizens of Earth, where nearly everyone in the entire game can be recruited. In addition to unusual battle abilities, each such character also has an out-of-battle "talent" that can be used in some way, such as changing the difficulty of the fights, creating shortcuts through the game world or having items delivered to the group.

Build Relationships With Party Members Based on Your Actions! (FF7)

Unbeknownst to the player throughout the first section of Final Fantasy VII, the player is being judged on their actions. Not in terms of right or wrong (for that, see the following item), but in terms of which party member the hero, Cloud, is most compatible with. Some way into the game, when the party arrives at Gold Saucer the second time, one of four party members will ask Cloud to go on a date with them: Aeris, Tify, Yuffie or Barrett. In a variety of prior story events, the player's choices at dialogue choices contribute to hidden affection totals with each character, and whichever is highest at the proper time determines who the date is with. The details are on the Final Fantasy Wiki. It's essentially a dating sim hidden within the larger game, although nothing says you have to use it for inter-character romance.

Manage Alignment Based on Your Actions! (Ogre Battle, Ogre Battle 64)

Finally, there's the infamous Chaos Frame system in Ogre Battle, where the way you play what is primarily a strategy RPG determines what kind of ruler you'll be at the end of the story. Do you tend to use "light"-themed troops, or "dark" ones? Do you make an effort to "liberate" towns with troops that match local customs or just "capture" them with whoever is most handy? Do you conclude maps quickly with little funding, or do you spend time on each map to save up extra battle funds from taxes? Which special characters do you recruit? Do you build up a few super units and smash through battles and maps, or do you honorably (to the game's thinking) match troops levels to similar challenges? Do you let towns you free get recaptured by the enemy? The answers to all of these questions add up in your Reputation score as you play, and that (along with other accomplishments during the game) affects what ending you get.

The details vary between the two games; for details, check FAQ such as this one and this one.

Cool Features From Other Games

These are presented for inspirational purposes. Your games probably shouldn't adapt these as-is, but at least change some aspect of them. Mix them up, find new implications for old ideas, make them your own.

	The Spoon (FFIV) is a one-use knife, which can be thrown by the party ninja, Edge. If it hits, it always does maximum damage: 9,999. But there’s only one in the game!

	Final Fantasy games sometimes have entertaining status effects. Three common ones are Pig, Toad and Mini, which results in characters being turned into pigs or frogs, or made really tiny.

	In the US version of Final Fantasy IV (numbered II here for reasons that we won’t get into), there is a scene where two party members sacrifice themselves to save the rest of the party, turning themselves to stone to thwart a trap. If you investigate their statues, the item window opens, usually an indication that there is some item that is effective in this situation. Cruelly, in the US version, there actually is no such item. It was one of a number of features removed from that version! Fortunately, if not revived, eventually they are turned back in a cutscene later, although it denies the party a couple of special items.

	Might & Magic games use gems as a second currency. Although some games offer a way to exchange gold for gems and vice versa, both have greatly different purposes. Not only are gems used to buy different things, but the most powerful spells consume them in their casting! Gem overconsumption can turn into a real problem, especially since they're a bit harder to come by than gold.

	Another cool thing some of the Might & Magic games did was relate player statistics to colors by a set system that goes across games. Red, for example, is always Might, and Blue is Personality. There are places in some games where players can have a character drink a colored liquid for a permanent stat boost. If one uses trial and error to figure out what that system is, that information can help them in following games.

	To borrow one from TTRPGs, one of the more interesting design things about early D&D is the idea that finding treasure should award you experience points as much fighting monsters. If you find gold or treasure worth gold pieces in value, you also receive experience points of matching value (divided between all the members of the party, of course). Magic items are generally not considered in this, their special powers considered enough of a reward itself. Some groups made house rules about this, like the gold has to spent in partying or some form of carousing to qualify for an experience award.

	I could fill this list with awesome things about Earthbound, like the rolling HP "odometers" that affect the game, or ordering pizza and having it delivered while in the field, or the condiments item healing system, or the For Sale sign, or the Insignificant Item, or buying Fresh Eggs, waiting until they hatch into Chicks then grow into Chickens and selling then at a substantial profit, or the perspective switch in the Lost Underworld, or almost everything about Mr. Saturn, or the sesame seeds, or Ruffini the Dog and his correspondence address, or a ton of other things. Homesickness is one of the more significant game elements. Ness, the little kid who is your main hero in the game, is still a little kid, even though he swings a mean bat and has psychic powers, and that means he gets homesick sometimes. In battle homesick means randomly missing turns sometimes. To cure it, you don't go to the hospital, but find a telephone and call his Mom. Aww....

	Undertale, Toby Fox's indie sensation and source of a hundred memes, has a lot of cool, weird features, just like (and often inspired by) Earthbound. One of the lesser known is that many of the game's items that usually have joking messages when used in battle actually have completely different messages, and sometimes even effects, when used in what the game considers to be a serious fight! One of these is the Instant Noodles; usually they just restore 15 HP, but if you're in "serious mode," you instead get back 90!

	Undertale has this too, but it was possibly inspired by the Paper Mario games. One of your characters in each PM game has an ability that gives you information on the room you're currently exploring, for every room in the whole game. Some of the game's cleverer jokes are hidden away in these snippets. Undertale has this in the form of calling Papyrus on the phone; he has something to say about nearly every location. And there's more than that....

	When you finish Dragon Quest, you can go back and talk to all the townsfolk, although they don't really have much to say once you've won the game except for congratulating you. Taking it a step further, in Earthbound, nearly everyone in the whole game has something new to say to you once you've on! And with Undertale, once you've finally befriended Undyne and she's staying with Papyrus, calls to Papyrus will give you new conversations with the two of them! The amount of writing that went into this feature is truly disturbing....

	When you're away from a game for a while, the hardest thing is to remember what you were doing then and what you're supposed to do next. Some 16-bit adventures addressed this problem by offering people in the game world who will remind you of your next objective. As games have gotten longer and more involved, this feature seems to have actually diminished in popularity, which is a shame, since in this age of huge Steam libraries it's very easy to fall out of playing a specific game, and difficult to fall back into it.

	The Lufia/Estopolis games are largely agreed to have ended, which is a shame considering how ingenious they often were. One of the series' secret features has to do with a feature that I largely disapprove of, the battle that players are fated to lose. Most of the Lufia games have them, and for the most part they're as annoying there as they are elsewhere. But, what if the players manage to win one of those fights? The second game in the series actually has a reward for you if you manage to win the first "impossible" fight. A walkthrough on GameFAQs by user G*Paladin explains how, though you'll have to search through it a bit. Try searching for "Gades".

	Sometimes there's a feature in a game that's so popular that it catches on in other games, and one such feature was the "New Game+" option in Chrono Trigger. Even though other games may call it different things, the original name for it has stuck. Basically, it allows the player to start a new game, but with their characters having the stats, and sometimes even the items, from a previous game. With that high level of power, going through the game a second time will be much easier, and so the player will be able to enjoy the story without so much pesky gameplay getting in the way. Chrono Trigger goes a step farther: since the party has enough power to defeat the last boss from nearly the beginning of the game, in New Game+ playthroughs, it makes available a way to try to attack the final boss from nearly the beginning of the story, and if the party prevails at different points along the story, the game presents one of over a dozen different endings depending on when victory was achieved.

	Some people greatly dislike Triple Triad and Tetra Master, a pair of virtual card games in Final Fantasy VIII and IX respectively, but if you’re going to have a pointless optional subquest, way not make it an entire game unto itself. It is fortunate that in both cases playing around challenging NPCs to card battles while on your way to saving the world is, indeed, optional.

	Terrain tiles that hurt you when you step on them. Multiple games do this, but the most well-remembered example has to be the Dragon Quest series, where swamps sap a little health from you for each step, and "barrier" tiles take even more. When it comes down to it a lot of RPG structure is just a series of tests, tests to see if the player's party is strong enough to pass the various obstacles on the way to winning the game. Usually those obstacles take the form of battles, and in those battles plays a role, but the nature of the game is such that, absent speedrun-type methods such as memory inspection and RNG exploits, if the party's numbers aren't high enough, the player has limited agency in their survival. The party must have statistics, gained through whatever means, good enough to both to survive fights and do enough damage to defeat the opposition. If they don't, then they must grind more levels or get better equipment until they can, until they've improved enough to prevail. Essentially, the game is a series of signs that read "You must be this buff to pass this point." Well, damaging floor tiles are another form of that. It's true that the party can heal themselves to made it through, or if their level is high enough just cast a spell to eliminate the problem all together, but these means are roughly analogous to having a good strategy in a required boss fight. Can you come up with another alternate way to test party progression...?

	The Final Fantasy Job system, as seen in V, is generally respected as a way to give players the ability to customize their group and brave the game's challenges in a manner of their choosing. My favorite job, it has to be said, is Thief, which is not an optimal combat job, but the game's version of a utility class. Thieves can steal items from monsters in fights, but additionally, when there's a thief in the party, secret passages in the walls are made visible! These passages are present in multiple games, but this is the only game in the series that I know of that provides a mechanic to allow players to optionally uncover them.

	Finally, one of my favorite gimmicks of all. Dragon Quest games do something like this with a minigame in the form of their Pachisi tracks, but in Sugoro Quest, a game that only saw release in Japan, the whole game was a board game! This is interesting because, of all the games here, this matches up with the semi-guided, semi-free experience of old TTRPGs the most. You know generally where you're going, and there's multiple ways to go about it. It may take several tries to find the optimal strategy, and even if you find it the luck in rolling the die can still work against you. Helping in that, some classes actually get spells that let them manipulate the movement die, and you can also find consumable items that let you affect what number you roll. I've crowed about this game in a number of different places over the years, and I still find it terrific. Please give it a try, won't you?

Battle Systems

RPG Maker has a solid battle system built-in, and you mess with that with some risk. But if you’re pretty good at scripting you might want to emulate some of these other systems….

	Wizardry-style
You give orders to everyone at the start of a round; monsters also pick targets then. Then actions are played out according to a character’s agility statistic plus a random factor. Like a lot of old games, this system is largely taken from early D&D.
Part of what makes Wizardry’s system work though is the stakes. A lot of your damage comes from combat, damage kills characters, and death in Wizardry is always greatly perilous, because revival is expensive, can fail, reducing a character to ash, and that’s really expensive to overcome. And it can fail too, deleting the character, forcing you to make a new one starting at level one. That’s what we call stakes, and it means that, although combat is simple, it’s often a tense experience.
It’s worth noting that this style of combat goes back to D&D "theater of the mind" style, where it’s generally assumed that all combatants can reach and attack all others. We can think of this as a "zero-dimensional" combat system, where the battlefield can be thought of as a single point where all the characters and opponents reside
Actually, Wizardry is slightly different from that; the lead three characters in the party order are the only ones that can make, and suffer, melee attacks. If you think of the battlefield as being a line, with your party one side of a center point and the monsters on the other, then the first three characters are the one "closest" to the enemy, which explains why they’re the ones that are fighting physically. In this sense, Wizardry’s battle system might be considered "one-dimensional," or "linear."

	Dragon Quest-style
This is the system that RPG Maker’s default is closest to. Combat is divided into rounds, with turn order based roughly on speed. When a character or monster’s turn comes up, they decide what to do immediately (asking you what to do in a PC’s case), and do it. Party members can be protected in battle somewhat (reducing the chance that they’ll be chosen for an attack) by their position in the lineup. Characters further in back get attacked less often, an extra little gimmick that exists so battlefield positioning can be simplified nearly out of the game. In this sense, Dragon Quest also has a "one-dimensional" battle system.

	Grid-based Strategy (Shining Force, Fire Emblem)
Once you add movement on a two-dimensional plane to the game, combat becomes a fair bit more realistic. Now it’s more obvious why can or cannot attack someone else, and because of it keeping weak characters away from the front lines is both easier and essential. Positioning your characters so as to make a stable battle line to hide magic users like this is a major part of the strategy of these games.

	Active Time Battle (FF IV-VII & others)
Final Fantasy IV introduced the idea of real-time menu-base combat. If you do nothing during your turn but wait at the prompt, enemies continue to get in attacks. This is much trickier to implement than a straightforward menu-based system where everyone waits for player input. Going one step beyond, some abilities (especially spells) take an amount of time to get off before they actually occur. If the casting character is killed before then, the action doesn’t happen!
This is a tricky system to implement, multi-threaded by its nature; in the Final Fantasy games, and other Square games that use Active Time like Chrono Trigger, the menu system and the battle system are entirely decoupled, that is to say, you never experience input delay no matter what kind of convoluted spell animation is going on, and similarly the battle system isn't affected much by the menuing, other than your selections. (I hear that the spell selection box pauses the battle while it's open. That's probably a good move.) It should be noted that all the ATB games offer a mode that pauses the battle simulation whole the menu is active, to give players the ability to do other things while playing the game.

Those are the most common, time-tested systems, but there are others, which are usually a bit harder to pin directly down to battle simulation and more to games on their own.

	Ship Combat (Skies of Arcadia)
In a game filled with awesome features, this is one of the best, a completely different battle system for airships against other large-scale threats. The basis of the system is in lining up opportunities to use Wave Motion Gun-style megaweapons, and avoiding counterattacks by same. Consider, for a moment, the difficulties in designing such a system. Many of these fights are storyline-required. What if the player has designed his party in such a way that normal fights are easy, but those in an alternate battle system cannot be won? What I'm saying is, care must be taken in inventing secondary combat systems, especially if they're not optional. Fortunately, Skies of Arcadia pulls it off pretty well.

