

Candid Conversations
in Code

Interviews with the First
Generation of Video Game
Programmers

 by Ethan Johnson

July 29, 2020

 It is easy to forget the often humble origins of the video
game industry, which has proven to be has impactful to
modern culture as the radio and television. “Candid
Conversations of Code” puts to page the lives and careers of
several of its pioneers, providing engaging first-hand accounts
from a wide array of programmers and developers from the
industry’s early infancy. It is essential reading for any
enthusiast of the history of video games and electronics. -
Derek L of the Hellenistic Age Podcast

 The 1970s remain the least-covered decade in video game
history, so I was delighted to read these fascinating new
interviews from Ethan Johnson. By speaking to a diverse
array of engineers and programmers from some of the leaders
in the coin-op and console industries in the 1970s, Ethan
reveals how the first generation of video games were
created. A must read for anyone interested in video
game history! -Alexander Smith, Author of They Create
Worlds

 Candid Conversations in Code is a fascinating look into
a specific era of computer game development, as told

by the people who lived it. Ethan Johnson approaches
these interviews with pure enthusiasm and a passion
for documenting these first-person accounts which are
both technical, vivid, and humorous. He complements
these accounts from pioneers in the field with a depth of
historical research and media from the era. This book
would be of great interest to anyone with an interest
in the history of computer technology. - Dr. Thomas
Cothran

 Table of Contents

 Introduction

 Acknowledgments

 File #1 Gregory Cox

 File #2 David Shepperd

 File #3 Rich Moore

 File #4 Tom McHugh

 File #5 Jamie Fenton

 File #6 Mark Lesser

 File #7 Vic Tolomei

 File #8 David Rolfe

 Resources

 About the Author

Introduction

 “Down to the metal” refers to a type of programming
where the coder is but one step removed from the 1’s and 0’s
of the logic gates which make up a circuit board. This
abstract way of thinking about computers serves only the
most dedicated of toolmakers today, but once upon a time it
was the only way to make a box of chips do anything at all.
This book is dedicated to those who went “down to the
metal” to create and revolutionize a force that we call video
games.

 This book presents a number of stories – some told for
the very first time – of game creators who began their
careers in the 1970s. Some would only have the briefest of
brushes with the industry before exiting, while others found
vibrant professions which extended for decades from their
first coding experiences. All of these creators were tutored in
the halls of room-sized mainframe computing before
becoming some of the first users of personal computers; often
creating their own from scratch. They found home for
their creative talents at companies like Atari, Exidy,
and Dave Nutting Associates who together birthed the
commercial industries which would come to define an
oft-forgotten but wonderfully experimental age of video
games.

 Compared to a modern distributed architecture, these
programmers could be said to have had it easy. With
less metal on the line, it was entirely possible to learn
and memorize every single thing that a simple 8-bit

processor could achieve. However, what should not be lost
is that the programmer of the 1970s also had to be a
multi-disciplinarian.

 When “from scratch” is applied here, this would mean
perhaps that a programmer had a compiler for their code to
work with, and sometimes not even that. No pre-built
computer, very little documentation, no built-in method for
transferring the code, no tools, and often no time to get
these done. It took a herculean effort to get from nothing to
a viable product, but these enterprising programmers are
the foundation upon which modern game development
rests.

 This book will hopefully help enlighten the struggles of
these programmers and how specifically they created the
means to make games in an open playing field. The rapid
development of technology ends up obscuring this era of
problem-solving so that those who managed to conquer the
impossible remained obscure, even as they contributed to
some of the most significant games of the decade. These
stories may also provide inspiration for those who find
struggles with their own projects — technological or
otherwise – to find role-models in the largely positive and
friendly people who I have reached out to over the past few
years.

 Despite many of these coders losing their jobs as the
games industry entered periods of financial difficulty,
none begrudge the time they spent creating these fun
experiences. Readers may be surprised that many of them

did not even enjoy games themselves, instead being drawn
initially by the challenge of the task rather than what
came out the other side. What remains clear though
is that the game industry attracted a specific type of
outsider who came away with a positive outlook on their
experiences, looking fondly upon their pioneering without
generally having an ego about it. Most when contacted were
astounded that anyone would take interest in things they
accomplished over 40 years prior, happy to relive their
tumultuous experiences with some excellent detail to
boot.

 The interviews provided here are unequal in length and
in some cases do not provide a complete overview of the
person’s career in games. Included with the mostly unedited
transcripts are sidenotes which explain memories that might
have been incorrect as well as historical detail to help place
the development of these early microprocessor games in
context.

 In addition, the conversations are mostly candid,
meaning that they flow as a conversation would rather than
as a script in a movie. This means that proper English may
be sacrificed for accuracy and certain assumptions made on
the part of the interviewer, who has read extensively for
context prior to conducting these interviews. Additional
resources can be found in the back of the book in the
“Resources” section.

 I hope that anyone who enjoys this work will feel free to
tell others about it. Critique is also welcomed as this will

be my first fully-published work. My contact email is
historyofhowweplay@gmail.com

 Many thanks,

 Ethan Johnson, July 2020

Acknowledgements

 Massive props must go out to David Craddock, Jason
Chen, and the team at Storybundle for providing me with
the opportunity and motivation to create this book. It’s
wonderful to have a platform for this niche content and I am
hoping that Storybundle continues to provide opportunities
for those dedicated to history and preservation to find an
audience.

 My main inspirations in this field have been Keith Smith
and Alex Smith (no relation). Without them, I would not
have taken the step in interviewing as many people as I
have. Their dedicated research has opened up new doors for
anyone getting involved with video game history and I could
not be where I am in my journey without them. Alex also
served as a spellchecker for this book which I’m grateful
for!

 The supportive crew at Gaming Alexandria has also
provided me with opportunities to help tell stories from all
across the industry and generally make the preservation
community more vibrant. Special regards to Dustin
Hubbard, Wieste van Bruggen, DillyDylan, and Stefan
Gancer for their continued efforts.

 There’s also Kate Willært to thank for the cover.
We worked together to find something which spoke to
the era and carried a sleekness of modern design. The
color pallet was chosen based on the flyer for the Atari
arcade game Crash ’n Score, which struck me as entirely

unique yet also fitting in the 70s. Kate had much fun
creating something which was steeped in arcade history
without being too cheesy. Props to her! Check out her
website A Critical Hit! for more visual and essay work by
Kate.

 The interviews were recorded using the programs Audacity
and Reaper; transcribed using Youtube’s auto-caption
system as well as Descript. LibreOffice and Google Docs
both provided the writing backbone, with the Overleaf
LaTeX system allowing me to compile the words for easy
reading. Calibre was used for the creation of the Ebook
versions. MAME and the Internet Archive allowed me to
provide game screenshots to include as well. Thanks to all
the supportive software developers that provide solutions
both open source and commercial to help make things like
Ebooks a reality.

 Technical help in assembling these ebooks was provided
by Jonas Rosland and Dr. Ross Siegel. Thanks to you both
for helping me tackle the technical hurdles to make this book
possible!

 A special thanks goes out to Tom Boellstorff and
Braxton Soderman for putting me in touch with David
Rolfe, which can be read in Chapter 8. Their work on
Intellivision has been insanely comprehensive and I wish
them the best!

 Then of course to the interviewees, not only the ones I
have included here but the over 100 people I’ve interviewed
which have been part of the video game industry since it’s

foundation. Thank you for making this history so vibrant
and accessible; I hope to do your accomplishments justice in
telling these stories.

Chapter 1
File#1

 Gregory Cox

Programmer for Cyan Engineering

March 4 1974 to August 16 1974

165 days does not seem like much of a time to make an
impact on the industry, but Gregory Cox happened to be
hired at the Atari-owned Cyan Engineering at the perfect
time to leave a mark. Located in Grass Valley, California,
Cyan was an advanced Research and Development group
which worked on Atari’s latest and greatest for the first
decade of the company’s existence. Their projects would
include the likes of the Atari Video Computer System, the
Atari 8-Bit Computer line, and arcade games like Starship
1.

 In early 1974 Cyan had just wrapped up creating their
first arcade hit for Atari, Gran Trak 10. It was among the
first games in the arcade to use a ROM chip, a specific
computerized component among an otherwise muddy mix of
digital and analog hardware used to create machines back
then. At the end of the prior year, Cyan and Atari had been
approached by Intel to explore the potential of using
microprocessors as a part of video games. Intrigued, they
bought themselves an early Intellec 4 development kit for the

Intel 4004 range, with the intent of building some prototype
projects.

 Out of Ampex they hired the young programmer Gregory
Cox to tackle this new challenge. They would set him loose
with the development kit and a Bally El Toro pinball
machine with the task of recreating the functions of the
moving relays with a microprocessor and program code.
After this he would also work on at least one video game
prototype before leaving the company in the middle of
Atari’s major financial difficulties in mid 1974. His labors
potentially produced some of the first microprocessor
based games, so let’s have Mr. Cox take the story from
here.

 Interviewer: Can you tell me first a bit about how you
got in with computers and how you started working
with technology? And of course, how that led over to
Cyan.

 Gregory Cox: Yeah, I grew up in Miami, Florida and in
1967 I packed up the car and moved out to San Jose,
California. I enrolled in college out there to finish. While I
was going to school I went to work for Lockheed Missiles and
Space Company. In Sunnyvale and they trained me how to
program in FORTRAN. I was doing missile simulation,
software development for them while I was finishing
school. I got into the technical field basically through
software. At the time I was intending to major in electrical
engineering, but I wanted to get out of school. I could

get out sooner with a math degree, so I switched my
major.

 When I graduated I went to work for a smaller company
called Dalmo Victor; they were a little farther up the Bay
Area in Burlingame. They were pioneering the work of
embedding microprocessors into military systems. At the
time the Vietnam war was going on and the Soviets
had sold a bunch of surface air and missile systems
to the North Vietnamese. The systems onboard US
aircraft - they called radar warning systems - were not
adequately capable of detecting and countering the radar
systems that those anti aircraft missile use. So Dalmo
Victor was developing embedded microprocessors in
the next generation of later warning systems that were
driven by software programs as opposed to hardwired
logic.

 I worked for them for about four years, doing software
development for those applications. The machines
were based on a 16 bit Data General general purpose
microprocessor that had been ruggedized for military
applications. All of the programming where we were
doing was in assembly language. It was some pretty
primitive stuff. Didn’t have multipliers and dividers yet
you did shift left and shift right, add and subtract.
[Laughs]

Side Note: Data General did not have a microprocessor system at this time. Likely Mr. Cox was referring to their minicomputer systems.

 Interviewer: What were the development systems
for them? Were you using a mainframe to develop for
the microprocessor or did you have a self sustaining
kit?

 Gregory Cox: Yeah, no. There was really no development
kit for it per say. We just used the basic processor with an
ASR-33 teletype of all things. That’s the I/O device, you
had a keyboard and you had paper tape. When the program
was getting matured you converted to mylar because that
was a little more durable. We’d basically run environmental
simulation stimuli into the system and debug in real time
with stop points, where you could look at the results that
you were getting. It was a very manual, labor intensive
process.

 In the early systems we used core memories and then
started converting to RAM. We used 128-bit RAM chips
that were a hundred bucks a piece. I look back on this
technology now and I’m just amazed at how primitive it was
and that we could get anything to work with it at all. In
that case, we got systems out into the field quickly and
they were pretty effective at giving pilots a heads up
that they were being shot at so that they could take
evasive maneuvers and deploy countermeasures and so

forth.

 The technology at that point was non-specialized enough
that you can really get your arms around it. Although I
started out in software - the software was the brains of the
system - so I pretty quickly learned the antennas, the
receivers, and the signal processing hardware. I became a
systems engineer because I understood it all. I could put the
pieces together and make them play. It gave me the ability
to be more of a generalist instead of just a software
specialist, which really served me well for my future
career.

 After doing that in the defense industry for about four
years, I wanted to try something different. So I went to work
for Ampex, and they were developing educational systems.
In this case they were trying to build terminals that an
individual student could use that were run by tape
operating systems. So you had an operating system then all
of the interactive software that would be on a tape
machine.

 Interviewer: Was this Videofile or was this something
different?

 Gregory Cox: No, it was digital, but it accessed video
files. So there was a digital controller that would call up,
play, and stop video files. I did that for a little while
and realized after a few months: this was a technology
that wasn’t terribly challenging to me and wasn’t very
interesting. One day we just drove up in the Sierras and
drove through Grass Valley. I was a little impulsive at that
time and I said, “I really like this place. I want to live
here.”

Side Note: Videofile was the Ampex project that the earliest engineers at Atari - from founders Nolan Bushnell and Ted Dabney, to engineers Steve Bristow and Al Alcorn, as well as Cyan founders Steve Mayer and Larry Emmons - worked on prior to their entry into video games.

 I looked up in the phone book, you know, work, the local
engineering companies. I went out to Cyan Engineering and
I said, “Can I have a job?” They said, “Well, what are
you doing now?” I told him, “I’m working at Ampex.”
And they said, “No, we can’t give you a job. There’s
conflict of interest. There’s a principal there that’s going
to be joining our company and we can’t give you a
job until that’s a done deal.” It turned out to be Al
Alcorn, leaving Ampex to come back to Atari as an
executive.

 So I went back to Ampex and I stayed in touch with
Steve Mayer. He called me one day and he said, “Well, this
deal is done. If you’re interested, you can come up and talk
to us but we can’t hire you as long as you’re working for
Ampex.” So I quit my job at Ampex, drove up to Grass
Valley and they gave me a job. I worked there, I guess, for
about six months.

 I had taken like a 50% pay cut to get out of the Bay Area

industrial workforce to go up to Cyan Engineering. Then
after about six months they ran into some financial
difficulties, cut people’s pay 10%. At that point, I said, you
know, I can’t justify this. So I went back to the Bay Area,
back to work for Dalmo Victor in the defense industry and
stayed there for the rest of my career.

 Interviewer: So did you know anything about these Atari
guys at all from your time at Ampex?

 Gregory Cox: Not much. I heard the names, I didn’t
really need them. I was sort of buried in the development
side. I knew Steve and Larry and interacted with them on a
daily basis. They would talk a little bit about some of the
interactions they had with the Atari folks.

 Interviewer: So Atari was a name that you’ve heard.

 Gregory Cox: Oh yeah. I knew that they were part of the
Atari enterprise and they dealt with Nolan Bushnell. Our
job was basically to do the research and development for
new games; new technologies for games. Once we came up
with something that was a prototype, then it got handed off
to Atari for them to do the production engineering and
production of.

 Interviewer: Tell me a bit about who was there when you
first came in. Tell me a bit about Steve Mayer, Larry
Emmons, and Ron Milner. What were your impressions of
the people there?

 Gregory Cox: I knew them well. We didn’t socialize too
much, but we spent a lot of time together. I thought they
were all technically competent, innovative. That was one of

the things that I’d been used to on the defense side is
we were creating new stuff, so I thought it was pretty
interesting. The pinball game was pretty interesting because
there hadn’t been one before, so we were having to make it
up and I liked that innovative environment. They were
very supportive of that kind of innovation. They were
smart.

 They had a different set of priorities in how we developed
the product. In the defense industry there was an awful lot
of focus on over-design and cost wasn’t so much of an issue
as capability and performance, but here cost was a major
issue.

 In that one document, it talks about how we didn’t have
latches in the system. The AC power was rectified and that
was used as a clock. There was a 60 cycle refresh, in a
sense a logic routine that every 60th of a second, you
pulled all the bumpers and refresh the LED displays
and did all that sort of stuff. There were some timing
problems. If the ball was moving too fast, you didn’t
catch something, so there was a point of contention
there about “These detectors need to have latches on
them.”

Side Note: Mr. Cox here refers to some of the technical information from his deposition in 1981, which he referred to prior to this conversation.

 I think Steve Mayer had a little bit of a farm and he had
some cows and he’d bring in raw milk every once in awhile.
I’d never had raw milk before and it was really good! He had
some German Shepherds; he loved his dogs and if you
weren’t going to accept his dogs, you weren’t going to be his
friend. [Laughs]

 We did use some of the local bars as places to test some
of the games. You’d get some good feedback on whether
there was interest in the games, how durable they were. You
could sort of measure how good the game might be by the
revenue from it. That was an interesting way to do
prototype evaluation.

 Interviewer: What games did they have at the time that
you were coming in? Was your very first assignment, “We’re
getting a development system. We’re going to do a pinball
game.” or were there other things floated?

 Gregory Cox: I know they were working on some other
things, but I wasn’t involved. Pretty much the first thing
they got me involved in was the pinball game. I don’t
remember anything before that. I spent several months on
that. We did have a development system and the software
development was all in machine code. That Intel 4004 was a
pretty primitive chip.

Side Note: The Intellec was a development system used in the development of early Intel microprocessors like the 4004. It provided a couple of essential functions for integrating Intel chips into various hardware designs, but was not a microcomputer system as we'd recognize today.

 There was a sort of an evolutionary approach to
developing the game where the hardware and the software
were coming along at the same time. We’d tweak the
hardware and change software, go back and do it again. I
worked on that for a while.

 Then the next thing they wanted me to look at was a
flying game, whether you could develop a game that would
have essentially pilot controls for flying and then develop a
view out of the cockpit that would show where you’re flying.
You could maneuver and chase a target, things of that
sort. I was probably still working on that when I left,
but there was just way too little computing power and
processing capability to do anything like that at the
time.

 Interviewer: I’ve heard people trying to drive a video
display with the 4004 and I’m very surprised that you
were able to do anything at all. How did you manage
it?

 Gregory Cox: About as far as I got was creating an
artificial horizon and being able to show some spatial

position of the view out of the cockpit with respect to that
artificial horizon. So it didn’t really go very far while I was
working on it.

 Interviewer: Did you just have a control box hooked into
this development system that you guys had?

 Gregory Cox: Yeah. It was like basically a control stick.
You would sense the position of the control stick and either
pitch up and down, be all left or right based on the control
stick.

 Interviewer: One other thing that I saw that you did
there: it was described as a box with a craps game on it that
was hooked into the Intellec.

 Gregory Cox: Wow. No, I don’t remember that one. I’d
sort of been interested in games of chance. I was 20 when I
first moved out to California and shortly after I turned
21 I had a great aunt that passed away. She left me a
thousand dollars which was, you know, some money at the
time.

 I wrote - since I was doing software development - a
simulation of blackjack and I came up with different
betting schemes and ways to evaluate how to employ a
betting scheme to win. I came up with something I
thought would work, took my thousand dollars, went to
Tahoe, and lost it in 20 minutes. [Laughs] So a simulation
of a craps game is probably something I would have
done.