	Grid-Based (Live-A-Live, Lunar)
The Japan-only Squaresoft fame Live-A-Live has a lot of unique things about it. One of them is its battle system, which is grid-based but not as in-depth as in a game where combat strategy is the main point. Often enemy attacks take the form of regions of the board, and keeping your characters out of them forms a lot of the strategy.

	Low Value & Derandomized (Paper Mario)
The Paper Mario games scale the values of its combat system way, way down. Final Fantasy games regularly have characters that can do thousands of hit points of damage, and famously caps damage to 9,999 per attack... unless you're using a really special attack, that caps at 99,999. Paper Mario starts you out with attacks that do one point of damage. What's more there is little randomness in its system, unless you're using a badge that puts randomness into it, of course. No variance! No pretending that some unseen GM actually rolled that absurd number with their pretend hundred-sided dice! That's what I refreshing, that is.

	Music Battle (Mother 3)
Mother 3, sadly, infamously, never made it to the US, meaning its fun music battle system, that gives you an opportunity to do extra damage in battle if you can keep the beat with one of its hilariously tricky background music pieces. The more high-stakes the fight, the more chaotic the music tends to be, which is a great way of increasing the tension.

	Roguelike Tactics (Roguelikes)
I had to include this, considering that console roguelikes like Shiren the Wander and Pokemon Mystery Dungeon are a prominent subcategory of JRPGs. Roguelike design is something entirely other than what we're concerned with here, not the least reason of which being that a strong scenario is antithetical to a kind of game where you start it a hundred times for every one time you win.

	AP Meter (Grandia, Grandia 2)
The Grandia games have terrific battle systems, where you track the progress of various battle participants along a line or circle watching for chances to "cancel" their attacks. It's the kind of system that could be really annoying if the enemy had any idea how to use it effectively, but fortunately they don't, and you can tear apart bosses using it if you master it sufficiently. These combat systems are interesting, too, because while they have movement on a 2D plane, except for sightly affecting the timing of attacks and when it once-in-a-while makes it possible to hit multiple enemies with one area-effect spell or move, it's largely just for show, playing little role in battle. (Chrono Trigger's system is like this too.)

The Idea Book: 29 crazy concepts to make your game special

Here is a list of bad ideas. Every one of these things, applied badly or without careful thought, can wreck a game, make it unplayable. You’re welcome.

But the great thing about bad ideas is, they can also often be good ideas, if approached the right way and with an open mind. With a genre of games as venerable as the classic JRPG, a gonzo concept can just the thing to raise a game out of being something that was better done decades ago on the Super Nintendo to a unique experience that no one’s seen before.

1. Automatic condition shield.

An item that infallibly protects against a specific, onerous status condition, but is consumed when it activates. Carrying the item is enough to activate it; it doesn’t have to be equipped. Makes most sense in a game with limited, player-specific inventories.

2. Simulated economies.

Items that are bought often increase in price. Items that are sold a lot decrease in price. Spending a lot of money inflates prices in an area. Items that are cheap in one place may be expensive (perhaps greatly so, if you really intend this as a possible source of income) in another, but the more a player take advantage of these differentials, the more prices tend to even out.

3. Randomized item benefits.

An accessory, armor piece or weapon that has a randomized bonus, different every game. (Maybe a set of these, with a fixed set of bonuses distributed between them.) Leave it to the player to figure out which item does what. This could make the game situationally easier (or harder, relatively) depending on when the items with the best bonuses are found.

4. Indefinite debuffs.

A monster has an attack that inflicts a small but lasting debuff that only goes away at the player’s next inn stay. Ideally should be confined to specific areas (not an attack that many monsters have, but one or two, who appear in numbers in a few places).

5. Condition incubation.

Conditions are usually way too easy to resolve, partly because, in the event of gaining a bad condition that’s difficult to remove, many players will just go back to their last save without it. One way around this is to make the condition invisible for a good while before its bad stuff happens. One way to do this in RPG Maker is, while it’s incubating, to not use the engine's condition system to implement it, which would make it too visible unless hacked. Instead, when something happens that causes the condition (perhaps a random chance when attacked by a certain enemy, or when crossing a certain bridge, or staying at a certain inn), use variables to track that a character has gained the early form of the condition. Then use a timer to count a period of time after that to actually bestow the hard-to-remove condition. That way, even if the player goes back to a previous save, the condition will just show up again! This is analogous to Dragon Quest II’s character-falls-ill randomly-given side quest, although it doesn’t use an incubation period. If you do this, the ease of removing the condition should vary with its severity. In DQII, it removes a character from the party until cured, and it can only be cursed with a Leaf of the World Tree, but by that point the player has probably located where the Leaves can be found already, and in fact, since it is a cure for death, it’s likely that a character is already carrying one.

6. Positive conditions.

How about a condition, like Pokemon’s "pokerus," that can only be randomly acquired, and lasts a limited time, but has only positive, and permanent, effects? Ideally the condition is invisible so that players won’t know when it’s bestowing its benefits. It’s just an extra little something, a boost, that may or may not happen every game, and which may affect a different character each time.

7. The Cursed Coin.

(Note: I use present tense in this idea, like it's already been implemented, to simpify the description, but to my knowledge this idea has not been implemented anyway. I do that for some of the ideas in this list.)

Something like this works best if it doesn’t happen on every playthrough, tends happen in the middle of the game (when the player isn’t learning the ropes or mustering up for the final push), and if it doesn’t happen more than once in a playthrough. Basically, after a certain point, every time the player gains money from whatever source (selling items, defeating monsters, opening treasure chests, etc.), give them a slim, maybe 1-in-100, chance of gaining the Cursed Coin, a cursed item that effectively lives in the player’s gold pile.

While the player has the Cursed Coin, he does significantly worse in battle; enemies do maybe 50% more damage, and/or the player does 50% less. Not insurmountable, but definitely significant. While the party has it, the player’s gold total is printed in red wherever it’s shown. There would be a couple of NPC rumors about the Coin, so the player can figure out what’s going on. Unlike traditional game curses, there is nothing preventing the player from getting rid of the coin. The only problem is, there’s no way to figure out which coin the party is carrying is the cursed one. Every time the party loses money from whatever reason (most often from buying things), generate a random number in the range of (the player's gold total), and see if it is within (the number of coins spent). If that number is within that range, then the Cursed Coin has been among the coins expended, and the condition goes away. The other way to remove it is to find a hidden guy in one of the towns, a collector who is looking for the coin. Not only is he able to detect and remove it, he’ll pay a lot of money for it! I guess he doesn’t have to fight monsters that often.

8. Lying townsfolk.

This idea is most directly inspired by Castlevania II, but in fact dates back to classic D&D, where the party couldn’t necessarily trust every rumor they heard in a tavern. And why should they? In real life, most people are clueless about most things. Do you know how many people think 9-11 was an inside job? Why should Townsperson #17 in Rental, Georgia happen to know the secret entrance to the evil king’s fortress? Part of the fantasy is that these rumors and legends are sometimes true, but it defies belief that they’re always true. Make players check out leads, and sometimes find red herrings.

If you do this, though, like most of these ideas, it should be planned carefully. Near the start of the game, maybe as part of the very first subquest, have two townsfolk give opposite stories: one says the Magic McGuffin is in the Treacherous Cave; the other says no, it’s in the Dangerous Forest. They player will have to try both to find it. (You can put useful stuff in the other location too, maybe something they’ll need later!) This adds static to the signal of what the player is supposed to do next.

Like in Castlevania II, it’s possible to go quite far with this. It might be best to reserve townsperson factual error for optional subquests. Or, you could use a "rumor" system, where people in a tavern give information that might be true (and very useful!) or might just be lies. Maybe even randomize which ones are true on each playthrough! The key is to force the player to do some actual research, real detective work, instead of just following the bright yellow line on their trip through the game, or going to that great holy oracle of game information, The Internet.

Of special note: the recent release Dragon Quest XI has an option to enable something like this. When entering your character’s name, there is displayed an option to play in "Draconian Mode," which lets you set a number of voluntary challenges for your game. One of them, "Townsfolk Talk Tripe," means some people will tell you things that are untrue. It’s random when it happens though, and pretty easy to detect.

9. Libraries.

Building on Idea 8, another useful place to gather information is in a library! In the real world, public libraries are great places to read and learn; in a fantasy realm, libraries are more likely to be private collections or connected with some organization for their use, not open to the general public unless the owners approve of your quest, or are paid suitably for the use of the books. In such a world though, some important facts may only be available through such research.

The library could either be a room of books with information events along the shelves, or else a random check, maybe against a character’s research skill, or something like that. (A fighter is probably less likely to find useful information than a priest or wizard.) Maybe multiply the character’s skill (maybe in a range of 1 to 10) by the library’s size (from 1 to 5 or so), then generate a random number from 1 to 100. If it’s less than or equal to research skill times library size, useful information is found; else, the player will have to pay to try again. Hey, they gotta make money somehow.

10. Randomized buried treasure.

Throughout the game, the player picks up clues to the location of a buried treasure. Maybe "is on the Southern Continent," or "is within 15 steps of Landmark Town" or the like. All together the clues narrow down the location to within a few spaces of searching, as in searching for Erdrick’s Token in Dragon Quest. Thing is, there’s actually multiple locations it can be, and one is selected randomly when the game begins. When players have played a lot, they might learn to narrow down the location from just one or two clues, and pick up the treasure early!

11. "You Must Be This Strong" signs.

One of the things about RPGs in general is the danger of wandering into an area that’s beyond your level. In the days of classic RPGs, it was understood that players were expected to run in these events, but the difficulty of escape in many JRPGs means the party might wipe with no real chance of survival.

An underrated aspect of the original Dragon Quest was the way it signals (or was reputed to signal) increasing difficulty via bridges. Each bridge you crossed, so the story goes (according to Nintendo Power, at least) I think this attribution doesn’t hold up very well in retrospect; when one looks at the enemy generation system, it doesn’t seem to pay much attention to where bridges are placed.

But that doesn’t mean you can’t use that system anyway! Or other things; maybe put a dead monster on the landscape in places, so players will know the strength of foes there? Use townsfolk to warn of difficulty levels? Or maybe just put a stone pillar in places where the monsters get stronger, and let the player figure out their meaning for themselves.

12. Items that lie about their identity.

At last, you have found the Sword of Ages! It was in that treasure chest, or it was in that monster’s possession, or you searched a space for it, or maybe it was underneath a rock. But now that you have it, you can go forth and use its amazing power!

Or can you? When you find an item, how do you really know what it is? Does everything in your world bear a helpful nametag? In the Sword of Shannara by Terry Brooks, the titular weapon is particularly notable because it doesn’t look like a powerful weapon. While it’s a sword that dispels illusions and shows truth, its own appearance is deceptive.

If you do something like this in your game, of course the player must have some way of knowing that their weapon isn’t the real one. Maybe they got a hold of it a little too easily, or an NPC looks at it and tells you it’s a fraud, or simply, when they try to use it in the way it’s supposed to be used, it doesn’t work. Alternatively, information sources in your game (magical, literary or conversational) might tip players off that fakes exist. If you do that last thing though, it’s important for the game to supply a message saying that it’s strange that it doesn’t work! Bugs in games happen, and sometimes a thing that’s supposed to happen doesn’t, due to scripting errors or whatever. By supplying an extra message that it’s strange that the important obstacle hasn’t been overcome, you confirm to the player that the fault is theirs, not yours, and gives them the information they need to start looking for the genuine item.

13. Torch Sconces.

One of the difficulties for players in your typical dungeon environment is getting lost. After you’ve explored your 30th identical horizontal passageway, it’s easy to misread where you are or have been. I talk about realism, or the illusion of it, a bit in this book, but that fails a bit when the activity being modeled is frustrating by nature. A dungeon is supposed to be challenging to explore, but playability too must have its say.

My suggestion for making dungeons easier to navigate is to give the player a way to modify them to make navigation easier. Pepper your dungeons with unlit torch sconces on the walls. When the player walks up to one and checks it, light the torch, and keep it lit. If checked repeatedly, cycle the torch’s color between three alternatives, and off. This gives players a very useful tool they can use to mark areas they’ve been before, and the alternate colors a way to remind themselves if a branch merits further exploration. If you’re looking for uses for utility spells, a torch-lighting spell is an excellent one to give out at low level.

14. Character Growth Entirely Through Consumable Items.

Here’s an idea for you: throw out experience entirely, and provide statistic growth completely through items you find! Amazing idea, right? RPG Maker can do this. Create an item (in Databse > Items), find the Effects list, and add an effect (double-click below the last item on the list). Go to the Other tab of the dialog that opens. This tab is amazing, and lets an item do things like grant a player a permanent skill, or trigger a common event (huge all by itself), but you can also select the Grow option and one of the eight primary statistics that characters have: Max HP, Max MP, Attack, Defense, Magic Attack, Magic Defense, Agility and Luck.

You should consider the caveats of doing this however; it changes the design of your game a lot. How do players gain these items? If it’s entirely by finding them in chests throughout the world, then you need to consider the possibility that there might ultimately be a limited number of them. Players might fail the game, unable to proceed, if they allocate their stats in an adverse way. This is not necessarily a problem, but if it’s possible, the player should be warned about it, so that they can make backup saves.

If such items aren’t in limited supply, then you should consider the opposite problem. What if these items are so common that players can easily build super characters, and destroy the game’s challenge?

These may not be easy problems to solve, but that is the way of game design. Most of the easy designs have already been taken. If you want to make a game that does truly interesting things with gameplay, coming up with the idea is just the first step. Consider the implications well, try it out thoroughly, and get people to help you test your game.

15. World-Limited Cash.

Take the previous idea one step further. In this concept, every gold piece in the game is accounted for. It might be a very high number, but ultimately, every unit of currency in the game comes from some discrete, limited source. How would that change the game?