 Interviewer: You wrote up kind of a pseudocode sort of
thing? Like, “This is how blackjack games work” in your

head?

 Gregory Cox: No, basically it was a Monte Carlo
technique where you’d have the deck and you’d pull each
dealer and you keep track of what cards have been played
and what was still in the deck. When a card had to come
out, you use a random generator to pick one of the cards
that’s left. The basic scheme was basically a progressive
one: that you can’t lose an infinite number of times. So
if you double your bet on the next hand, you’ll win
before you run out of money. Except I didn’t count on
losing 18 hands in a row. The other kicker was there’s a
table! I learned something about simulation through
that.

 Interviewer: [Laughs] Yeah. When you first got into the
development system, did you run any tests on it or was it
just immediately to the pinball game? Tell me about this
thing, this Intellec box.

 Gregory Cox: Well we had to learn how to use it,
obviously. I don’t remember the details, but I’ve heard that
we did some things like some test programming, run it
through the box, check the output and make sure the
output’s right. Check out being able to convert the
code that’s in the test box, the development system. To
get that embedded in an appropriate memory device
that’s going to run the machine and get familiar with
it.

 There was some period of getting the development
system up and running. It all seemed pretty straightforward

to me because I’ve been working in an environment that had
pretty basic computer systems that had custom-developed
operating systems and custom-developed software routines,
all that sort of stuff. I really wasn’t used to an environment
where a lot of that stuff was provided for you. So being
able to pick that stuff up and use it was pretty straight
forward.

 Interviewer: The I/O on this one, was this also a
teletype?

 Gregory Cox: I’m not sure. I can’t remember. They
may have had a keyboard and a video display. During
that time in the mid seventies was when they were
making that transition to a more conventional interfaces
with keyboards and displays. That was a long time ago,
man.

 Interviewer: [Laughs] I don’t expect everyone to
remember everything! Tell me about the pinball and how it
worked, how you gutted the system and then hooked up
these wires.

 Gregory Cox: So the basic electromechanical pinball
machine had solenoids and relays. It was basically a logic
device, that if a ball hits a bumper then it causes the light to
turn on. It causes a scoring wheel to rotate, and lights to
flash. Then the flippers were electromechanical devices.
When you push the button, it would activate the flipper to
kick the ball back into the field of play.

 The idea was to strip out all of that electromechanical
stuff and replace it with computer controlled devices.

The bumpers for instance, were wired into a sensor
and it would change a logic state from zero to a one,
wherein the ball impacted the bumper. The mechanical
display was removed and we put in seven segment LED
displays and they were hooked into the microprocessor;
they displayed whatever numbers the processor sent
out.

 Basically the microprocessor replaced most of the
electromechanical stuff, and you had controls that would
turn lights on and off to regulate the display. On a 60 times
per second basis you ran through a whole series of functions:
Sense every bumper. Has the bumper state changed,
indicating that the ball impacted it? If so then which
bumper is it? What’s the score word for that? Add that to
the score counter that you’ve got in the memory, turn on the
light for that bumper.

 Then a 60th of a second later go back and do the same
thing again. The displays were refreshed at a 60 cycle rate
and based on the score that had been stored in memory. It
was basically replacing all of that electromechanical stuff
with a microprocessor.

 Interviewer: The coin door as well?

 Gregory Cox: Yeah. There was a sense in the coin door
that when a coin went in it said, “Okay, start the game.
Money’s been put in.” You’d start out with, “How many
balls the player get?” Every time the ball falls into shoot
you’d increment the counter for how many he’s got
to play, and when it goes to zero don’t drop the ball

anymore.

 It’s interesting that the development was sort of
iterative, in that you’d think through all the things that the
microprocessor’s got to do, and we weren’t really rigorous
about it. In the military environment what you do is write a
really complicated specification and then you’d have a
software document that would define all the different
functions that it had to perform to do it that way. Just sort
of sat down and figured out how to do it, make it work.
There was some iteration, you’d try something that
wouldn’t work quite right so you’d have to tweak it a
bit.

 Interviewer: Do you think the intent was specifically to
make something production ready? Cause obviously it
didn’t. Do you think that was the intent or they just wanted
to experiment?

 Gregory Cox: It was somewhere in between. They weren’t
going to make a production ready unit because that was sort
of the production engineering arm of Atari that did that.
What they wanted to do was develop, let’s call it a ‘robust
prototype’ that was a proof of concept and could be used as
a production prototype, recognizing that there would be
additional design work required to get a production
configuration.

 There were some differences in priorities between
what Atari was doing and what Cyan was doing. Cyan
wanted to invent something that was new, that would
bring a differentiating product to market and Atari

wanted to make it robust and cheap so that they could
build it, get it out there, and start getting revenue from
it.

 One of the things that I haven’t seen talked about
anywhere was security. The facility was in what had been an
old hospital here in Grass Valley. I was used to working in
secure environments (we’d have security clearances and all of
that in the defense industry), but these guys: they kept
everything really well protected under lock and key.
They had armed guards with dogs in the facility at
night.

 The basic ethic was: once you bring a gain to market,
you’ve got six months worth of revenue from it, before it gets
ripped off. It’s going to take your competitors six months to
reverse engineer it and then have a competing product and
your revenue stream will start to fall off.

 So there was a lot of emphasis on protecting that
intellectual property. The user interaction wasn’t... That was
what they wanted to evaluate, but that’s just how it worked
or what they protected.

 Interviewer: So this pinball machine you were working on,
it was the one with the bulls on it, right?

[image: PIC]

El Toro, Released May 1972 by Bally Manufacturing.The motif features bull fighting.

 Gregory Cox: Yeah.

 Interviewer: Was that ever taken out or was it always just
inside Cyan?

 Gregory Cox: You know, I’m not sure, but it seems to me
like they did take it out to one of the local bars. I can’t
remember for sure, but it was sort of a routine that once you
got something far enough along that you thought it
was really working, they’d send it out for a couple of
weeks and do a try out in a local pub and people played
it.

 It did a couple of things. One, it tells you whether the
game was really reliable working properly. He’s gotta check
it daily and if it was broken and there was something wrong
and you’d have to come fix it, and if it wasn’t generating any
revenue, then the local customers weren’t finding it
interesting enough to play. So sort of an evaluation of the
commercial viability of something.

 Interviewer: I know that at that time they would have
been working on: there was a driving game [Gran Trak 10],
there was a rifle shooting game [Qwak!], there was also a big
like button pressing game (that was like the toy Simon)
[Touch Me]. Did you see any of those when you were
there?

 Gregory Cox: I don’t remember that last one. The rifle
game, it was Duck Hunt or something similar to that where
you shoot a bird. That was pretty popular. I remember a
driving game. I didn’t work on either of those, but I know
that the development of those was going on, they had
prototypes and some of those were sent out to the local
establishments for evaluation.

Side Note: The duck hunting game, Qwak!, was developed by Cyan Engineering and released by Atari in November 1974.

 Interviewer: I know the one place that they did some
testing was a place called Pat’s Pizza in Grass Valley. I also
know that there was another business in that facility was
called Eigen Systems. Do you recall that?

 Gregory Cox: Yeah, I do. I can’t remember what they
did. There was more than just Cyan in there, I remember
that. What did Eigen do?

 Interviewer: I think they did like control - not arcade
game stuff - but control systems for machinery applications,
something like that. They may have worked with cyan on
some stuff they may not have. It depends on how Steve’s
memory’s going that day. [Laughs] You know, Larry, Ron,
and Steve they’re all still alive. I think they might still be
working in small capacities in engineering. Did you ever have
any interaction with Steve Bristow?

Side Note: Some sources claim that Eigen Systems designed the controls for Gran Trak 10, developed by Cyan, but Steve Mayer in more recent interviews does not remember this. Eigen appears not to have directly helped on any Cyan projects.

		
 Gregory Cox: Sounds familiar, but I can’t place him or
dealing with him. What was his position?

 Interviewer: Well he was down at Atari, but he was kind
of overseeing Cyan. He had crazy hair. If you saw a photo of
him, you would recognize him immediately. He was kind of
the main engineer in charge of getting stuff production
ready.

 Gregory Cox: Okay. So I probably heard his name from
Steve or Larry, but I can’t remember ever interacting
directly with them.

 Interviewer: Some other names that I have, one is a Jody
Sperry. Does that ring a bell?

 Gregory Cox: No.

 Interviewer: Okay. She may have been an assistant or
something. It wasn’t quite clear. Joel Miller?

 Gregory Cox: Yeah, I remember that name. It was a
fairly small group when I was there. I don’t know how big it
was, but it seems to me like it was like 10 people or less
may or somewhere around that size. Were you able to
track down how many people were there about that
time?

 Interviewer: No, I’m trying to get a sort of view of it.
There’s the three and then basically your, your deposition
revealed like five other people. It would have been very, very
small. Ed Schleeter?

 Gregory Cox: I remember that name.

 Interviewer: I think he was the draftsman, the guy who
actually drew the schematics and stuff. How big of a
procedure was that? As you said, you weren’t like making a
big scale item or something. How long would it take for you
to kind of iterate through some of the stuff that you were
doing with the pinball machine?

 Gregory Cox: Oh it was, it was pretty quick. I mean, red
line drawings, changing the software on the fly, sit down on
the bench and rewire something. It was short. There wasn’t
a lot of bureaucratic overhead to make changes to this stuff.
It was pretty quick.