You might be surprised by this, but the answer can be "not much." Imagine a game where there’s a limited number of random encounters in each area. Once a certain number has been defeated, no more monsters appear there. Once all those are depleted, and all the treasure chests have been emptied, that leaves miscellaneous sources like starting cash and selling found items.

The biggest problem with this idea is that it’s vulnerable to degenerate game states, cases where a player playing in an unexpected way could cause the game to become very difficult, or even unwinnable. If the player runs low on money, how are they going to buy later item upgrades, or even pay to stay at an inn? If there’s something in the game that requires purchase to finish it and the player runs out of money, he could be stuck (or "soft-locked," in the parlance of speedrunners).

So if there’s such potential problems with it, why do it in the first place? Because a thoughtfully-designed limitation can actually deepen the strategy of a game, and even make some interesting options possible that would otherwise be too unbalancing. Like, paying for statistic increases; if players could just grind for money and then pay a lump sum to raise their Attack by 50, that could end up to be a more viable means of advancement than gaining experience levels. (Which could actually make for an interesting game, but the implications to the rest of play might be significant….) If the money needed to do that comes from a total pool of all the cash the player might ever get, then there may be other uses for that gold that are more important in the short run. The thing is, if there’s a total limit to money, then gold becomes more valuable. It’s not just an abstract counter any more, but something the player must weigh.

One thing you can do, should you decide to take this route, is remove minor expenses from the game. Maybe make inns free, so to remove the possibility that the player can’t afford them, and decrease the cost of healing items significantly. Another thing you might do is add in a small source of extra funding, exempt from the cash limitation, but that takes time and/or effort to obtain, or is very limited, like just a few gold pieces each time. That way, if it really comes down to it, the player has a way to un-stall the game, but that’s too slow to make frequent use of if there’s faster means available. (Of course, some players are known to take advantage available, even to excess. It is up to you to consider.)

Or you could take the Might & Magic route. The Might & Magic games, the classic ones from New World Computing, have two major types of currency, "gold" and "gems." The details vary with each game, but generally gems are a "greater" form of currency, worth more each than a gold piece, are more intrinsically limited, and are also of use in spellcasting. Some important spells, like high-end area effect damage spells and revival spells, require gems to cast. Some games offer a conversion from one to the other somewhere in the world. Might & Magic games also charge you a training cost when you gain experience levels, which pulls the gold currency into level gaining. The classic M&M games are each chock full of interesting and clever design decisions, and are well worth your time if you’re looking for ideas.

16. Ultimate Time Limit.

Let’s go even farther with limits. What if we imposed a final limit (in game time) on how long the player has to finish the game? That some world-ending (or at least game-ending) calamity will occur if the player doesn’t progress fast enough? It certainly has the potential to increase the tension of the game.

The JRPGs genre is unused to final game failures. "Game over" has long ceased to be a phrase to offer any real power to dismay. Doing this probably will cause some players to react negatively. There’s that small but ever-present cadre of game reviewer that will condemn your game for having the temerity to try something like this. You can’t please everyone.

But, enforcing a time limit, like many controversial decisions, can also make a game interesting in certain ways. For one thing, it gives the player another resource to manage, that of game time, and it gives you, as designer, the ability to offer meaningful choices in exchange for that resource. Take healing for example. If the player can get healed at any time without cost, then effectively healing is valueless; the player can always heal, so there’s no reason not to. Taking advantage of that option becomes an obvious choice, and thus one that will be resorted to without thought. If it instead costs some gold, then it’s a little better, but still healing tends to very inexpensive in JRPGs. But if it costs a whole game day, and you only have some of those, then players cannot allow themselves to use it too often. They will have cause to take advantage of less costly means; if there’s multiple means of healing with different costs, players will have to figure out, situationally, which is best in this case. In short, you have provided an interesting decision, one that players have the opportunity to demonstrate knowledge and judgment in making.

One danger with using this design trick is when the player doesn’t have a good sense of how much time is left. This can be quite difficult to convey. What if, at some point in the game, the player will have to spend a solid game month, out of a year-long time limit, on some necessary task? A player who doesn’t realize this, or forgets about it, could end up near the deadline and suddenly discover that the whole game has been a waste, because they don’t have the time left to pay the mandatory cost. This is always a danger: if the player has to do three days’ worth of errands but only has two days left then the game’s a lost cause. This may be unavoidable in the ultimate case, so my advice? Games with hard failure states like this are almost always better if their overall length is fairly short! If the player plays half an hour, loses, then plays another half an hour and wins, it’s better than if the player spends ten hours on each play. The shorter the game, the more likely a player will be willing to start over. It also helps if the gameplay itself is varied and interesting enough that playing through again feels like a joy, instead of a chore.

That is to say, the stronger the chance that the player will encounter hard failure, the shorter the game should be. Consider the JRPG equivalent of a short story or novella instead of a saga.

17. Soft Time Limit.

Why should we abandon this train of thinking now? What if, instead of a hard time limit, where the player is struggling to complete the quest by a clearly-defined, looming time limit, they have instead a soft time limit? That is to say, there is never a point where the player absolutely cannot continue. The world doesn’t solidly end. However, the longer the player takes, some aspect of the game increases in severity. Maybe all prices go up 10% every game week? Maybe all monsters gain five attack and defense points? Maybe some evil NPC-entity is pursuing the player’s party, algorithmically, through the game world, and they must keep moving to elude it? Maybe the PCs are actually degrading over time, losing statistics permanently at a rate that only gaining levels and other stat gain sources can make up for?

In this setup, the worsening condition itself makes the ordinary act of playing harder as game time passes. One notable game (although not a JRPG) that does this is the action-roguelite Risk of Rain, where passing time in exorbitantly increases the difficulty of the monsters the player must face. Eventually the difficulty will rise to a point where the player cannot handle it, but that point will be different from player to player, giving each a subtly different limit.

18. No Combat.

Here’s something interesting to think about. Of the five pillars of JRPG gameplay mention in the introduction, exploration, combat, information-gathering, shopping and upkeep, one might consider combat to be the least dispensable. Without combat, what kind of a game is there? Nearly all of the game’s major tests, choke-points placed to give the player a reason to improve skill, will be combat-based. Through combat the player gains experience that lets them fight better, and gain gold that, through shopping, becomes equipment that increases power, and thus also fight better. How much, then, does it upset a game if we too combat out of it entirely?

The game immediately becomes something more akin to visual novel, although one with a JRPG exploration interface. And that isn’t necessarily bad! In some games, combat becomes a tiresome slog, a consumer of time that’s not actually any fun to work through, especially if it’s got random encounters that are set too frequent. And removing the need to actually fight means you don’t have to have a story that ultimately revolves around fighting, which opens up the range of stories you can tell in the form.

Or, instead of removing combat entirely, consider non-interactive, rapid combat. When a fight would happen in another game, instead look at the party’s stats, compare them to those of the enemy, maybe do a quick internal calculation, and immediately declare a winner. If the party wins they receive the usual rewards, but also is left with whatever wounds they received; the player might want to break out the potion bottles. If they lose, come up with a minor penalty. Maybe send them back to town but don’t take anything away from them. Maybe dock them half their money, but leave them where they are. This works well in a design where characters are healed automatically between fights: in that case, the player needn’t even stop to heal at all, but just forge forward, soaking up experience and gold, until they run into a stronger foe and lose either their exploratory position or some of their funds.

19. Rare Healing.

Consider for a moment the nature of the hit point. They may just be old Dungeons & Dragons’ most lasting mechanical legacy. And they are hugely artificial, absolutely not the way health and wounds work in real life. Tarn Adams, creator and programmer and just about everything-else-er of Dwarf Fortress doesn’t like them; his game has wound tracking down to specific body parts.

In the defense of just about the entire rest of RPG developers, hit points are simple, easy both for a designer to think about, a programmer to implement and a player to conceptualize. But they also could be said to over-simplify one of the most serious things about being a living, breathing organism, a creature in which many hundreds of different things could go wrong, into an integer, a fluid value, a number of fungible points. Because of this, all sources of damage take on roughly equal importance, and are all resolved the same way. If you "take damage," is that damage from a wound, poison, an illness, or some kind of energy drain? Who cares! Drink a Tonic and everything is fixed.

It’s too easy. What keeps people in the hospital for weeks in reality can be undone easily in the field in just about any computer RPG. My suggestion for this item is, if you need to keep using hit points (and I don’t have many ideas for you as to how to do that), make them count. Remove all the sources of easy hit point regaining. Healing potions are rare or don’t exist, healing spells are costly or also non-existent, and inn stays might replenish a few, but not a full heal. To heal a party member up to full requires a hospital stay, or at least some kind of high-powered healing, probably costly. Reviving a character from death would be most expensive of all. It starts to look like the U.S. health care system, doesn’t it?

So, how must the rest of your game change to match this? Well, obviously, in combat design you cannot be cavalier about damage. It might be best to couple this with slow character growth, to make it easier to scale damage without overwhelming a character’ maximum hit points. If a character has on average 12 hit points, then even wounds on the level of one or two points are serious. It forces players to play much more defensively, zealously guarding every point, which can be a rewarding mode of play for some but may not be to everyone’s liking. It makes sources of defense much more important, and thus a much more important investment in your characters’ success, and thus probably more expensive.

20. Rare MP Regen.

A variant of the previous idea, here hit points are easy to replenish as always, but it is magic that is hard to regain, and doesn’t refill by visiting an inn.

Here are two particular permutations of this of note. First is the 24-hour magic point regain. Over the course of a game day, all magic points replenish automatically over time. This can be tricky to do, or at least require some math. This is the basis of the old D&D spells-per-day concept, and thus ultimate origin of the idea that a good night’s sleep is enough to restore a magician’s faculties. The difference here is that you don’t get magic points back by other means; what you have for the day is it, and the player’s only recourse should they run out is to go rest again, so they must carefully guard what they’ve got.

The other variant goes, as they say, all the way with the idea, and players never regain magic points naturally. There are items that replenish MP, but they’re the only way! If they’re available in shops they’re very expensive, and so finding them in a treasure chest is a huge benefit. Players will have to save up to cast high-level spells, which will have to be of comparable power to make up for their rarity, or else console themselves with attack actions or skills most of the time. Designed this way, magic spells start to look more like emergency measures, something to employ when things go unexpectedly wrong, where the party’s bacon must be saved before it gets fried. But since magic use must be guarded and occasional, the player can be rewarded for saving up large amounts of it. Make major shortcuts available in dungeons if the player is willing to spend a lot, or give magic-users attack spells capable of obliterating bosses if they’re willing to expend nearly the entire tank at once.

21. Automatic Heal After Battle.

Some games already do this. Generally I advise against it, for the reason that it flattens game strategy tremendously. You go from having to manage hit point resources over the length of an expedition to the length of a single battle. It’s also easier to design monsters for, since you can design battles around the player’s maximum health instead of the sum of all the monster encounters between inn trips.

But it’s not true that all the party’s state is reset after a fight; players still must conserve magic points and what restoration items they’ve collected. You might think of a game as having an attention budget: players are used to putting a certain amount of attention into a game on average, so if one part of a game is simplified, another part can stand to be more complex to compensate. Over the years, the average attention budget of game design, the total amount of thought and energy that players are expected to bring to engage with the gameplay, has trended downwards. This isn’t just true of video games: if you go back and look at first edition D&D, for example, the rules are much more complicated than fifth edition. Avalon Hill, the noted wargame publisher from the 50s through 90s (and which are now just a prestige brand of Hasbro) published some amazingly complex designs. While you can still find both very simple and very complex games now, the average complexity, the amount of game there is to master in new games, has slowly trended downwards.

What this means is, if you want to focus your gameplay on some unique mechanism or gimmick, you should take a look at the rest of the game. Are there any elements that do not feed directly into that mechanism? You might want to consider reducing its importance in order to lessen the cognitive load on the player, or even removing it entirely.

Remember: it is not your job to provide an insurmountable wall to the player. It is not a difficult trick to make an extremely challenging game. Making a game that’s challenging, but that most players will eventually be able to finish, with practice, that is a worthy subject for your efforts.

22. Money-Based Investment RPG.

We’ve already broached the idea of making your cash-on-hand serve as your health. Why not take this even further and turn it into an investment game? Great liberties would have to be taken with this compared to real life, but if we can imagine a fantasy world with dragons and wizards, we could also imagine one where rich people are honorable and hard-working. "Experience" here translated into market savvy and being able to accurately guess where the market will go. Random encounters could be obstacles on the way to major investment goals, with progress towards them could be represented by map travel. The satirical opportunities, at least, are endless.

23. Time Passage.

Several of the ideas throughout this list depend on tracking the passage of time. Day-night cycles, time-based ability unlocks, limits on resource replenishment, possible monster regeneration (such as with Zelda: Breath of the Wild’s blood moons), time limits both hard and soft, "time is money" investment options and more, all depend on tracking, to some degree, the passage of game time.

Tracking time is an undeniable push towards simulationism, the idea that a game should simulate the workings of a larger world rather than just what happens to exist on screen visible to your party. RPG Maker, to its enduring credit, makes such things possible, but it doesn’t encourage it. None of its many convenience features will lift a finger to aid you in constructing a feature like this; you have to do it all yourself with events, maybe even scripting. Most JRPGs have no truck with it; when they do, like when a game like Dragon Quest III has a day/night cycle, it exists in service of specific puzzles, and generally doesn’t matter except for different townspeople layouts at night.

You can simulate night graphically in RPG Maker with the Tint Screen event command on the second page of the command dialog (under Screen). But, potentially writing new dialogue for all townspeople just for night can be effort intensive, so you might just want to measure time in party footsteps while keeping the convention of only seeing towns during the day. And moving everyone to alternate positions at night can be bothersome, even if you only check to do it upon entry to town. You might want to use a copy of town at night with all the events with their night text and positions, and just direct players there if they enter at nighttime.