 I don’t recall for sure, but I’m sure that when they got to
the point where they wanted to transition something over to
Atari there would be sort of an update cycle where you do a
final set of drawings and make sure the drawings agreed with
the hardware and the software. Sort of do a baseline
release. In day to day operations things moved pretty
quick.

 Interviewer: Hmm. How well did the pinball actually
work?

 Gregory Cox: In testing it at the facility, it worked pretty
well. We put quite a few hours on that to the point where
Steve and Larry would have to tell people, “Go back to

work.” [Laughs] In that book there was some documentation
of performance issues around if the ball speed got too
fast, you’d miss things. We didn’t see very much of
that in the evaluation we did at the facility there. I’m
sure it happened from time to time, but it wasn’t a
major problem. The game seemed to function pretty
well.

Side Note: The book referred to here is Atari Inc. Business is Fun, but the pinball described in that book was actually Cyan's second attempt at a microprocessor pinball post Gregory Cox, a modification of the Bally game Delta Queen.

 Interviewer: Right. One other name to throw at you: Bob
Walker, does that sound familiar?

 Gregory Cox: No, I don’t recognize that.

 Interviewer: Okay. You told me a bit about how you left,
but how did having that experience feel? Did you feel that
your time at Cyan was worthwhile to your career? Did you
feel good about what you did there?

 Gregory Cox: Yeah, I thought it was a lot of fun. I would
have stayed to continue working on that kind of stuff, except
I’m working for 40 cents on the dollar given what I’m
worth on the market. At that point in my life I had a
four year old child and a wife; I needed to make more
money.

 I enjoyed it. It was interesting to work in that small

environment. I’ve always liked working in an environment
where you have a lot of exposure to everything that’s going
on in the business. You can be a key part of helping to make
the business successful. It was rewarding to be able to invent
and create new stuff.

 Interviewer: Well thanks a lot for your insight into this
period for Atari and Cyan! I hope it was good to relive
it.

 As an addition to this interview, also included is an
edited transcript of the deposition Gregory Cox gave for the
lawsuit of Bally v. Williams et. al from 1981. These
memories are closer to the date and reveal many details
otherwise obscured by the gap of over 45 years.

 Examiner: Give me your education after high school if
any, what institutions you went to, what degree you got and
what year you got it?

 Gregory Cox: I have a Bachelors Degree in mathematics
from San Jose State University in San Jose, California,
granted in June of 1970.

 Examiner: You joined Cyan Engineering in March of
1974, is that correct, sir?

 Gregory Cox: Yes.

 Examiner: Did you have any jobs prior to that time
and subsequent to your getting a degree from San Jose
State?

 Gregory Cox: Yes, I did. From January of 1967 through
November of 1970 I was employed by Lockheed Missiles &
Space Company as a computer programmer. From November
of 1970 to November of 1973 I was employed by Dalmo
Victor, as a programmer . From November of 1973 to
February of 1974 I was employed as a computer programmer
by Ampex Corporation in Sunnyvale, California. I left
Ampex at the end of February and joined Cyan immediately
thereafter.

 Examiner: What kind of computers were you programming

when you were with Lockheed?

 Gregory Cox: Various types of computers ranging from
medium o moderately small sized computers up through
very, very large scale computers. UNIVAC 1108, Sigma
5, and Sigma 7 were the principal computers that I
programmed.

 Examiner: How about at Dalmo Victor?

 Gregory Cox: Programming there was on minicomputers
and specialized processors that went into airborne military
systems. These airborne processors fit somewhere between
microprocessors and minicomputers. They tended to have
the computational power of a minicomputer without the
peripherals in memory capacity and general purpose features
you find in the minicomputer.

 Examiner: Now, while you were with Ampex, what kind
of computers did you program?

 Gregory Cox: Minicomputers, Data General Eclipse type
minicomputers.

 Examiner: What was the first encounter or experience
you had with microprocessors or microcomputers?

 Gregory Cox: Oh, for a period of time prior to my
employment at Cyan Engineering I had read trade journals
and monitored the development in a very casual manner of
microprocessor technology, and my direct involvement with
microprocessors began with my employment at Cyan
Engineering.

 Examiner: Were you employed specifically for the
purpose of programming microprocessor computers?

 Gregory Cox: Yes.

 Examiner: Prior to your employment did you have an
interview or interviews with anybody?

 Gregory Cox: Steve Mayer, I believe I spoke with Larry
Emmons also.

 Examiner: Did you go there at their invitation?

 Gregory Cox: No, I did not.

 Examiner: How did the interviews come about?

 Gregory Cox: I looked in the phone book for companies
that did electronics work and went and knocked on their
door. They happened to be in and willing to talk to
me.

 Examiner: So I take it during that period you were
talking to several other companies as well or at least trying
to?

 Gregory Cox: Yes. I spoke with one other company in the
Grass Valley area.

 Examiner: Did you call and arrange the interview? Or
did you just drive up to Grass Valley and-

 Gregory Cox: I drove up to Grass Valley and while I was
there, I was looking at real estate. One of the real estate a
gents referred me to several companies – I used those
referrals in conjunction with telephone listings – I called
Cyan Engineering and they were willing to speak with
me.

 Examiner: Would it be proper to say that perhaps the
determining factor in your mind was the location? You were
interested in working in that part of the country?

 Gregory Cox: Yes.

 Examiner: Was there more than one interview, or did you
make a deal that day?

 Gregory Cox: There was that single interview and several
subsequent telephone calls. To the best of my recollection
that was the only interview that took place.

 Examiner: What was the time lapse between the
interview and when you started to work approximately?

 Gregory Cox: About three weeks.

 Examiner: At the time of the interview did Mr. Mayer
tell you the business of Cyan Engineering?

 Gregory Cox: He said they were involved in the design
and fabrication of electromechanical and video games,
which was the only detail he went into regarding their
business.

 Examiner: Well, when he said, "electromechanical games,"
did he give you any idea what kind of games?

 Gregory Cox: No. The only information I was given on
the job to the best of my recollection was that my duties
would be applying microprocessors to games, and my specific
duties would be for developing the software for those
microprocessor applications.

 Examiner: You would have no responsibility for developing
hardware?

 Gregory Cox: That’s correct.

 Examiner: Were you told, sir, prior to your employment
how they were going to use microprocessors, what they were
going to do with them?

 Gregory Cox: As best I can recall, Steve and Larry
mentioned that they intended to embed microprocessors in
various types of games to provide the control functions for
those games. They were nonspecific as to the specific types
of games.

 Examiner: Did they give you any idea what the inputs to
these microprocessors would be?

 Gregory Cox: I don’t recall. We had a fairly lengthy
technical discussion during the interview for a period of
maybe one to two hours where Steve Mayer and Larry
Emmons were trying to develop an understanding of my
technical background and how it related to their task of
implementing microprocessors. We talked about my
experience with hardware interfaces to processors that I was
familiar with. I suspect that they used the basis of those
discussions to determine my qualifications regarding their
specific applications.

 Examiner: To the extent that you can recall prior to your
joining Cyan Engineering, what was your understanding of
the microprocessor or microcomputer?

 Gregory Cox: Based upon information I read, early
versions of microprocessors were basically expanded versions
of calculator chips which provided a basic computer
capability with very restricted and limited general purpose
applications which would be programmed to provide
numerical control sequences and perform limited analytical
type functions That upon the initial applications of these
types of devices, their potential was accomplished and

a divergence in terms of technology took place that
it was a conscious development of a general purpose
microprocessor as distinguished from glorified calculator
chips.

 These new generation microprocessors were just
becoming available in initial quantities at the time I was
employed by Cyan Engineering. That there was a great deal
of published information regarding the developments of
various semi-conductor companies in this regard but
actually, microprocessor hardware was still quite limited at
that point.

 Examiner: What were the dates of your employment with
Cyan Engineering?

 Gregory Cox: I began work for Cyan Engineering on
March 4, 1974. Terminated my employment with them on
August 16, 1974.

 Examiner: Now, at the time you joined Cyan Engineering
and were given the assignment of preparing the software for
the El Toro pinball, had any work on the software ware been
attempted prior to your joining the company?

 Gregory Cox: I am not certain. I remember Steve
Mayer having some segments of a program which he had
written and he asked me to review. I don’t know if
they related to a pinball game development or another
application.

 Examiner: At the time you joined Cyan Engineering, sir,
had any hardware design been done on the El Toro game, if
you know?

 Gregory Cox: I am not certain, memory is not very clear
on the subject. I believe that Steve Mayer at least had done
some preliminary hardware design prior to my employment
within the company.

 Examiner: Did Mr. Mayer sit with you and tell you what
he wanted you to do?

 Gregory Cox: Yes.

 Examiner: Did he explain the pinball game to you?

 Gregory Cox: Yes.

 Examiner: Was it necessary for him to do that? Had you
ever encountered a pinball game before?

 Gregory Cox: I had played pinball machines. That is the
extent of my knowledge on them at the time I joined the
company.

 Examiner: Did Mr. Mayer seem to know what he was
talking about to your understanding?

 Gregory Cox: Relative to the subject of developing a
microprocessor control system for a pinball machine, he
seemed to be knowledgeable on what that task entailed; how
to go about it.

 Examiner: And did he provide you with instructions, sir,
as to what you were to do?