As for being simulationist in general… it can do a lot to open up the strategy of your game, but it also open you up to unintended consequences. Ask yourself: if you have a crazy simulationist idea (like many of the ideas in this list), what will the game look like to someone playing "normally?" Then, consider what it’ll be like to someone grinding for levels; to someone speedrunning; to someone just here for the story; to someone trying to take advantage of all the systems because they think they’re supposed to; and, to someone who really knows how the game works, and is seeking to extract maximum advantage from it? You don’t have to support all these playstyles, but you should make sure they won’t crash the game, or stall the player unless they’re warned ahead of time.

24. Permanent Skill Assignment.

Let’s go back to the idea that the player statistic increases might come, not from gaining experience levels, but from items you find. RPG Maker also lets you have items that bestow skills. By using these, to the absence of skills gained from gaining levels in classes, you can allow the player to customize their characters’ abilities in battle.

It’s still up to the player to make sure that skills goes to characters who can use them well. This ultimately gives the player the opportunity to make bad decisions, and potentially irreversible ones, for their party construction. The nature of JRPGs is that often bad decisions can be overcome, with experience grinding, but the effects of a really malformed party might take a player many hours of level building to overcome. This is the kind of thing you find more often in early JRPGs; Dragon Quest III lets you choose which classes your party consists of, and the original Final Fantasy lets you choose which classes you will take with you once, and only once, at the start of the game. While these choices give the player the chance to screw things up greatly for themselves, it also allows for challenge games and increases replayability.

25. "Arcade Style" Increasing Inn Visit Costs.

Now here’s a truly ridiculous idea. Every time players visit an inn, in any town, it increases the cost of inns throughout the rest of the game. I’m not talking about a little, but by large amounts. Eventually they get to be exorbitant, or at least very costly. That may eventually get to a point where the party cannot afford a refresh and play is stalled, unless the player has been careful about rests.

The source for this idea is the arcade action-JRPG Cadash. In an arcade setting, if the player could heal indefinitely it could make the game too easy in a style of game where lesser-skilled players are encouraged to put money into the machine for health and magic restoration. In other forms of play, unless there is something available to replace coin drop as a costly source of replenishment, the player runs the real risk of being stuck indefinitely. I’m sure all you free-to-play producers reading this are salivating at the prospect of using microtransactions for this. I’m actually confused why F2P games don’t take more inspiration from classic arcade games.

For other CRPG and JRPG game formats, escalating inn costs puts a sharp edge on the game’s difficulty curve, forcing players to carefully ration their inn visits and making the most out of every hit and magic point they have. Most RPGs seek to provide a more relaxed style of game where this kind of difficulty is out of place, but it can be an interesting problem trying to complete such a game. Make sure, however, that you’re up front about the nature of such a game, I mean before they even buy it. It’ll harm sales, sure, but it’ll also reduce returns.

26. Battle is a Professional Sport: General.

Okay get this. Your character on-screen represents your sports team, and each "fight" is actually a quick simulated sports match. Instead of picking up new equipment, you change out members of your "party." Note, this has been sort of done before; the difference here is that the game that is the "fight" is not played in full, that is isn’t a sports game with an RPG basis, but an RPG with a sports theme. My suggestion is that the game is entirely simulated, via AI and invisibly, which can greatly decrease how difficult it is to implement (although it’s still pretty effort-intensive in RPG Maker). There isn’t a normal battle scene: all fights are sport matches. As with actual sports, the stakes for losing a match aren’t great, but you do lose money, and you can "Game Over" (I hate that term used as a noun, argh) if you run out (it takes a certain amount of money over time to pay everyone). But so long as you’re careful with your funds, you’ll be okay. The events of each game would be tongue-in-cheek, playing with the conventions of both the sport and RPGs, and can include good things ("You find a hidden treasure chest on the soccer pitch!") and bad things ("Injury! Steinbeck is out for three games!"). There is a ton of fun to be had with this idea, especially if you’re very knowledgeable about the sport and fill it with references.

27. Battle is a Professional Sport: Baseball.

There are reasons that Baseball makes for a better combat metaphor in an RPG than most other sports, most notably because it’s intrinsically turn-based. Think about it. ACTION: >Swing Hard – Swing Light – Bunt – Let Pass – Steal Base. This is hampered a bit by baseball’s length, but most "random encounters" could be handled by three-inning, or even single-inning games. Again, the randomness of the sport means that you can’t hand out a "Game Over" from losing a single game.

28. All attacks cost cash.

I’ve made a lot, throughout this work, on the need, whatever ideas you build your gameplay around, on either avoiding stalls, instances where it’s impossible for the player to proceed, or else making it clear that that’s the kind of game it is. In the early days of CRPGs, this was often not done, so there are some games where there are degenerate states where your party members can die, you can’t afford to revive them, and you can’t survive a fight to earn cash without your party, so you’re stuck.

In this gimmick, all of your attacks cost money. Weak attacks might cost a few gold pieces, while strong ones cost a lot more. You still gain better attacks as you gain experience, but without the cash to back them up you’re stuck with weak attacks.

This is an interesting idea with a lot of gameplay possibilities, but you have to be careful, as I remind you often, to watch out for stall potential. If a player runs out of money, what happens? Is he forever stuck? Does he had a basic attack that costs nothing? If he does, can he travel, without a party wipe, back to an early section of the game, where enemies can be beaten for free?

Also, what does such a gimmick add to the game? If it allows for interesting power gaming, where a player can invest money to gain more later, that might be an interesting strategy for making the player’s group more viable if they’re willing to do without some funds earlier. Or maybe the party’s better off using that money in combat, defeating more powerful enemies as a result, and getting more gold that way? Since really powerful attacks cost a lot of money to execute, it’s not particularly unbalancing if the player gets access to them earlier. You could actually do without the gain-strength-with-level concept, or even not use levels at all.

If this sounds like an interesting idea (remember, it’s just a game, and not necessarily an example of how any sane world should work), you might want to look into investigating the Japan-only DS game Freshly-Picked Tingle’s Rosy Rupeeland, in which money takes on similar importance.

Another problem with this idea? RPG Maker doesn’t support this by default, so you’ll have to do some custom scripting to support it.

29. Lloyd’s Beacon

Another of the cool features of the classic Might & Magic series, that translates well to a JRPG setting, is the spell Lloyd’s Beacon. A lot of games offer spells that allow you to travel instantly to previous towns; Lloyd’s Beacon, on the other hand, has two modes. The first time you cast it, you set a beacon: the game records your current place in the world. At most later times, you can cast it again and choose either to reset the beacon or teleport back to it. It preserves the challenge of having to get back to many places, which involves memory and navigation, but lets players skip that for one location, at a time of their choosing. As the later M&M games get very large, Lloyd’s Beacon rapidly becomes an essential spell for getting around; starting with Might & Magic IV: Clouds of Xeen, every magic-using character in your party has their own beacon, so you can potentially have as many beacons as your group’s size.

Notably, the game Pixel Dungeon contains a Lloyd’s Beacon item, its name kept the same as an homage to Might & Magic.

Some Interesting NPCs

These are often localization dependent, so I’ll usually use the US name for the version of the game that they appear in. These are all from the early Dragon Quest and Final Fantasy games.

1. Howard and Nester (Dragon Warrior)

The original Dragon Warrior contains an interesting relic of the NES era, two characters named Howard and Nester after two comic characters from Nintendo Power, one of them based on then-President of Nintendo of America Howard Phillips, a beloved figure who was like Reggie Fils-Aime or Doug Bowser of his day. The other, Nester, was kind of a low-key mascot for the US branch of Nintendo for awhile, eventually even getting his own game for the obscure Virtual Boy hardware, Nester’s Funky Bowling.

2. The Debate Over "Ruffles" (Dragon Warrior II)

A lady in one town tells you, out of the blue, that "Ruffles" was her father’s name. A man in the same town tells you that, if you see her, that you can tell her that he wouldn’t name their dog Ruffles for all the dragon’s gold in Alefgard. The dog itself, in that same town, merely barks. Such are the concerns of Dragon Warrior townsfolk.

3. What the Hell is Puff-Puff? (Dragon Quest in general)

For whatever reasons, Japanese games are a touch more likely to have risque moments than Western-developed ones. One such thing that recurs in the Dragon Quest series is "puff-puff," which is understood by context to be a vaguely sexual practice but is never well-defined. "Puff-Puff Parlors" are sordid locations where women (usually) dispense this form of pixelated bliss upon male characters (usually). Sometimes characters in a cutscene will perform comedic skits based upon gaining, or being denied, the service in question. The Dragon Ball Wiki informs us that this involved in-joke began in the manga of Akira Toriyama’s Dragon Ball. Akira Toriyama, in case you weren’t previously aware, is famous for doing (along with his studio, of course) all of the character art and monster design in the Dragon Quest series.

Frequently in Dragon Quest games, some character or other will offer to perform a puff-puff. So, what exactly is puff-puff? Some games reveal that it’s the practice of a person’s head being put between the breasts of another, but that doesn’t always hold up, as sometimes characters without breasts talk about performing it. Honestly, the joke is funnier if the exact nature of puff-puff is left unspecified, so players are left wondering what it is that has characters so hot and bothered. It also helps the games get past censors, although notably, while being mentioned in the very first game, puff-puff didn’t make a US appearance until Dragon Warrior III.

4. Roge Fastfinger (Dragon Quest II)

Throughout the game, NPCs tell of Roge Fastfinger, who has the Watergate Key. Eventually you find the cell he was kept in, but he’s escaped! But he hasn’t gone far—if you check the wall of his cell, there’s a place where you can go through. It seems he didn’t plan his escape very well; his tunnel is only two spaces long.

5. Bakor (DW III) Dragon Warrior III takes place in the distant past before Dragon Warrior II. Maybe Roge Fastfinger is his descendant? In any case, in the early stages of DWIII, Bakor is a key-making thief who has his finest work swiped from by a cagey old man living in a tower. Unlike the first two games, you get his key almost at the very start of the game, and it’s very useful too (unlike the early game Silver Key in DQII).

6. Kandar (DW III) Kandar is a midboss who, which his henchmen, turns out to be a fairly annoying opponent in the early game of Dragon Warrior III. Much, much later, in another realm entirely, Kandar turns up again, having given up his life of evil. I guess falling into a volcano will do that to you.

7. Garin (DW I & III) The first three Dragon Quest/Warrior games form a trilogy. We come into things in the first game actually in the middle of the saga. The second game goes into the future and shows you where the kingdom in the first game goes, as well as the world around it, and the last game goes back into the past and shows you the origins of that world. The second game shows Alefgard only in summary, since the scale of the world is much larger than the first game; we only really get to see a couple of locations from the first game. The third game’s version of Alefgard shows a lot more attention to the first game’s locations though. In particular, a town in Dragon Warrior I, Garinham, is mentioned to have been founded by a famous bard from bygone ages. You actually meet that bard in DWIII. You also get to visit the unfortunate town of Hawksness (Damdara in Japanese), a destroyed ruin in the first game, in more prosperous times.

8. Garland (Final Fantasy) It all started with Garland. The first boss of the first subquest of the first of the Final Fantasy series. His motivation, at least to start, is to try to seize the thrown of the starting kingdom; by the end of the game, he turns out to be the motivating factor of the whole game. This is what we in writing circles call "bringing it full circle," and it’s pretty good writing for such a early JRPG. In a nod to the series origins, Garland, or at least a character with that name, returns as the villain in Final Fantasy IX.

9. Matoya (Final Fantasy) A friendly witch helps you out midway through FF I, although she cannot see without her crystal ball. That’s been stolen by the Dark Elf, Astos. You’d better go get it for her. From a gameplay perspective, these quests are all just excuses to sent you to the necessary places to advance the scenario and gain experience and treasure while doing so, and the cart didn’t have a great deal of ROM space to devote to characterization, but every little bit helped to provide the impression of a larger world.

10. Bahamut (Final Fantasy) A helpful dragon that, if you prove yourself by obtaining the Tail, will promote your characters to advanced classes, much better able to handle the end game. This is the only actual optional subquest in the game; nothing forces you to go to the Tail’s dungeon except wanting the final areas of the game to be a bit easier to complete (they’re still no pushovers). Bahamut is one of those names, like Cid and Gilgamesh, that turns up many times throughout the series, helping to lend a series of wildly differing games a sense of continuity; most of the time though, he shows up as a summon monster.

10. The Circle of Sages (Final Fantasy) Off in the corner of a late-game town is these folks, who know whats going on with the story, and will tell you, if you take the time to converse with them. We don’t really know why they’re here, how how they know what they do. They’re mostly just an excuse to point the player towards what they need to do to compete the final areas of the game. Most players don’t question it. The lesson? If you need to tell the players to do some specific thing to win the game, but it doesn’t make sense for anyone in the game world to know what to do, nor is there any reason for the player to listen to them, just make up some wise old men, arrange them in a circle in a slightly-hidden area, and have them specifically tell the player what must be done. Everyone trusts wise people sitting in a circle.

11. The Bats in The Temple of Fiends (Final Fantasy) The first time you meet these guys they just make bat noises. When you return here at the very end of the game however, they have become capable of speech, and are pretty much the last NPCs you’ll meet in the game. It’s very easy to overlook their pitiful story, so stop and have a listen, won’t you?

12. Dancers (Final Fantasy IV)

They don’t figure into the story, but nearly every town in the game has a character that, if you talk to them, will perform a little scripted animated dance for you, with music. Things like that add continuity to a world.