 Gregory Cox: Of a general nature. During the early
phases of the program, there were continued discussions and
design refinements based on discussions between myself
and Steve Mayer relating to hardware and software
implementation. The instructions were pretty much limited
to developing a software system for the El Toro game. They

were very general in nature. And we worked rather closely
together in developing the basic input/output structure
and control sequence structure of the hardware at an
architectural level from which I proceeded to develop the
software.

 Examiner: What happened between your point of initial
employment and this several weeks before you got these
general instructions?

 Gregory Cox: I was given a set of manuals for the 4004
microprocessor, for the Intellec MCS-4 system. I was given a
programmer’s guide. I was given instructions to become
familiar with programming techniques, how to program
them. I believe we took delivery of the INTELLEC
MCS-4 system very shortly after I began work there. One
of my early tasks was to help bring that system to a
running — up and running condition and to develop
some support software for various aspects of the device
.

 One of these that I recall was some software for
enhancing the PROM programming capabilities of the
machine. So during the first several weeks, I was becoming
familiar with the Intellec system and its use.

 Examiner: Did you find that a difficult task?

 Gregory Cox: No, I did not.

 Examiner: Were you able to complete those tasks,
becoming familiar with the Intellec 4 and providing this
support software?

 Gregory Cox: Yes. There was a phone call that took place

between myself and one of the applications engineers at Intel
regarding software programming of the Intellec system. I
recall a visit to the Cyan facility by either an applications
engineer or a marketing person to see how we were getting
along in using the Intellec 4.

 Examiner: In your initial phase, your first several weeks
with Cyan, sir, did you form any impression as to Mr.
Mayer’s technical abilities? Could you tell me what that
Impression was?

 Gregory Cox: In general, I thought he had a very
excellent grasp of the technology he was dealing with,
that he was a very innovative and creative electronics
engineer.

 Examiner: Did you form an impression as to whether
or not he understood what microprocessors were or
microcomputers and how they worked?

 Gregory Cox: He showed more knowledge than I had,
yes.

 Examiner: Did there ever come a time when you formed
any impression about his understanding of microprocessors
and how they worked, sir?

 Gregory Cox: Yes. By the time we had completed this
project, I felt he had a good grasp as to the applications of
microprocessors, yes.

 Examiner: How did you gain your familiarity to whatever
degree you had it of the hardware design?

 Gregory Cox: Discussions with Steve Mayer and review of
the designs and schematics for the electronics.

 Examiner: When you say "review of the schematics," you
mean actually studying the schematics yourself?

 Gregory Cox: Yes, with Steve Mayer’s assistance.

 Examiner: Anybody else?

 Gregory Cox: I don’t recall specifically, but it would not
be improbable to have had conversations with Mike
Rodgers or Ed Schleeter or Ron Milner regarding specific
components and their operations or specific circuits and
their operations.

 Examiner: These gentlemen that you just named.
These were all employees of Cyan Engineering, were they
not?

 Gregory Cox: Yes.

 Examiner: In the course of writing the software for the El
Toro project, did you ever receive any help from Mr. Mayer
or anyone else at Cyan Engineering?

 Gregory Cox: I was solely responsible for the design
and implementation of the software. During the testing
phase where we were debugging 1 the software and
evaluating its performance on the pinball machine, the El
Toro pinball machine. I had Steve Mayer’s assistance in
operating the hardware and the electronics to perform such
testing.

 Examiner: How was the software for the El Toro game
first tested?

 Gregory Cox: Various portions of the software were
tested independently. The program was written in certain
logic loops or logic functions were tested individually. For

instance, controlling the LED displays and these individual
functions would have been tested one at a time. Most of
these could be done without a significant amount of
hardware involvement.

 In other words, implementing the hardware and the
software, putting them together in the microprocessor,
interpreting the microprocessor to the electronics in the El
Toro game and triggering switches with finger or rolling the
ball over. Testing was of that nature.

 Examiner: Were you employed by Cyan Engineering
during May of 18 1974?

 Gregory Cox: Yes.

 Examiner: Do you recall an open house that was held at
Cyan Engineering in May of 1974? An event which took
place during which Atari employees and their families visited
the Cyan facility for a tour and were then taken to a park
for a picnic.

 Gregory Cox: Yes.

 Examiner: Do you recall an El Toro pinball machine
being present at the Cyan Engineering open house?

 Gregory Cox: Yes, I do.

 Examiner: The El Toro pinball machine was played at the
Cyan Engineering open house, wasn’t it?

 Gregory Cox: To the best of my recollection, yes.

 Examiner: Did you observe anyone playing the El Toro
pinball machine at the open house?

 Gregory Cox: I don’t recall a specific event of observing
any individual playing the El Toro game.

 Examiner: Who else was present at the open house?

 Gregory Cox: The Cyan Engineering employees, members
of their family, a group of employees from the Atari facility
in Los Gatos, and members of the Atari employees’
families.

 Examiner: Were there any children present at the open
house?

 Gregory Cox: I believe there were a few children
present who were the members of the Cyan Engineering
families.

 Examiner: Do you know the names of each person that
was present?

 Gregory Cox: No, I do not.

 Examiner: Do you remember the names of anyone who
was present?

 Gregory Cox: Yes, I do.

 Examiner: Would you please give me the names of the
people hat you remember who were present at the Cyan
Engineering open house?

 Gregory Cox: Larry Emmons, Steve Mayer, Ron Milner,
Mike Rodgers, and Jodie Sperry. Those are the only names I
remember specifically.

 Examiner: Do you remember the names of anyone from
the Atari facility in Los Gatos that was there?

 Gregory Cox: No, I do not.

 Examiner: Do you remember the names of anyone else
who was there who may not have been from the Atari
facility in Los Gatos or Cyan Engineering?

 Gregory Cox: Steve Mayer’s wife was there. I do not
remember her first name. Ron Milner’s wife was also there.
Those are the only other individuals I remember.

 Examiner: Then there are some people that were there
that you don’t remember?

 Gregory Cox: Yes.

 Examiner: Who do you recall was not married at the
time of the Cyan Engineering open house?

 Gregory Cox: There was a student who was working as a
technician for the summer. I don’t recall his name, but I do
recall that he was single.

[image: PIC]

Side Note: An extant Atari organizational chart preserved by Marty Goldberg and Curt Vendel shows the names of Cyan Engineering personnel who worked at the same time as Gregory. Aside from those already mentioned, the staff also included Lanny Netz, Mark Smith, and Donna Taylor.Source: Atari Museum.

 Examiner: As far as you know the El Toro pinball
game played properly at the Cyan Engineering open
house?

 Gregory Cox: It played as it was designed to play, the
design being the implementation of the microprocessor-based
system, not the electromechanical system.

 Examiner: Basically as far as the play of the game
was to somebody sitting there, hitting the flippers and

knocking the ball around, it was indistinguishable from the
electromechanical version, is that correct?

 Gregory Cox: There were some differences.

 Examiner: Other than the sound and the appearance of
the game being a little different because you did not have
the relays clicking, would you agree that it would be
indistinguishable?

 Gregory Cox: The relays were not present. The score
display was using LEDs instead of a mechanical display. And
there were interconnection wires emanating from the unit
itself. Those were the differences between a normal
electromechanical El Toro and the machine used at Cyan
Engineering.

 Examiner: Do you specifically remember the steps that
were in the El Toro machine software at each particular
point in time during the development of the El Toro
machine?

 Gregory Cox: The development of any software system
involves a preliminary version of the program which is
then tested and evaluated and corrected and modified
during the development cycle of the software program.
This sequence was used and implemented in the El
Toro software development. At various times during the
development of the software different versions of the software
program were in use and "being evaluated within the
machine.

 Examiner: How do you distinguish or how can you tell
one version of the software program from another?

 Gregory Cox: During the development cycle of the El
Toro program, certain changes were made to the basic
operation of the software. I recall that at no time was
there a major modification to the basic architecture of
the software program. There were certain problems
and difficulties encountered during the development of
the software which were corrected. To the best of my
recollection, this is the final version of the software
program that was used in the El Toro machine and its
microprocessor version during my employment with Cyan
Engineering.

 While I was employed at Cyan Engineering, to my
knowledge no other individual wrote or modified any of
the software that was used in the El Toro game, that
there were no other changes to this program other than
what is documented in these two exhibits, and that this
was the program used in the operation of the El Toro
machine.

 Examiner: The Cyan facilities were located in an old
hospital building, were they not?

 Gregory Cox: Yes.

 Examiner: Was Cyan Engineering the only company or
organization that had offices located in that building?

 Gregory Cox: No. There were other companies who had
facilities within that building also.

 Examiner: Do you recall the other companies that were
located in the same building with Cyan Engineering in
approximately May of 1974?

 Gregory Cox: A I recall two companies. One was a
division of Litton and the other was a company called Eigen
Systems, I believe.

 Examiner: Did the Cyan office have a lobby?

 Gregory Cox: There was an area which could have been
considered a lobby which contained Jodie Sperry’s desk and
Ed Schleeter’s drafting table.

 Examiner: This area which I will refer to as the lobby
then, do you recall a pinball machine ever being located in
this lobby?

 Gregory Cox: No.

 Examiner: Would you draw a representation of the floor
plan at the Cyan Facilities as you remember it?

 Gregory Cox: Yes. That would be the floor plan as best I
can recall it.

[image: PIC]

Side Note: This is the Cyan Engineering floor plan that was drawn in court by Gregory Cox.

 Examiner: Is it correct that you do not remember one
way or the other whether any express warning concerning
confidentiality or secrecy was given to anyone at the Cyan
Engineering open house?

 Gregory Cox: Let me characterize the environment of
secrecy and confidentiality and relate it to these issues.
Basically, immediately upon being employed by Cyan
Engineering I was advised that all work done there was
confidential in nature and was not to be divulged outside of

the immediate premises and the employees of the company.
That attitude was prevalent in all the work that was done
there. The drawings were kept in locked cabinets. There were
burglar alarms that were activated during nonworking hours.
All the information was very carefully guarded and
protected.

 There were periodic discussions about the requirements
for confidentiality and secrecy. There were discussions prior
to the open house dealing with the fact that there would be
people from Atari there, that the Atari employees were privy
to the information and to the work being done at Cyan
Engineering and were aware of the policy of confidentiality
that existed at a corporate level within Atari as well as Cyan
Engineering.

 I can’t state from specific recollection that there was
an event during which it was specifically stated to all
employees that we were having visitors and that we
were to be reminded that all of this information was
confidential. I guess an accurate characterization to my
recollection would be that it was an ongoing policy which
was periodically reinforced, which I recall being reinforced in
the neighborhood of time of the tour with regard to
the fact that there would be non-employees there, the
families of Atari members, and that for that reason
we should be cautious about what information was
disseminated.

 Examiner: How was the objective of minimizing the
amount of hardware used pursued in the design of the

software?

 Gregory Cox: Yes. By minimizing the number of
instructions used for controlling the pinball machine to
minimize the extent of memory required. By using an
input /output structure which minimized the number of
integrated circuits required to provide control functions from
the microprocessor to the game, and to minimize the
number of circuits required to provide inputs to the
microprocessor.

 Examiner: What basic hardware control functions were
provided in the software?

 Gregory Cox: Sensing the roll-over switches thumper
bumper switches, sensing the out-hole, sensing the coin
switch, providing controls for the chimes for the LED score
display controls to activate solenoids to output a ball for
play, to elect a hall from a bumper, to control the relating to
the various switches that were activated when a switch was
rolled over by a ball.

 There were probably others, but I would have to
take some time and refer to the hardware and software
documentation to be complete on all of those.

 Examiner: Was the software divided into subroutines?

 Gregory Cox: There were subroutines in the software,
yes.

 Examiner: What subroutines do you remember that were
in the software?

 Gregory Cox: There were various subroutines dealing
with specific hardware control functions, transmitting of

input /output commands to the — through the interface
hardware and to the electromechanical portions of the El
Toro game. There were subroutines for managing the
accumulation of the score. There were subroutines for
providing the LED output commands for control of the score
display.

 Examiner: Do you remember any examples of specific
hardware control that you were referring to in your first
subroutine group that you listed?

 Gregory Cox: Yes. One example would be the output of
commands to the lights associated with the playfield
switches.

 Examiner: What other examples of specific hardware
control do you recall?

 Gregory Cox: Another example would be an input/output
command for activation of solenoids associated with the
thumper bumpers and the out-hole kicker.

 Examiner: During the period that you were working on
the El Toro software, were you working on any other
tasks?

 Gregory Cox: I believe that some of the work on the
software for supporting the MCS-4 system was done during
the time I was preparing the El Toro program. And it is also
very likely that I was doing some work on another project
right at the end of the El Toro software development
phase.

 Examiner: Tell me what that other project was,
sir.

 Gregory Cox: It was a little box with switches and
LED’s that would allow the operator to play blackjack,
craps.

 Examiner: And that was microprocessor controlled?

 Gregory Cox: Yes.

 Examiner: And it too was to use the MCS-4 system?

 Gregory Cox: Yes .

 Examiner: During this period, sir, was there only one
MCS-4 system on Cyan’s premises to your knowledge?

 Gregory Cox: Yes.

 Examiner: Was this project completed, the box with
LED’s so that you could play blackjack and craps?

 Gregory Cox: There were several other games. There
were four games total. I don’t remember what the other two
were.

 Examiner: When somebody was working on the game
box did they have to disconnect the MCS-4 from the El Toro
and hook it up to the game box?

 Gregory Cox: If both games were to be played on the
same instance , you would have to disconnect the MCS-4
from one and connect it to the other, yes.

 Examiner: Was that a difficult task?

 Gregory Cox: No.

 Exmainer: How did you do that? How was that done?

 Gregory Cox: There is what is called a ribbon cable, a
thin flat cable which came out from the MCS-4 and was
connected to the circuit card through a connector. All you
had to do to connect the MCS-4 to a different machine was

disconnect this particular ribbon cable and connect it to the
other device.

 Examiner: After the open house, sir, did you do any
further work on the El Toro game?

 Gregory Cox: I don’t recall.

 Examiner: If you didn’t work on the El Toro game after
the open house, what did you work on?

 Gregory Cox: The game box that was previously
mentioned and another game.

 Examiner: What was the other game, sir?

 Gregory Cox: It was to be a flying game with a CRT
providing a computer perspective of what a pilot might see
in flight, a game controlled by a joystick.

Side Note: According to Steve Bristow's deposition in this same case, the game may have been called "First-Person".

 Examiner: And with a microprocessor control?

 Gregory Cox: Yes.

 Examiner: Your present recollection. Is that what you
worked on until your employment ended at Cyan?

 Gregory Cox: Yes.

 Examiner: Why did your employment end at Cyan,
sir?

 Gregory Cox: The Atari Company was suffering some
financial setbacks, as it was rumored to me, and all of the
Cyan employees received a ten percent pay cut. I was having

difficulty meeting my financial obligations prior to my pay
cut and afterwards it became impossible. So I left the
employ of the company to seek greener pastures that paid
better.

Chapter 2
File#2

 David Shepperd

Programmer for Atari, Inc. and Atari
Games

1976 to 2003

Back-end developers get no respect. That is unless you’re at
a technology-driven company like Atari. David Shepperd was
the longest serving of Atari’s programmers and a highly keen
technology driver from the earliest days of programming up
until the figurative death of the arcade game. He started by
creating some of Atari’s most successful hits of the 70s and
then moved to creating stable development tools over the
rest of his tenure.

 Mr. Shepperd remains modest about his work but retains
stunning memories which sheds some light on the ins and
outs of Atari’s coin-op programming division. This chat
takes you on a journey of early computer hobbyist work, the
creative interference in the company’s early days, the
relationship of Atari Games with Atari Corp, and the grand
camaraderie of the folks who saw the industry grow
together.

 Interviewer: Tell me about your early career in
electronics.

 David Shepperd: I had an interest in electronics from a
very early age. My dad bought a correspondence course on
electronics when I was very young (maybe 10 or so). He
completed the course but never did anything in electronics
himself. As part of the course he was given breadboards,
components, etc. and had to build a number of working
items including a fully functioning oscilloscope. I was
mesmerized by all of it and when he was done with all the
parts I got to play with them and tried to figure out what
was going on. I remember taking the scope to school in
8th grade to show the science class. The kids weren’t
impressed, but the science teacher was very interested in it. I
barely knew what knobs to turn to get a picture on
it.

 In 10th, 11th, and 12th grades my two optional
shop classes were in electronics. Two hours each day of
electronics shop; it was cool except much to my dismay
we didn’t get to learn much electronics. In 12th grade
there was some discussion about how transistors worked
though. Then in junior college I took more electronics and
electrical engineering classes (as many as I could fit
in).

 This was much more interesting, however the instructor
was learning the material at the same time as us (he said as
much). I loved those classes and did very well in them and
the math that had to go with it, although I don’t think of

myself as much of a math wizard.

 Interviewer: After that did you get a formal engineering
education?

 David Shepperd: I went to a trade school after junior
college, DeVry University in Phoenix, Arizona. Again
that was focused on EE work. I’d say it was very in
depth with lots of hands on lab work too. I also had a
well equipped lab in my apartment with lots of junk
from junk stores and dumpster diving. I was always
tinkering with circuits to do this and that. It probably was
mostly with transistors, but I’m pretty sure there were
some of the newly minted integrated digital circuits in
there too and those must have mostly been from Texas
Instruments.

 It was at DeVry I learned all the ins and outs of
television and radio. Even though that information
was presented in the first couple of quarters it stuck to
me and I didn’t forget any of it., and I drew on all
the knowledge later when I did my own video system.
One interesting thing about the video and TV is at
school they were very clear to point out the TV signal’s
specifications: so many microseconds for this and so
many milliseconds for that. It led me to believe the
TV’s required very tight timing on the input television
signal.

 Much later when I designed my video sync chain (that’s
what we called the circuit that produced the horizontal and
vertical sync signals the TV needed) I adhered to those specs

as tightly as I could adding front and back porches, carefully
timed pulses, voltage levels, etc. Only after I started at Atari
did I learn the TV’s don’t much give a damn about
porches and pulse widths and whatnot, nor are they
too critical of voltage levels. They pretty much will
sync on anything as long as it is reasonable and show a
decent picture as long as the signal is not too far out of
whack.

 Interviewer: How did you first start working as a
programmer then?

 David Shepperd: I took a programming class at a
junior college in 1968 or 1969. It was a Fortran II class
taught on an IBM 1620 (with 20k of core memory!). That
set the hook. My college course work was in electrical
engineering, working towards an EE [degree] (I never got
it).

 When I left school in 1972 I took a job in Cupertino, CA,
in a factory that made 3rd party disk drives that could be
plugged into various mainframe and mini-computers from
IBM, DEC, UNIVAC and others. These were the big drives
the size of a washing machine having 3 kilowatt voice
coil hurling 20 heads across 14 inch platters. I think
the top end drive held 100MB and cost over $20k at
retail.