13. Namingway (Final Fantasy IV)

Many Final Fantasy games offer the option to rename your characters, but IV (IIUS) had an NPC whose purpose was to make this possible. Namingway had a distinctive appearance, and somehow appeared in each town ahead of the party (sometimes slightly hidden) in order to give the player the chance to rename any of their characters, just in case they got sick of calling everyone the same thing since the last town visited. There’s a secret to Namingway’s ubiquitous appearances though, one of the best jokes in the whole series, that the player can discover near the end of the game….

14. Gilgamesh (Final Fantasy V, etc.)

Yeah, this list wouldn’t be complete without Gilgamesh. Starting out as a flunky of Exdeath in Final Fantasy V, he’s the only dang character in the series who legitimately appears multiple times, the same guy each time. ("Cid" doesn’t count; it’s different guy who happened to have the same name in each game.) In his first game he starts out as an antagonist who switches sides and sacrifices himself for the party, but he gets thrown into an inter-dimensional rift that, it turns out, allows him to appear in multiple games. His first reappearance (and his first appearance to US fans) was on the Ghost Train in Final Fantasy VI (aka IIIUS). A notable appearance is in Final Fantasy IX, where the NPC that teaches you how to play Tetra Master turns out, in the end, to have been Gilgamesh.

15. The Merchant of the Immigrant Town (Dragon Quest III)

This character is different from the others here because he starts out as a PC. An old man standing in a field on the coast of one of the game’s several continents laments that he wishes to found a new town, but needs a merchant to make his dream real. Merchant happens to be one of the new character classes in DQIII. If you have a Merchant in your party you can leave them there, but in the original version of the game at least, this choice is irreversible, causing the character to leave the party and give up adventuring forever. While you can always go back to the home tavern and create a new Merchant to take their place, they’ll begin at level 1 and have to be trained back up to be useful. It’s just as well, and results in no substantive loss of effort, to leave one of your party members at home for a while and create a new level 1 merchant, and bring them to the new town, which begins to grow rapidly while the rest of you gallivant off fighting evil.

Later in the game, you find out your merchant becomes mayor of the town, but not everyone is happy with his oppressive rule…. Dragon Quests IV and VII contain similar town-building side-quests, as well as the much more recent Legend of Zelda: Breath of the Wild.

16. Rubicant (Final Fantasy IV)

A popular trope for enemies for most of the history of JRPGs is the noble villain. They’re opposed to the party, and that are often a very strong enemy, but are not so bad personally. For whatever reason they’re still fighting the player’s group, but there’s some special reason for it. Maybe they’re a high-ranking member of the enemy military, maybe they’re bound by a sense of personal honor to help the main villain, maybe they’re helping the opposition to protect loved ones held hostage, maybe they’re just trying to prove their worth and power in battle, maybe they believe in the positive aspects of the villain’s cause, such as freeing downtrodden and oppressed monsters, or even maybe they are a bad guy, but are just this way. It’s usually bittersweet when this foe gets crushed beneath the brightly-colored anime heels of your characters. Sometimes they come back later as an ally.

Rubicant, one of the Four Fiends, a class of opponent that tended to figure prominently in early Final Fantasy games, doesn’t come back as an ally; he comes back to challenge the group with the other Fiends in a mutli-boss battle. But even so, Rubicant always gives the party a full refresh before fighting them. Because the guy’s got class.

17. General Leo (Final Fantasy VI)

Leo has exerted an unhealthy fascination among JRPG fans since his game’s release. He’s a strong character, he’s controllable for something like two or three fights, and has unique battle sprites. He also takes the role of noble opponent, in this case a soldier of the enemy Empire who disagrees with the direction their leader has chosen. For his noble efforts, he gets killed by Kefka.

It is worth noting what the game does to establish Leo’s nobility and humanity, which are things that must be shown carefully or else they’ll come off as hollow in a character ultimately opposed to the player. The Empire has done many awful things up to this point, so it’s a bit incongruous that a good person would be working for them. Leo helps to show the player that, even in large rapacious armies, not everyone is necessarily bad, and that people are complex. To Leo’s credit, whenever he appears, he always has good motives in mind, and disapproves of the evil actions of his equal-in-command Kefka. Your PCs also tend to have positive experiences those few times they interact with him.

The Emperor of the Empire, Gestahl, does not actually turn up that many times in the game. (After all, all that business with the evil Empire only matters in the first half of Final Fantasy VI….) By showing his two subordinates, Leo and Kefka, we see the two directions he could have chosen. Which does he choose? Well, Leo dies permanently after you have like three fights playing as him, I guess you can probably figure it out.

The Basics of RPG Maker Fes

This article was originally published on the website Gamasutra; it is presented here with permission, but with only minimal editing, so it goes over some points already covered elsewhere.

There are lots of ways to make computer games. In the old days, people hand-forged instructions on punch cards, fed them into a reader, and in that way input a program that allowed to play Tic-Tac-Toe. Assemblers were common in the 8-bit era, as were grotesquely inefficient interpreted languages like BASIC. C arrived on the scene and became the great default, along with its successor language C++. Nowadays C# sees a lot of popularity, seeing as how it’s used by Unity, but there’s also Javascript, Java, Ruby, Lua, Python, Inform and other things.

One of the more neglected ways to put a game together, these days, is what we might call the construction set package. In the 8-bit era these were more common (and where I got the name from), with popular releases like Pinball Construction Set, Adventure Construction Set, Racing Destruction Set, and Shoot-em-up Construction Kit. Later there were Bard’s Tale Construction Set and SSI’s D&D-based Unlimited Adventures, which still has a following to this day. But while less visible now, perhaps, construction sets are still with us, particularly in the form of the RPG Maker series.

(I can’t leave UA without a cursory exploration of that rabbit hole. Here’s an Unlimited Adventures file archive, a collection of adventures based on classic D&D modules, the open source Dungeon Craft, a UA-workalike adventure editor, and for completeness my own Metafilter post about it with even more stuff. There! Now I can move on.)

The popular appeal to a construction set is that age-old pipe dream of computerdom: enabling people to make something interactive without coding. Programmers often have little idea how appealing this is to the common user. They fail to see what most other people think: learning to code is difficult, time-consuming, obscure and full of traps. The languages seem designed to gatekeep people unwilling to memorize cryptic commands and syntax. Error messages usually point to the precise space that compilation failed, and only report how it failed, which is frequently unhelpful in determining where the true error lies. Once you’ve learned one language, you find out you really want to use a library only available elsewhere. Learning to code, for most folk, sucks.

Learning to code sucks, so the promise of software that allows someone to get by without having to bother with it is great. It’s fueled the rise of things like YoYoGames’ GameMaker Studio product, even though what it provides is actually indistinguishable from coding, just with a drag-and-drop interface. More recent versions even let you drop the DnD stuff altogether and just write text scripts like glob intended. (Lest it seem like I am dumping on GM, I’ve used it for four projects to date, and I can tell you from direct experience that you can make really cool things with it.)

Anyway, GM is not a construction set in the sense that I mean, but more of an integrated IDE. RPG Maker is closer to the ideal of a purpose-built editor geared to produce one particular kind of game, in its case JRPGs in the mold of the 16-bit classics. And even if you aren’t as afraid of coding as the standard use case, it can be useful, even to professional game designers, to have in their toolbox a quick way to make a quickie RPG-styled thing.

For it takes time to make a game, and to make a crazy idea with unusual mechanics takes even longer. If you have the hot coal of an awesome idea burning a hole in your cerebellum, it can help to make a toy version of it as quickly as possible. Often these ideas don’t pan out; the sooner you can test it, and the less energy you expend towards it, the sooner you can find out if there’s actually a diamond in the middle of that coal, or if it’s all ash after all. And RPG Maker, in its area, has the advantage of rapid iteration. Once you’re familiar with its capabilities and know what you can do with it, it’s usually not that hard to make up a working model.

For other users, who are coding averse… in fact, RPG Maker will not save you from coding entirely. Its events feature is basically scripting by another name. But at least it presents your options in the form of lists, reducing the amount of memorization you have to do. And, although it’s kind of a looked-down-upon genre, people have sold and do sell their RPG Maker productions on Steam. Because it’s fairly easy to use, this means there’s many products there that are just cash grabs, and for a new project, being visible above them and not being dismissed as another poor quality game may be difficult. But some people have managed to do surprising things with it. Maybe you can do something new of your own? Maybe I can help you to do so.

Putting In Screws When You Only Have a Hammer

RPG Maker’s been around for quite some time. Wikipedia tells us it dates all the way back to 1992, with RPG Tsukūru Dante 98, for the Japanese PC-9801 microcomputer. PC Gamer published a nice article, by Glada Zavarise, about its rise, how it spread around the Western gaming world through piracy and a series of unofficial fan translations, and how now you can easily buy versions dating back to 2000 through Steam. It also notes that, despite some standout RPG Maker productions like Space Funeral and OFF, the overall consensus is that most RPG Maker projects are lazy resource dumps out there just to take your money.

I can report that there is some truth to this. Yet, it need not be so. Packages of pre-made art are a godsend to small and one-person teams, and need not mean that the game itself isn’t interesting. Whatever the reasons for coding being a barrier to people who want to make games, it is a fact that it is. Lowering the barriers to production means you’ll get a lot of people throwing something on Steam that they didn’t really put much effort into, but it also means sometimes you get some real gems, amazing pieces of outsider art that are greatly worth your time, that couldn’t have been made without the lowered barrier to entry that it provides.

So then, how do you use a package like RPG Maker well? How do you give your project the leg-up over the others? How do you prove to them, to the world, to yourself, that your project is the one-in-one-hundred that justifies the genre?

I’ve toyed around with RPG Maker a bit. And I’ve had some – just a little – experience in the past with getting around the limitations of construction kit software. Now, I don’t claim to be an expert. All I can offer is the process I have used in the past, my research, and whatever communication skills I have in relaying them to you. May they serve you well.

Our Subject: RPG Maker Fes

RPG Maker Fes, for the Nintendo 3DS, is the most recent release in the series. The most popular RPG Maker titles have been those on PC, which are generally easy to use and also permit the use of outside tools for creating resources. By contrast, console releases like this one put strict limitations on memory use, often limiting (or even restricting) your ability to create your own visual and audio content, and are generally a narrow sieve into which to poor your ideas. For our purposes, to examine the process of finding out ways to get around toolset limitations, that’s perfect.

Knowing how it’s limited is the first step in overcoming those limits. RPG Maker Fes, running entirely on a 3DS, has some fairly drastic limits compared to the PC version, but you can do some nice things with it once you understand where the borders are.

It is rare that the documentation for a product explicitly tells you what can’t be done with it. Limitations are left, like dog poop in tall grass, for you to happen upon unexpectedly, sometimes letting you get halfway through implementing a promising game mechanic to discover that it’s been impossible all along. This happens frequently with this kind of thing, and I don’t think there is a way to avoid it completely, except to know as much as you can about the software’s limitations going in. Since the software won’t tell you what those limits are, that requires research. To the Google mines!

Through experimentation, reading the game’s built-in manual (which is not very helpful), and a fair amount of web searching, I’ve been able to determine these facts about RPG Maker Fes’s capabilities, which I list here, along with ways to make up for them.

Map Sizes

All the RPG Maker systems use 2D maps along the lines of classic 16-bit JRPGs. Fes supports three sizes of map: 32, 64 or 128 tiles square. For comparison’s sake, 128x128 is smaller than the world map of the first Dragon Quest. The system supports up to 100 maps in each game however, so creators may be able to get by by joining them together.

Art and Music

This one’s huge: There’s absolutely no way to bring your own resources into a project. You are limited to the character and monster art, map tiles, effects, sounds and music included in the software and DLC. Over time, publisher NIS has updated Fes with additional resources to put into your games. And there’s a good variety of tiles to choose from. You can even mix tiles from different sets, like including Sci-Fi and Modern graphics in your Fantasy game.

Still, this means, if you play a lot of Fes projects, you’re going to see the same graphics again and again. The fact that some are paid DLC means that those resources will be less commonly encountered, but still, because the maximum available art and audio is limited, there is only so much you can do with it. Your characters can only look like one of the included choices, and only a small fraction look like typical JRPG heroes. Meaning, get used to Spiky Blonde-Haired Anime Guy, because he’s going to be starring in a lot of adventures.

But in one way, this is a blessing. Because you cannot have character art that’s not provided for you, you aren’t expected to have it. Your game cannot be accused of using default assets, because everyone has to use them! While that’s unfortunate about Fes games as a whole, it does take the most time and effort-consuming parts of creating a game off your hands.

What can you do to alleviate this? Well, you can focus on characters other than the standard anime hero and heroine types. You can tell the story of the monocled elderly guy on the third row of the graphic selector, who for some reason has decided to spend his declining years beating up slimes. And you can change things up and use heroes from different graphic sets, which Fes has no issue with. That can be especially useful for monsters, which are less restricted by their time period—remember, even the original Final Fantasy had a technological dungeon.

Map Components

We’re starting to dive a bit deeper now. RPG Maker Fes’ model divides maps into three kinds of entities.

 • There’s terrain tiles, which are the ground beneath everything. Every tile in every map has a terrain. Importantly, while you can block passable terrain with other things to prevent intrusion, impassible terrain can never be moved through by means of just walking. (There are vehicles available you can use to allow players to move over them.)

 • There’s decoration tiles, which can be laid, in multiple layers even, atop of the terrain. These can also block movement; they’re not just for show. Importantly, when you use the Erase tool, you always take the top tile off the decorations stacked on a space first. Once all the decorations are gone, the next erase will reset the terrain in a spot to default. You can set these tiles to passable or impassable, unlike terrain tiles, of which, if they are impassible, are always so.