 I was hired on as a technician and worked in the
factory floor for about 6 months then transferred into the
engineering department. Things were very sedate there
but they had plenty of high tech machines and test

equipment. There was an IBM 360/65, a 360/50, a 370/145
mainframe in the lab, and a myriad of fancy expensive
test equipment (all of it usable by me for whatever I
wanted to do). They were mainly there to test new
engineering designs as they popped up and sat idle all
the rest of the time. Lots of opportunity to program
different things and in different languages (mainly Fortran
IV, 360/370 assembly, and COBOL). I was having a
blast.

 Interviewer: How did video games enter the picture for
you?

 David Shepperd: Along about 1974 I went to the beach
boardwalk in Santa Cruz, California, and in an arcade they
had one or two video games. I don’t remember what games
they were, but I’m thinking Computer Space from Nutting
Associates might have been one of them that stuck with
me. Again, I was hooked, but I was also a cheapskate
and knew immediately I would end up putting all my
hard earned money into these machines, one quarter at
a time. I had learned how TVs worked in school and
figured I could cobble together a circuit from parts
collected dumpster diving that I could use to draw a
picture.

[image: PIC]

Side Note: Computer Space, released in November of 1971, was the pre-Atari video game developed by Nolan Bushnell and Ted Dabney for Nutting Associates in California. It remained the most technologically adept game on the market for several years and inspired a number of Atari game creators.

 It took me a few months, but eventually I had something
that could draw a single little picture (later known as a
sprite) on the screen of an old 12 inch black and white TV I
had and I could move the picture around with a couple of
buttons. No sooner had I finished that when I went back to
the boardwalk only to discover a game from Atari there.
It was a driving game, Gran Trak 10. It was one of
Atari’s first driving games done without the benefit of
a microprocessor. Both elated to see the advance in
technology and heartbroken to see all my months of work
after hours and weekends was now obsolete and just
crap.

 Luckily for me, about that exact same time (about 1974
or 1975) Intel had come out with the 8080 microprocessor
and a small startup company, MITS, offered a computer for
sale to the public: the Altair 8800, having the 8080 CPU in
it. It came with 256 bytes of memory. I remember MITS
offering a deal at the time something to the effect, "If you
call now, we will up the memory to 1024 bytes for the same
price, operators standing by." I think it might have cost

about $400 then.

 I immediately put two and two together, figuring what I
needed was a video system that can be connected to the
computer. If it was sufficiently general purpose, I could draw
any number of pictures anywhere on the screen and all of it
can be changed in software. It is the ease of change that
interested me the most. No more changing wirewraps,
solder, making room on circuit boards. No sir. Just flip
some bits in memory to get a new game. That’s the
ticket.

 It took another couple of months to modify my video
system to interface to the Altair and soon I had a rudimentary
game playing. Two players too.

[image: PIC]
Side Note: David Shepperd kept this Altair system over the years and provided some photos of it for this work. The machine is now held at the Strong National Museum of Play in Rochester, New York.

 All the logic I dealt with at DeVry and all times later was
simple TTL. I thought it was great (still do). When it came
time to do a video system, I didn’t know exactly how to put
a picture on the screen, so no I had no guide in this regard.
All I knew was what was necessary to produce an H and V
sync signal and that by varying the input voltage between
the sync pulses the TV would show either a bright or dark
dot. It seemed like it ought to be easy enough. The H and V

were digital, so it ought to be real easy to put a digital
signal between the sync pulses too to make the TV show
something.

 The resolution of the screen is what threw me off.
Broadcast TV had two frames of 262.5 horizontal lines for a
total of 525, but that’s not divisible by 512. So what to do?
How many binary dots can I put on each line? Is 256 too
few? Is 512 too many?

 512 of anything at the time meant another memory chip
or another counter (counters were 4 bits each, memory chips
typically were 256 bits each). Overflowing into an extra
counter or memory chip made things more complicated and
took up more room on my tiny circuit board. I decided to
start big and made my sync chain do the right thing and
make two frames of 262.5 lines and draw 512 pixels per
line.

 My idea was to make the thing as general purpose as
possible, but it didn’t really work very well. I wanted to have
lots of sprites I could move around; I think I settled on just
two but I could duplicate them. I had two 512 bit memories
for each sprite, one for horizontal and one for vertical. I
could set a bit in the horizontal (H) memory to start the
sprite display. It would display at each point on the
horizontal where a bit was set.

 I don’t think the bit auto-reset, I think the CPU
had to clear it during vertical blanking. Likewise for
the vertical. For each vertical bit set in the memory,
the sprite would start a display (it had to have both a

horizontal and vertical (V) bit to display). Imagine
tic-tac-toe lines on the screen with a line wherever a bit
is set in either the H or V memory. Wherever there
is an intersection, it would draw a sprite (the same
sprite).

 I believe the sprites were 8x8x2 pixels. The two bits
provided some greyscale (off and 3 levels of grey). I believe I
chose that because Pong was out by that time and I
wanted to make sure I could do paddle games with
arbitrarily-sized paddles which I could do by stacking sprites
vertically. I never made a paddle game with this hardware
though.

[image: PIC]

Side Note: The problem Mr. Shepperd describes refers specifically to the method that a picture would be displayed on a tube-style television. The issue with the line count (horizontal strips that make up the television display) is that data is stored in powers of 2, like 512. To fill a 525 line screen he would have to include an extra chip, which would create a lot of expense for additional, unused memory. Pioneers in the field like Ted Dabney at Atari solved this issue in various different ways, but Shepperd was among the first to attempt a full bit-mapped system as seen on computers today.
Figure from "Introduction to Solid-State Television Systems, Color and Black & White" by Gerald L. Hansen

 The playfield (as we called all background images) I
made for this hardware, I believe was just a giant array of
bits: one bit per pixel. I don’t think it was 512x512x1. It
might have been a 256x256x1 and I drew each bit twice in a
row (this is probably what I did). 256X256x1 is 65K
bits of memory and that was hard to come by in 1975.
512x512x1 would have been out of the question, although I
remember using lots of crap DRAM I was able to get
from the scrap bins at Intel. So, maybe it was 256k
bits.

 The only games I made with this hardware didn’t change

the playfield much. There was a draw function to place
things here and there and I might have had a game where a
crash would leave a spot (I don’t remember). My Altair
system did not have an output device so there was no way to
save anything. I had a paper tape reader to get stuff loaded,
but no printer or paper tape punch. I had to copy any
changes to paper then manually enter them later if I wanted
to run something again.

 To be clear, with my hardware, the Altair didn’t
participate in doing any video. All the video was handled by
TTL circuits. The 8080 would just set some registers during
vertical blanking and go to sleep. I remember measuring the
processor time and it seemed to me it took well under a
millisecond to execute all of the very simple games I ever
made on this hardware.

 I didn’t use ROM in my hardware. I stayed away from
anything like ROM for the simple reason that it was not
changeable. Remember, my design goal for the thing was
to be changeable by just loading a new program. So
everything was RAM based. The 8x8x2 pixels in the sprite:
RAM. The playfield memory: RAM. Program memory:
RAM.

 There were no EPROMs available (to me anyway) at the
time. Even for the first couple of years at Atari we didn’t
use EPROMs: too expensive, too unreliable, not big
enough (too few bits), etc. Before EPROMs we used
bipolar PROMs which were very expensive, use-once
gizmos. Atari didn’t like RAM. They put as much as they

could in ROM (or PROM or later ERPOM) and put as
little RAM on the game boards as we could get away
with.

 As an aside - and also as a treat to myself to be able to
use my Altair for something more useful than gaming - the
company I was working for at the time had designed a
whole new product with dozens of circuit boards each
containing dozens of chips all wire wrapped. It was my job
to test the wire wrapped boards as well as help test and
prove the designs. It occurred to me I could make a
test jig accounting for the 100’s of inputs and outputs
presented by the board under test with open collector
drivers, pull-up resistors and normal input buffers. It cost
an extra couple of days to make the jig, but nobody
complained.

 Then I just had to write a program unique to each type
of board under test and have the computer wiggle the
appropriate inputs checking that the outputs do the
right thing allowing for scope loops and other things to
make it easier to find and fix problems. The thought
was if at least each of the boards can be proven to do
mostly what they were supposed to, then when all of
them are plugged into the backplane of the unit, it was
more likely to work as a system. I believe it worked as
planned.

 Interviewer: So how did all of this turn into a job at
Atari?

 David Shepperd: In late 1975 I saw an ad in the local

newspaper. Atari was looking for programmers. As it
happens - at the same time I was doing it - the guys
at Atari had the same thought process about using a
microprocessor in their games instead of hard wiring
everything, but they had no programmers. They needed
some help, so I sent in my resume and they invited me for an
interview.

 I packed up my Altair and video system and took it to
the interview and said I’d hook it up and show it to them,
but they weren’t interested (I learned later, they couldn’t for
legal reasons). At the time of the interview they asked what
I wanted to do and I said either hardware or software. They
said they had only an opening for software, so right
then I decided to change my career path to software.
Although technically I was a programmer, at Atari anybody
could do anything if they showed both interest and
competence, especially in the early days. That was my
experience at least, so I had plenty of opportunity over
the years to do hardware design, build, test, debug
too.