 • Finally, and importantly, there are events. Events are literally everything else on your maps that is not the hero’s party! They’re all called events, even though some things, like your standard bump-walking, info-giving NPC, might not seem like they fit the term. Whatever it is, if it has some effect, even if invisible, it’s an event. Events are all your NPCs, transitions between areas, treasure boxes, shops, inns and any set monster encounters. Many of these kinds of events actually have pre-made versions included (under "Easy create"), that will fill in the right instructions for you. You can learn a bit by taking one of those events, like Treasure Chest, making one and then examining it. But if you create your own events, you can do a lot more.

You can change the contents of a treasure box according to situation. You can offer different shops based on who’s in the party. You can create complex NPCs that say up to 10 different things, depending on where the player is in the game. You can randomize important parts of the game, to improve replayability. And you can discard Fes’ standard random encounter system, offering visible monsters wandering around the map that may attack you if you get close. (For an example of how to do that, keep reading.)

Building Interesting Events

Doing cool things in RPG Maker Fes is largely the process of learning how to use events to maximum effectiveness. Events, for all their usefulness, have some pretty glaring drawbacks. There can only be, at most, one event on a space at design-time. And at run-time, events cannot ever be created nor destroyed. Although an event can trigger combat, once the player defeats the monster, the event is still where it was. There is no way to delete it, so without special consideration, the combat could immediately be triggered again. This is where coding, inevitably, comes into play.

Every event has a number of basic properties that provides some default behavior, like walking around randomly or whether the player can pass through it. If the default behavior is enough, you don’t have to do anything else to it. But to do things more complex than that, you’ll have to put in what Fes calls "contents."

Basically, these contents are instructions. Each event can have up to ten "pages" of them. These pages are not just an organizing system, but are how you vary the workings of an event, how you give the event the circumstances under which different sets of instructions will execute.

For every event, you must define under what circumstances it activates. The options are:

 • "When character touches" means when the player’s party tries to enter the space containing the event. That is to say, that’s what causes the event to evaluate and perform instructions. (Exactly what instructions are performed can vary, but we’ll get to that.) Note that, if the event is set so that "Pass judgment" is off, the player will not collide with the event and will step into its space. In this case, the event will occur when the player has fully moved into its space.

 • "When touched by event" is similar, but it is the event that must perform the colliding movement.

 • "Investigate" requires that the party be facing the event in an adjacent space and that the player must press the "A" button. This has a plethora of uses: you can use it to initiate conversations, open treasure boxes, search for items or clues, flip switches or open a shop window.

 • "Use item" is a little esoteric. Over in the Item database, you can create "Normal" items that the player can Use but that have no effect. This is as opposed to "Special" ones that you define with an effect, like healing a character or attacking opponents. So then, what is the purpose of "Normal" items? Well, you can set an event to occur if the player uses an item "on" the event. (Yeah, that’s a pretty rare occurrence. I do not know why this infrequently-used behavior gets the honor of being called normal.) Once set, it will allow you to specify which item the player must use to activate the event.

 • The final option, "Auto-execute," means that the event triggers constantly while the player is on that map. It doesn’t matter how close the party is, or if the event is even on the same screen of the map. Every frame that the map is loaded (and another event isn’t already running), the event will activate! It is very powerful, but tricky to use. When an Auto-execute event performs any instruction, the map engine will ignore controller input on that frame. Meaning, unless constructed just right, even one Auto-execute event will softlock the game.

Note: different versions of RPG Maker share a few design aspects. Some PC versions add another option to run events, "Parallel," which provides this automatic activation without softlocking the game.

When an event activates, it then picks one of its content pages to run. All events have at least a Page 1, which is the fallback. Every other event page can have up to two conditions tied to it. When an event executes, the engine starts at the highest page number that exists (10 if there is one, then 9, then 8, etc.) and checks its conditions. When it finds a page both with contents and whose conditions are satisfied, it, and only that page, will execute. If the page’s conditions aren’t met, it’ll go to the next-lowest page number and try that one. If it reaches Page 1, it always executes. It only executes one page per event; once it finds and runs a page, execution ceases until the event is triggered again.

(In order to use Auto-execute, you must make sure that Page 1 is empty. Since it always executes, the event will always occur and block out anything the player tries to do.)

Here is a minor nuance. The engine is constantly checking those event conditions for all your events, every frame, even when they’re not executing. You see, each page of an event contains more than just a list of instructions, but also a set of properties for that event, like its graphic, whether it can be walked through, and so on. These properties affect how the event behaves as its conditions are met, even when it’s not running. With some thought, you can use this to adjust behavior dynamically, without executing any of its instructions.

In the example project (see below), we use this property to reset all the wandering monsters at once, whenever we like. The only thing in its system that records whether an event monster has been fought or not is the state of one of 500 built-in switches. When we fight a monster, that event’s numbered switch is set. That causes the second page of the wandering monster event to activate. And that causes the event’s graphic to be replaced with nothing, and causes it to no longer attack the player (Page 2 has no combat content), and it also sets the flag that allows the party to walk through it. When you leave the area, or use the healing spot near the entrance to the dungeon, an event sets all the switches from 0 to 100, the ones we reserve to track wandering monster state, to off. This immediately re-activates the monsters we already fought before, not only causing them to fight the player again, but making then visible and causing them to block movement.

What Can’t You Do

So, what can Fes’s scripting system not do? Well, quite a bit unfortunately:

 • Once the game is running, there is no way to add or delete events. The best you can do is set the event to make itself invisible (set its visibility to "transparent") and execute no contents when a condition (usually a switch) has been met.

 • There is no way to expose an object’s coordinates to the scripting system, so you can’t set an event to detect when the player is nearby, only through collision.

 • There’s no way to do automated "cutscene" battles in the game’s engine.

 • There is no string functionality. The only variable types are Boolean (in the form of "switches") and integer ("variables"). A side effect of this is that, while it’s possible through events to let a player change a character’s name, they cannot pick an arbitrary name. It has to be an option that you provide for them. You can, however, set some item and enemy statistics to point to an integer variable, allowing scripts to adjust them during the game.

 • Randomness, that’s visible to the event engine, is quite lacking. There is no system to easily assign a random number to a variable. There are ways round this, but they’re a lot of work.

 • Speaking of a lot of work… All scripts live with their event at its given location in the game world. You can copy an event to make a duplicate copy of its scripts, but you cannot "link" to it. So if you make 52 copies of an event so they’ll all do the same thing, but then find an error in the script, you’ll have to go through and make the changes to all the copies. So my suggestion is, first make one copy of the event and then test the hell out of it.

Make absolutely sure it does what you want. I suggest making a backup save of your project at that point. Then, only when you’re pretty sure you won’t need to fix any bugs, start copying the event to all the places where you’ll need it. Honestly, you’ll probably still have to edit it later, if just to customize the individual instances (like, cause each event to have a different appearance and produce a different monster fight), but you can at least reduce the number of times you have to do it.

A Wandering Monster System for RPG Maker Fes

Using all of the information above, and about 13 hours of grunt-work according to the timer, I have constructed a simple example project in RPG Maker Fes. It’s mostly a single map dungeon filled with wandering monsters roaming around. The system expects most monster fights to be "random," meaning, your party is attacked out of the blue by unseen assailants; letting the player see his opponents on the map screen lets them decide if they want to risk getting into a fight or not, adding more strategy to the game.

You choose which of three characters you want to take into the dungeon, then build their levels up by carefully choosing which enemies to fight. Starting with slimes, work your way up through goblins, floaty things, angry fungus, demon girls, giant spiders and mean ol’ orcs, finding treasure along the way.

You can heal your character up at any time by visiting the healing spot near the dungeon’s entrance, but doing this will revive all the monsters you’ve already killed! But that can be a good thing, since it gives you the chance to earn more experience points. Healing there also gives you the chance to save. When you think your level is high enough, leave the dungeon and try to fight the boss orc to win the game. You can turn on an in-game timer (that, due to engine limitations, only counts up outside of battle) to find out how long you’ve taken on your run.

The design of the game is "unlocked," that is, you can open it in the full version of RPG Maker Fes and look at how I put it together. Or, if you just want to play it, it can be downloaded using ID ci9u6rkm from within the free RPG Maker Fes player available on the 3DS eShop.

If you decide to implement such a system in your own game, my suggestion is to devote a block of 100 switches to the random monsters, and reset the whole block when leaving an area. In my game there’s only one dungeon so it’s not a huge deal, but if you have multiple areas, those 500 switches will run out fast. So instead of giving every monster in the whole of the game its own switch, you can reuse them in each dungeon, so long as you don’t go over the number of switches you’ve reserved. This means that leaving an area will reset all the monsters in it, but you can’t have everything.

Sources

The built-in manual for RPG Maker Fes, although it is woefully incomplete.

The RPG Maker Fes GameFAQs board. There’s a lot of good information there.

The RPG Maker Fes Wikia.

The RPG Maker Fes Discord.

A lot of experimentation on my behalf.

Glossary

Battleback – The background to a combat scene. Later versions of RPG Maker support up to two such backgrounds, the ground on which the participates stand and the scenery behind them. If an encounter specifies a battleback, it will use that (them). If it doesn’t, then if the fight takes place on the overworld, it will attempt to select a background matching the kind of region the encounter occurred on. If the battle is in a non-overworld area or the engine cannot otherwise automatically decide which background to use, and none is specified, it will use a blurred version of the map.

Battler – In RPG Maker products, a special version of a character graphic designed to be used in combat scenes.

Character Generator – In VX Ace and MV, a special module that will let you construct graphics for your characters from pieces. It’s especially useful because it’ll create consistent character walk graphics, battlers and face images all at once, at a huge time savings, with the drawback that you’re stuck with the default art style.

Commercial – Google’s dictionary says it means "making or intended to make a profit." If you intent to sell your work for money, then it is commercial use. Some assets are okay to use for non-commercial use, but not commercial, or they may have different, stricter requirements for commercial use. If someone makes assets available for free use in commercial projects, then they are probably really nice people! If you use their work, it is not a bad idea to leave them a note of thanks, or rate their work up, or follow them on social media.

Construction Set - A type of computer program designed to help less-trained or less-technical users create some work more easily. There used to be many construction set programs, like Pinball Construction Set, Music Construction Set, Adventure Construction Set, Garry Kitchen's Gamemaker, Shoot-Em-Up Construction Set, Bill Budge's Pinball Construction Set, Unlimited Adventures, The Bard's Tale Construction Set, and many more. They have diminished in prominence in recent decades, but RPG Maker is an example of these.

Creative Commons – A kind of midway between complete restriction and public domain, this is a kind of content license. There is sophisticated legalese behind the idea, but ultimately, this means you are explicitly allowed to use some content, like graphics, music, sound effects or even games or parts of them, for your own purposes, so long as you do not then claim it to be yours; it still belongs to its creator, you’re just allowed to use it in your own work. There may be other restrictions too, for there are a variety of Creative Commons licenses. Always read and follow them. A popular restriction is not to use something in commercial work.

CRPG – "Computer Role-Playing Game" A role-playing game adapted for play with a computer moderator. Nowadays that tends to look mostly like you’re just exploring a world as would Mario, Doomguy or Solid Snake, but, fundamentally, the computer still decides what you’re facing and what kind of challenges will appear, and of rolling the virtual dice whenever some statistical decision must be made. While technically the term describes any RPG played on a computer, the term is used by folk like cataloger of the genre Felipe Pepe and the CRPG Addict to mean Western-developed and influenced games, separate from JRPGs.

Damage (1) – The numbers your characters produce in battle that are subtracted from enemy hit points.

Damage (2) - The advent of MMORPGs, especially World of Warcraft, have pushed the idea that character classes should be one of three types, "Tank," "DPS" or "Damage," and "Healer." In real-time games, this is sometimes called "DPS," for "damage per second," but that's less applicable for RPG Maker projects. Generally this is a character that prioritizes doing damage to enemies above all else, including durability. Traditionally these are wizard types. The philosophy here is that more damage means faster battles means taking less damage overall.

Database – Generally, a database is a storage of data. In RPG Maker, it refers to your game’s database, all of the "facts" that make up your game. Your characters, their stats, how they grow, the items, the monsters, their traits and skills, the graphics that define all this stuff, and more things too, all of this goes into the database. About the only things that are in your game that’s not part of the Database are the maps of the places in your world, and the events on those maps.

Design Time – When you are making your game or other project, when it isn’t running.

DPS - See Damage (2).

Encounter – In RPGs traditionally, an encounter is one or more creatures that the players happen upon. They might be hostile or friendly, protecting a lair or just wanting to trade, looking for food or looking for trouble. In JRPGs, encounters are almost entirely battles, and the game dispenses with things like reaction checks, approaching and parley and gets right into the knocking of heads. In RPG Maker, an Encounter consists of a Troop, which is a group of Monsters. The Encounter can then be put into a monster Region, where it can be generated randomly. This is if you’re using a random encounter system. If you’re not, you’ll have to generate your own encounters somehow, by using events.

Encounter Chips – This is RPG Maker Fes’ word for monster encounter regions. See region(1).

Event – In RPG Maker lingo, anything on a map that’s not the player’s characters, terrain tiles or encounter regions. This means NPCs, animals, transitions, chests, inns, shops, teleporters, traps and anything else, capable of independent action or not, and visible or not. Without events, you can have a game (monsters can be generated randomly), but there won’t be any scenario, way to win, or any means of moving to a map other than the starting one. Creating events is the most challenging part of building your game, but it can be very rewarding.

Expedition – A term this book uses, borrowing from the concept from old-school role-playing games of the time between "trips to town." In town, presumably the party visits the inn and replenishes their HP and MP; then it goes out into the wilds and dungeons and fights with monsters, gradually eroding the party’s resources, until another inn visit is needed, ending the expedition. Looked at this way, RPGs, even dating back to the origins of the form, are just elaborate games of chicken: how far do you push your luck before deciding to play it safe and find a town for a refresh?

Gold – The universal unit of currency of nearly all RPG worlds. Despite being a fairly useless metal for industry, everyone everywhere seems to agree that a coin of a soft shiny metal is of value and is legal tender for all goods and services. The idea of the value of gold goes back to antiquity, although it’s worth noting that a "gold coin" meant vastly different things throughout the ages and through different cultures, and many people engaged in coin shaving and dilution with alloys, gradually replacing the actual gold content of the currency. Everyone’s got an angle.

In fact, some RPG worlds don’t use gold pieces as their financial basis. The Dragonlance D&D world of Krynn uses steel pieces, just to be fancy. Final Fantasy worlds use "gil," whatever the hell that means. The Algol System from Phantasy Star uses "meseta," Hyrule adopted the "rupee," a bunch of Capcom games use "zenny," many games (and RPG Maker by default) just call it "G," and so on.

A very small number of games use multiple currencies, and this can be a very interesting design angle to explore, but I encourage you not to do this unless you have a very good reason; the classic Might & Magic games, for example, also use gems as a currency, but they have specialized use and are used for completely different things than gold.

Healer – The advent of MMORPGs, especially World of Warcraft, have pushed the idea that character classes should be one of three types, "Tank," "DPS" or "Damage," and "Healer." Healers have a unique role in combat in that they keep characters going by directly restoring their hit points, the things that they need to keep fighting. Hit points are the primary thing limiting the length of expeditions, so anything that restores them should likewise be limited in number, so healing almost always costs magic points or some consumable item. You can generally get a sense of how serious a game is about its combat game by how much it restricts healing; if there's lots of ways to get hit points back, in large quantities, with little cost, it usually means an easy game. Conversely, if healing is costs a lot of magic points per hit point regained, and/or healing items expensive or requiring inventory space to carry, it makes for a more difficult game.

In the classic D&D setting that most JRPGs, knowingly or unknowingly, borrow from, healers are actually decent fighters too, but most JRPGs make them weaker than that, such as with Final Fantasy's White Mages, which is probably a better design choice anyway given their importance.

Hit point – An elemental unit of damage, the atom of a creature’s health and one of the CRPG and JRPG genres’ residual borrowings from Dungeons & Dragons. A given combatant has a certain number of hit points. Attacks subtract from this total, and when a fighter reaches zero, it dies. In tabletop RPGs, the story doesn’t always end there; there are mechanisms that games use to give players last-ditch chances of saving a character, like "negative hit points" and "death saves" and "last-second first aid" and "revival spells." CRPGs don’t use that kind of stuff, but on the other hand, death is even less permanent in them: usually you can take a character to a church or similar facility and, in exchange for a small "donation," they will easily and quickly perform a miracle that has evaded all of earthly medical science for the entire history of human-kind: bringing the deceased back to life. There are also frequently items you can use that can recall the dead on a use. If your party magic-users are advanced enough, they might even be able to perform this feat for the mere exchange of magic points. In some games, characters are even revived immediately as soon as a fight ends.

Some games seem to recognize the ridiculousness of this, how, if a civilization can so easily overturn death itself, it would be impossible to have any tension, as however many millions the bad guys kill, the corpses should merely have to wait for the next available priest, and rename death to "unconscious" or "knockout." Many of these games still leave the names of revival spells things like Life or Revive.

Anyway, hit points are usually easy to regain with healing spells or items, so long as you devote some character’s turn to restoring them before the total hits zero. It’s just one of the many silly little conventions of what is, truthfully, a pretty abstract kind of game.

HP – See hit point. However, as sometimes happens when words cross languages, in Japan the term "HP" may have lost something of its original connotation. Many games use the term "HP" without ever bearing a hint that the H stands for Hit.

Inn – A source of refreshes, usually in exchange for a small cost in gold. Some inns charge based on the number of members in the party. Many inns cost more depending on how far along in the game the town is, but one nearly universal aspect is that they’re all very cheap relative to the service they provide. This is usually done to prevent the possibility of stalling: if the party has spent so much money so they can’t visit an inn, but is too worn down to survive a fight and earn enough money for a stay. If inns don’t cost that much to begin with, then the party can probably just sell some random junk and get the cash that way.

JRPG – "Japanese Role-Playing Game" Technically these are a sub-genre of CRPG, but at the founding of the genre (which was inspired by Yuji Horii’s early experience with Wizardry and Ultima) the differences and distances between Japan and the US allowed the genre to progress in its own direction, much like how species on separate continents diverge from each other by being separated. As a result, many thing are done differently in JRPGs: the many dangers of exploration are largely simplified to combat, which is usually done in a simplified mode without allowing for movement, outfitting has been reduced to buying equipment and healing items in town, traps are removed from the game, permanent injury (other than that dictated by the plot) does not exist, conditions (of which death is but one) are easily remedied, and generally events of all types are derandomized. RPG Maker is a system devoted to allowing users to make this specific type of game, in a style common in the 16-bit console era of video gaming.

Magic Points – As hit points are to the body, magic points are to the mind. A unit of mystical energy, these are a resource that exists, basically, just to prevent parties going around casting Firaga at everything. Unlike hit points though, running out of magic points poses no ill effects other than not being able to cast spells, which is a huge liability to a wizard, but to a knight, not so much.

It is worth noting that, while magic points is another convention that predates CRPGs, it doesn’t date back to Dungeons & Dragons. D&D has infamously stuck with its own idiosyncratic magic system, called "Vancian magic" after late fantasy and sci-fi author Jack Vance, writer of books such as The Dying Earth and The Eyes of the Overworld. In Vancian magic, spells are akin to complicated mathematical formulas, which must be memorized before use, and the effort of casting them requires working them out in your head, a process which also obliterates memory of the spell and requires it to be memorized again. Many have remarked that it doesn’t make a lot of sense, but of course, being magic, it doesn’t have to. Also, many have remarked that it requires rather a bit of bookkeeping, and they have something, which is why magic points were adopted by many other systems, and from there the convention made it in CRPGs, and from there JRPGs, and so we arrive at the present day.

MP – See magic points, although note that this is another of those terms, like HP, that has had its meaning eroded, and some JRPG players may not even realize its origin.

McGuffin – A term from cinema, reputedly invented by Alfred Hitchcock, for something that everybody, the good guys and the bad guys, wants that drives the plot. The point of the McGuffin is that it doesn’t really matter what it is, it’s just an object of great importance. In games, the McGuffin is often a set of things hidden around the world or at the end of dungeons. Some video game McGuffins are Triforce Pieces, Element Orbs, Sanctuary Songs, Medallions, Star Pieces and many other things.

Monster – Generally, this is just anyone your party is fighting against, even if they’re humanoids, even if they’re actual humans. Some games ascribe the term special meaning: in the Dragon Quest games, monsters actually seem like they’re kind of a race (or races) of spirits, or fairies, or yokai, or something, and while generally opposed to humans, some of them may be friendly. But for the purposes of this book, "monster" is a term meaning an opponent in battle.

Non-Player Character – The player’s party consists of PCs, or player characters. Well, NPCs are characters not in the party. In short, they’re everyone else in the world that you can encounter, talk to or otherwise perceive. Because they probably will never get in a fight, they usually don’t have statistics – although some TTRPG adventures will define them anyway, because sometimes players get it into their heads to just wreck things. In RPG Maker, NPCs are usually events set up to print text on-screen if the player’s group talks to them.

NPC – See non-player character.

Overworld – A place generally understood to be on the biggest "level" of the game’s world. Conceptually, most JRPGs have at their widest scope a big scrolling world map that contains many other places. This world map is the overworld. The places on that map are things like towns and castles and dungeons and whatever else is in that world; when the player enters those places, the scene effectively shifts to a "zoomed in" map showing its contents, at a smaller scale. On the overworld, your characters may appear huge, towering over forests and mountains; this is just a concession to scale, to keep your characters visible while you explore. The scenes in towns and dungeons show your characters closer to their actual size.

Party – A group of characters who the player controls, guiding them in their quest to save the world, or whatever else they have as their objective. Individual characters may come or go, or die or be revived, but the party itself, as an entity, continues. If all the members of the party are dead at once, it’s a party wipe.

A philosophical question for you: if a party of characters changes out all of its members, so none of the originals remains, is it really the same party? RPG Maker answers this conundrum with yes, because it is still the one the player controls, with the same inventory. Just call the player Theseus, why don’t you.

Party Wipe – When all the characters in your party are dead and thus cannot continue to play, that is called a wipe. In a TTRPG, that’s the game, the PCs didn’t survive and you probably should find something else to do with the rest of your evening. In most CRPGs and JRPGs however this is a temporary setback at best; you can just go back to your last saved game. That is, unless the game features something called permadeath… then you’ll probably have to start over.

PC – See player character.

Permadeath – The default state for TTRPGs and roguelikes, in a permadeath game, if a character dies, it is (for the most part) permanently gone. You only really have one try at something per game. Essential to the concept is the idea that even saved games are no remedy for this; in a permadeath game, saves are erased upon loading, so you cannot use them as a checkpoint to which you may always return. If your character dies (permadeath games are usually single-character), you must begin again.

Permadeath is a somewhat controversial idea, and in some cases it is grossly misapplied. It makes the most sense in either randomized games of limited information, where being able to return to old saves negates the dangers and costs of making a bad decision, or in arcade-style games where there’s no saving anyway.

Permadeath, perhaps counter-intuitively, doesn’t necessarily mean there’s no way to bring the dead back to life (many TTRPGs have resurrection spells, after all), but in a single character game it might as well mean that since without another character to do the reviving you’re pretty much stuck.

Player Character – aka "PC." A member of the player’s party, one of the people who are adventuring together under their guidance. In a TTRPG or a MMORPG, each character usually has its own PC. In a CRPG or JRPG, one person usually controls all the PCs in the party.

Plug-in – In RPG Maker MV, a collection of scripts that provide additional functionality to your game. Searching online can find you a good number of these. XP and VX also allow editing your game’s scripts, but do not provide an easy way to collect and install them.

Public Domain – A trove of wonders. "Public domain" refers to a thing literally owned by the public. It belongs to everyone! What a terrific concept! If it’s public domain, you can use it however you want. Further, you can change it however you wish, and even claim ownership of the changed version. It is a great thing. The public domain enriches us all, and over time, older works naturally fall into the public domain. Unfortunately, that which is owned by everyone cannot be easily controlled by corporations seeking to charge for access, so powerful economic interests continually lobby to extend the period by which works can continue to be owned. (Disney is particularly evil about this.)

A creator of a work can declare it to be granted, or donated, to the public domain, where anyone can use it. If you happen upon the work of someone who has donated it to the public domain, you can make whatever use of it you want! These people are very nice, and deserve our utmost respect.

Refresh – The restoring of all the hit and magic points of the characters in your party. Most games make these readily available, but only in certain places in the game world, like inns. The availability of refreshes gives players an anchor point, a place to use as a base of operations for exploring. Places far from refreshment points are thus much harder to reach and explore than those that are nearby. Because of this, moving a town even a short way can affect the game balance.

Region (1) – An area of a map where a particular assortment of monsters could appear. In XP, one set of Troops can be chosen from to appear randomly on a whole map. In VX Ace, MV and Fes, you can decide for particular areas individually by painting Region tiles in a special map editor mode. (Fes calls these areas "Encounter Chips.")

Region (2) – VX Ace and MV: In overworld maps (in this case, those that use the Overworld tileset), unlike the other tilesets, the tiles in the palette are not what you actually place in the map. Most of them are more like "regions," areas of that terrain that are placed conceptually, not directly. The RPG Maker editor automatically places transition graphics between these regions to make them look nicer, taking the sharp edges and corners off of the tiles that were frequently seen back in the MSX and Famicom/NES era of JRPGs. Behind the scenes, RPG Maker’s editor uses lots of different tiles that it places intelligently to smooth out the perceived terrain. If you decide to edit the overworld graphic tiles, or make your own, by sticking to the same format as the overworld tiles that come with RPG Maker, you help its engine place your own tiles smartly, and ultimately save yourself a lot of hassle while keeping your graphics looking good.

RPG Maker XP works a bit differently. There is no "overworld" tileset, but the first seven tiles (those on the top row of the palette) work as "autotiles," and connect and join to each other in a way similar to the overworld tiles in later versions.

RPG – "Role-Playing Game" Speaking broadly roleplaying has always been with us, but formalizing it as a game system is something that, if it doesn't originate with Gary Gygax and Dungeons & Dragons, then at least plays

RPG Maker – A construction set program, or more accurately series of programs, designed to help users construct JRPG-style games of their own. The first RPG Maker was a Super Famicom game, but successive versions have been made for a variety of consoles and even PC. The RPG Maker sections of this book mostly have to do with recent PC versions, especially the most recent one as of this writing, RPG Maker MV.

Runtime – When your game is being run, either in testing or when in the hands of your players. For the most part the code you write is "dead" until then, incapable of action.

Scenario – A fancy word that sort of means story, but carries connotations beyond that. The "story" of an RPG is actually created by playing it; a scenario is more like a situation, a state waiting to be resolved by the player’s actions. The word scenario puts the game’s focus on what choices the player makes, which may or may not affect the game’s written narrative.

Sprite – These days people tend to use it to mean a raster graphic image still, often one made in a pixel-art style, but the technical definition is an independently-movable block of graphics that appears overlaid (or sometimes, behind) the character or bitmap background data on the screen. In the old days, a sprite (sometimes called a MOB, a player or a missile, depending on the manufacturer) was a name for a specific feature of the graphics hardware. Because the graphics chip took care of displaying them, they were versatile and useful for many things, but most particularly player characters and enemies. In a classic JRPG, characters and NPCs are usually shown on-screen as sprites.

More recently, "software sprites" entered use, which were a block of data drawn on the screen and manipulated by image manipulation subroutines, but which the greater program treated as if they were hardware sprites. These days, a "sprite" is likely to be either a texture drawn on a flat polygon or surface, or a software sprite that’s drawn on that surface.

Tank - The advent of MMORPGs, especially World of Warcraft, have pushed the idea that character classes should be one of three types, "Tank," "DPS" or "Damage," and "Healer." A tank is a class designed to absorb damage, preventing it from reaching other characters. For this reason they usually have high hit points and/or Defense. It's ideal if the character also has some way of causing enemies to target them, instead of other, less durable characters, but RPG Maker MV's basic battle system doesn't appear to support that. So, the Tank concept is not as suitable with RPG Maker as it is with some other games.

TTRPG – "Table-Top Role-Playing Game." A Japanese-invented, but useful, term for traditional role-playing games, the kind you play with friends, expensive books, pencils, paper, and, ideally, snack chips. In nearly all cases, one participant assumes the role of the referee, or "gamemaster," who knows the layout of the dungeon, where the monsters and treasures are at, and decides everything that happens outside the actions of the characters. The first popular example of these was Dungeons & Dragons. The original CRPGs were attempts to make possible single-player adventures, where a computer played the referee. To this day, it remains true that, even with the powerful and relatively inexpensive commodity hardware available to people, that few computer RPGs have the flexibility and creativity available even to a mediocre gamemaster. The closest the genre has come has been in the genre of roguelikes, which are a huge kettle of fish besides. (For more on those, the author points you to his book on the topic.) These days, CRPGs usually punt on the issue, presenting vastness of world and abundance of pre-made content as substitutes.

Wipe – See party wipe.

Further Reading & Additional Resources

 	The Secret History of RPG Maker: https://www.pcgamer.com/the-secret-history-of-underdog-game-engine-rpg-maker-and-how-it-got-its-bad-reputation/

 	The Top 5 RPG Maker Games: https://www.pcgamer.com/the-top-five-rpg-maker-games/

 	Are RPG Maker Games As Bad As People Think?: https://www.eurogamer.net/articles/2018-09-01-are-rpg-maker-games-as-bad-as-people-think

		The RPG Maker forums at http://rpgmakerweb.com/, and other forums like it on the internet, are good places to look for ideas and tips. I personally found the thread titled "Call an event every time the player takes a step," started by user jonthefox and with many responses, useful.

 	The RPG Maker subreddit

 	How to Host a Dungeon ($5), by Tony Dowler, is a solitaire pen-and-paper game that, by playing it, creates an overview-level diagram for an underground cave complex that you can then use for your own purposes. It is one way to spark your own imagination when creating areas to explore.

 	The Dungeon Builder’s Guidebook (TSR 9556) by Bruce R. Cordell. While obscure now, a bit of internet searching might find you a copy. While made for AD&D 2nd edition, much of the advice given is timeless, and of use to anyone constructing game dungeons.

 	The World Builder’s Guidebook (TSR 9532) by Richard Barker. It’s the same idea, but geared towards creating fantasy words for gaming. It is hugely inspiring for the breadth of worlds it suggests alone.

 	TTRPG rulebooks & guides.

 	Any adventure modules. Many classic D&D dungeons remain among the gold standard for interesting gameplay. Adapting these kinds of ideas for JRPG play is not trivial, but may be worth the effort.

 	May I take a moment to praise GameFAQs, and the enthusiastic fans who have posted there for over twenty years? Most people turn to it and similar sites when they need a walkthrough, but if you take the time to explore it, you’ll find a wealth of decent in-depth information on a wide variety of games, especially for classics! Every source used in this article was found there:

 	The battle formulas for Dragon Quests I and II were discovered by tyan8bit, and described in his FAQ at: https://gamefaqs.gamespot.com/snes/564868-dragon-quest-i-and-ii/faqs/61640. Notably, his discussion comes with detailed disassembly of the relevant parts of the code.

 	Used to confirm the behavior of item stats is this item guide to DQ/DQ I: https://gamefaqs.gamespot.com/snes/564868-dragon-quest-i-and-ii/faqs/27862

 	Slartifer does something similar for DQIII at: https://gamefaqs.gamespot.com/nes/587249-dragon-warrior-iii/faqs/64752. There’s another guide, specifically written for the Gameboy Color port of the game, written by Sk8erpunq, at https://gamefaqs.gamespot.com/gbc/450388-dragon-warrior-iii/faqs/70252.

 	And Fafnir_Volsung has one for DQVIII, useful for seeing how the formulas have evolved over the years, at: https://gamefaqs.gamespot.com/ps2/583527-dragon-quest-viii-journey-of-the-cursed-king/faqs/44904

 	On the Final Fantasy side of things, AstralEsper covered the first game: https://gamefaqs.gamespot.com/nes/522595-final-fantasy/faqs/57009

 	J.L.Tseng examined the third (Japanese version): https://gamefaqs.gamespot.com/nes/563415-final-fantasy-iii/faqs/29389

 	Deathlike2 explicated the formulae of Final Fantasy IV (US 2) at: https://gamefaqs.gamespot.com/snes/588330-final-fantasy-iv/faqs/54945

 	Terii Senshi discussed the formulae of Final Fantasy VI (US 6) at: https://gamefaqs.gamespot.com/snes/554041-final-fantasy-iii/faqs/13573

 	And Final Fantasy VII has multiple FAQs available, written by TFergusson. Battle Mechanics: https://gamefaqs.gamespot.com/ps/197341-final-fantasy-vii/faqs/22395, Party Mechanics: https://gamefaqs.gamespot.com/ps/197341-final-fantasy-vii/faqs/36775 and Enemy Mechanics: https://gamefaqs.gamespot.com/ps/197341-final-fantasy-vii/faqs/31903.

	Felipe Pepe’s The CRPG Book: A Guide to Computer Role-Playing Games, from 2017, mostly covers CRPGs but is still great to search through for ideas.

Some useful tools to aid you

 	For resources, a great place to get well-made graphics for a cheap price, suitable for the final product in a minor project or a placeholder for customized visuals for more ambitious work, is the Kenney line of graphic assets, available on itch.io, as of this writing, in three large bundles: #1, #2, and #3. They are usually sold for $10 each, but if you are seriously lacking in financial resources may be seen on sale once in a great while.

 	Of course, there’s RPG Maker itself, available both on its own and through Steam. Although a little pricey, if you’re willing to watch for specials and bundles, it’s possible to obtain copies at a discount. Word of this writing is that there are plans for console versions of RPG Maker MV, and there is a version, RPG Maker Fes, that can be gotten for the Nintendo 3DS series of portable game systems.

 	If you’re planning on working with graphics at all, you’re going to need an image editor. There is Photoshop of course, but not only is it hideously expensive but maker Adobe is known to be a ruthless and obnoxious rights-lord. You can easily make due, for most purposes, with the excellent free program Paint.NET for Windows. For folks in need of something hardcore, there is the (unfortunately named) open source image editor GIMP, which is extremely powerful, if looked down upon by "real" image professionals, those gatekeepers. Both will suffice for making pixel art of the sort you’ll want to produce for RPG Maker projects. If you want to go a bit farther, the sprite editor Aseprite is pretty good for making animations. And for making character art, RPG Maker MV itself comes with a decent "paper doll" style character sprite creator.

Places to look for inexpensive/free resources

	The official RPG Maker website sells additional assets as DLC; some of them can also be purchased through Steam. Users sometimes post assets on their forums. Notice, however, when using such resources, to always pay attention to the terms of service. End users can often afford to be ignorant of such things, but if you wish to make games and distribute them, for free or for pay, you must pay attention to the terms of use. (Fortunately, this is usually a lot easier than swimming through a typical app’s TOS.)

	Humble Bundle frequently makes game assets suitable for a variety of purposes available for relatively low cost.

	If you have to have custom resources, can’t/don’t want to/don’t have time to make them yourself, and don’t have friends willing/able to help, one place to look for people to hire to make them is the website Fiverr.

OEBPS/Images/worlda2_small.png

OEBPS/Images/outsidetiles_key.png
) mvtest - RPG Maker MV

File Edit Mode Draw Scale Tools Game Hely

H. 2 |a)

OEBPS/Images/generatecurve.png
Endpoint Values
Level 1: Level 99

OEBPS/Images/growthcurve.png
Parameter Curves

Max HP | Max MP | Attack | Defense | M.Attack |M.Defense | Agility | Luck |

Quick Setting Level: Value:
[alefc|o]e] [s1 3] >[m8 :] [Generatecune.. |

OEBPS/Images/mv_eventchoices3_small.png
Event Commands

Scome Control ap
[__Battio Processing.] [Change Map Name Displayc:
I] Change Tiset..

| Name Input Processing... | Change Battle Back..

| OpenMenuscreen | Crange paralin
[___Opensavescreen__] et Location nfo.

[]

Change Battle BGM...

Change Victory ME...

Change Defeat ME...

Change Menu Access.

L
[
[
[Change Vetice BaM..
L
[
[

Changs Encounter..

]
J
J‘
rory—
J
]
I

OEBPS/Images/worlda2_small.png

OEBPS/Images/overworld_tiles.png
v mvtest - RPG Maker MV
File Edit Mode Draw Scale Tools

,,‘_“E”o" u:\'

OEBPS/Images/growthcurve.png
Parameter Curves

Max HP | Max MP | Attack | Defense | M.Attack |M.Defense | Agility | Luck |

Quick Setting Level: Value:
[alefc|o]e] [s1 3] >[m8 :] [Generatecune.. |

OEBPS/Images/database_classes_small.png

OEBPS/Images/outsidea3_small.png

OEBPS/Images/outsidetiles_key.png
) mvtest - RPG Maker MV

File Edit Mode Draw Scale Tools Game Hely

H. 2 |a)

OEBPS/Images/generatecurve.png
Endpoint Values
Level 1: Level 99

OEBPS/Images/parametercurves.png

OEBPS/Images/cover.jpg
1

LEVEL UIPY

OEBPS/Images/parametercurves.png

OEBPS/Images/worlda1_small.png

OEBPS/Images/eventtrigger.png
Image Autonomous Movement

Route...
-
Freq: 3: Normal -

Options Priority

e

[stepping
|| Direction Fix | Trigger

Cwousn

OEBPS/Images/database_classes_small.png

OEBPS/Images/mv_eventchoices3_small.png
Event Commands

Scome Control ap
[__Battio Processing.] [Change Map Name Displayc:
I] Change Tiset..

| Name Input Processing... | Change Battle Back..

| OpenMenuscreen | Crange paralin
[___Opensavescreen__] et Location nfo.

[]

Change Battle BGM...

Change Victory ME...

Change Defeat ME...

Change Menu Access.

L
[
[
[Change Vetice BaM..
L
[
[

Changs Encounter..

]
J
J‘
rory—
J
]
I

OEBPS/Images/mv_eventchoices1_small.png
Event Commands x

TEE
Message

[Show Terte]
[Show Croices.n]
[T —
[selectitom. |
[]

‘Show Scrolling Text...

Broak Loop.

OEBPS/Images/cover.jpg
1

LEVEL UIPY

OEBPS/Images/mv_eventwindow.png
ID:001 - Event Editor

Note:

T00T ORIOLE

Paste
Event Page

Delete

Clear

@Change HP : Entire Party, + 1
*

OEBPS/Images/table.png
Party Size |[Enemy Attack w/no |Enemy attack with 2 characters’ |Enemy attack with 5 characters’
magic healing HP worth of healing HP worth of healing

1 ~4% (1/24th) 12.5% (1/8th) 25% (1/4th)

2 ~ 8% (1/12th) ~17% (1/6th) ~29%

3 12.5% (1/8th) ~21% 33.3% (1/3rd)

4 ~17% (1/6th) 25% (1/4th) 37.5% (3/8ths)

5 ~21% ~29% ~42%

6+ 25% (1/4th) 33.3% (1/3rd) ~46%

OEBPS/Images/mv_eventwindow.png
ID:001 - Event Editor

Note:

T00T ORIOLE

Paste
Event Page

Delete

Clear

@Change HP : Entire Party, + 1
*

OEBPS/Images/mv_eventchoices2_small.png
Event Commands x

OEBPS/Images/worlda1_small.png

OEBPS/Images/table.png
Party Size |[Enemy Attack w/no |Enemy attack with 2 characters’ |Enemy attack with 5 characters’
magic healing HP worth of healing HP worth of healing

1 ~4% (1/24th) 12.5% (1/8th) 25% (1/4th)

2 ~ 8% (1/12th) ~17% (1/6th) ~29%

3 12.5% (1/8th) ~21% 33.3% (1/3rd)

4 ~17% (1/6th) 25% (1/4th) 37.5% (3/8ths)

5 ~21% ~29% ~42%

6+ 25% (1/4th) 33.3% (1/3rd) ~46%

OEBPS/Images/mv_eventchoices2_small.png
Event Commands x

OEBPS/Images/outsidea3_small.png

OEBPS/Images/mv_eventchoices1_small.png
Event Commands x

TEE
Message

[Show Terte]
[Show Croices.n]
[T —
[selectitom. |
[]

‘Show Scrolling Text...

Broak Loop.

OEBPS/Images/eventtrigger.png
Image Autonomous Movement

Route...
-
Freq: 3: Normal -

Options Priority

e

[stepping
|| Direction Fix | Trigger

Cwousn

OEBPS/Images/overworld_tiles.png
v mvtest - RPG Maker MV
File Edit Mode Draw Scale Tools

,,‘_“E”o" u:\'