 Interviewer: Why couldn’t they look at your Altair
game? Wouldn’t that have been a good example of your
prowess?

 David Shepperd: The reason they wouldn’t see my work
was quite simple: although I called it a legal issue, it wasn’t
because of some law or other. Atari was afraid I would drag
them through the courts should they see anything I did,
not hire me, and subsequently ship product with some

aspects of it that matched my work, intentionally or
unintentionally. This was very common practice then and I
believe the same is true today in most if not all industries. It
remained true the entire time I was there not to solicit or
accept from anybody outside the company any idea for a
game.

 During the interview with Tom and someone I can’t
remember I guess just trusted what I told them of what I’d
made just by asking very pointed technical questions.
Stuff like: "How did you manage to hook it up to a
television set? How much CPU time was spent doing
X?"

 I was the second programmer hired at Atari (at least I
believe those with a title of programmer; there were a couple
of guys working in a branch office in Grass Valley, CA,
who were hardware designers but also doing a bit of
programming). It was as a programmer that our main task
was with the programming of actual game code. Tom Hogg
(the first programmer and my boss at the time) and I
also had as our charge the care and feeding of the two
DEC mini-computers used first by us and then all the
subsequently hired game programmers.

 When I started with Atari they were just coming off a
wildly successful coin-op product, a two player tank game:
Tank, but had been struggling for the 3 or so years before
that. I believe it was this influx of cash and goodness that
enabled them to begin a hiring frenzy of game programmers.
I’d been told prior to this time the employees’ paychecks

would bounce on occasion and/or be told when given their
paychecks "Don’t cash these for a few days" and stuff like
that.

 The coin-op labs had been equipped with second and
third hand test equipment. The cast was set such that
whatever it was we made, it had to be cheap to build. I seem
to recall the magic number at the time for the cost of
building a game was not to exceed $1000 parts and labor
(this is coin-op product of course). We nickel and dimed
every bit of hardware: electronics, cabinetry, controls,
artwork, etc.

 Interviewer: What sort of tools were you using to create
games in the mid 70s?

 David Shepperd: When I started, there was one
PDP-11/05 in use. Tom was the only programmer so it was
his and because he was the only programmer it was the only
development system needed. Before I showed up, however,
they had ordered another, second or third hand, PDP-11/20
which had showed up in pieces a couple of days before I
did.

Side Note: The PDP-11 was a minicomputer created by Digital Equipment Corporation. The programmers at Atari would write assemblers on the computer to simulate the function on their microprocessors like the 6502.

 My very first job was to figure out how to get that
PDP-11/20 put together and running. It would be my
machine, at least at first. I had never seen a PDP-11
before. Both of these systems had dual 8" floppy disk
drives and a paper tape reader/punch. I don’t remember
exactly the memory in each, but for some reason I’m
thinking the 11/05 had 20K and the 11/20 had 24K. The
11/20 had core memory. The 11/05 had semiconductor
memory. Both ran DEC’s single user RT-11 O/S booted
from floppy disk (it might have been RT-11 version
2.0).

 We used those PDP-11 computers from 1976 until 1981
when they were replaced by our first of many VAX 11/780
systems. The PDP-11’s continued to run single user
RT-11 the entire time we had them although at some
point in the late 70’s we were able to put Winchester
hard drives on them so they didn’t have to boot from
floppy anymore. I believe the consumer division had
a PDP-11/34 and they were running either TSX or
RSX (maybe both on different machines?) I know RSX
was DEC’s O/S and I think TSX was a product from
someone other than DEC but both were timesharing
O/S.

 In the earliest days, our programming paradigm was
what would be called at the time "batch processing". You
may not be familiar with the process, but back in the olden
days (I never think of them as "good ’ol") of mainframes
before time-sharing, mini-computers, and terminals, there
were card punches. Programmers would write their

programs on paper, sit at a card punch and transcribe
their program into 80 column Hollerith cards (or have
a clerk do it for them). Hand the stack of cards to a
computer operator. Wait some time for results. Come
back (much?) later to collect their results. Rinse and
repeat.

 In our case, the results of our code were in the form
of a printed 132 column program listing and, if there
were no assembly errors (everything was in assembly
language back then) a paper tape with the executable
code on it. The programmer would take that paper
tape and get it loaded into their test board by various
means.

 In the very early days, it was via an ASR-33 teletype
where - in my experience - one of three things would happen:
Either it would successfully read the tape (yeah!); it
would misread the tape and I would have to start over;
or it would tear the tape to bits. In all those cases it
was at the mind numbing speed of 10 characters per
second.

 Interviewer: How was the hardware for each game
determined?

 David Shepperd: We explored using processors from
National Semiconductor (the 2650), Motorola (the 6800) and
MOS Technology (the 6502). When I started Tom had two
games in active development, one had the 2650 (Quiz
Show) and one had the 6800 (Tank 8). The Flyball
project had a 6502 in it and I believe most, if not all, the

subsequent games developed in 1976 used the 6502. All the
games I did until the 1990’s used a 6502 processor.
We played around with a number of 8 bit variants of
those processors too: 65C02, 6809 and others I don’t
remember.

 Interviewer: I find it interesting that Atari used the 6502
so much when barely any other arcade company did. I’ve
heard complaints about it being relatively slow with
real-time displays, but was that your experience with it? Did
it make it easier to develop for down the line because Atari
invested so heavily in MOS on the consumer end? I
know that the Atari System I and II used 6502s for
sound.

 David Shepperd: I think you have to keep in mind for our
coin-op product, the displays were always performed in
hardware. We in coin-op were much more free to throw
additional hardware at at problem than was consumer, for
example. In most of our games, the microprocessor was
mainly a steward for the display, did the game logic, handled
control inputs, audio and coins.

 Yes, it was sometimes too slow to do all that but in those
instances we found cheats and other workarounds. The 6502
in the consumer product had a lot more work to do and
basically had to do all the game logic during the 1.5
milliseconds of vertical blanking. Apple chose the 6502 for
their Apple II product but I do not know why it wasn’t used
by more widely. I liked that processor and found it very easy
to code for.

 As for creating games, this was a wide open area in the
earliest days. When I started the hardware for my game,
Flyball, it had already been designed and mostly tested by
Richard Patak. However, there was no gameplay designed for
this original platform. As far as I know, nothing other than a
broad idea of "Let’s make a baseball game of some sort". As
it happens, neither Rich nor I knew anything about
baseball.

[image: PIC]

Flyball, Released July 1976 by Atari, Inc.

 For me, just what I remembered from grade school recess,
not that it would have mattered in this case since the
hardware had only one sprite which displayed the baseball (a
small square). Anything else that need to be displayed had
to be done in what is called the static playfield (imagine
playing a game using just ASCII graphics on a 80 column by
24 line terminal; it wasn’t as coarse as that, but similar in
concept).

 Interviewer: The former marketing manager of Atari
coin-op, Frank Ballouz, mentioned that he had Flyball
recalled because you could walk the player on third base to
home. Do you recall that issue and any other features of the
gameplay?

 David Shepperd: As mentioned earlier, Rich Patak
designed the hardware and I think it was done and mostly
tested before I even started at Atari. There was no
game-play designed before I sat down in front of it, so I have
to take some credit for coming up with whatever game play
ended up on screen. It was my first programming of a 6502,
the first use of RT-11 on a PDP-11, the first time in a
game design environment, etc. Plenty of firsts there.
Probably it is what helps with the memories about
it.

 The story about the game, although apocryphal (and
heard by me second hand) I can testify the game does have
that bug. I cannot say if I knew the baseball rule at the time
(possibly and equally possibly not), I can say it never

occurred to me that my scheme would not work and could
easily be defined as a bug.

 I have a recollection of keeping track of players “on base”
using a single byte (bit 0 = player on first, bit 2 =
player on second, bit 4 = player on third). On a hit or a
walk, I would just do a shift left of that byte. If, as a
result, any of the odd bits were set (bits 1, 3, or 5), the
corresponding animation would take place advancing
the player to the next base. When the animation was
complete, one more shift left (rotate actually, with possibly
rotating in a bit to bit 0 for the player reaching first
base).

 If bit 6 was set as a result of this last shift, a player
reached home and count it as a score. Simple enough and
works okay for hits and runs, but fails badly for a walk if
there is an empty base between base runners. A single byte
used (I don’t remember how much RAM that hardware
had, but I’m thinking it could have been as little as
32 bytes for variables and stack; it might have been
64 bytes.) The story I heard is the location (a bar?)
where one of these things happened was torn up by
the two players who got into a huge fight because of
it.

 How did I come up with the gameplay for Flyball? Beats
me. The options were limited. There was one “motion
object” (the sprite) that could be moved anywhere. It was
just a tiny square on the screen and represented the
ball. The pitcher was supposed to pitch, the batter was

supposed to hit, then what? I just figured the pitcher
should use his joystick control to run after ball once
hit, pick it up then try to tag the still running player
before he got to base. The batter could control the
hit by how fast and when he swung at the ball. The
boss wanted the pitcher to be able to steer the ball on
the way to home plate, an idea which everybody in
engineering thought sucked, but the boss gets what the boss
wants.

 Interviewer: After Flyball you did Night Driver, right?
You’ve mentioned in the past that Night Driver was based
on viewing a flyer for a German game. What do you recall
about the creation of it?

 David Shepperd: As I have said before about Night
Driver, I just don’t remember very much about what was on
that flyer I was allowed to look at for a few minutes. Oddly, I
remember the circumstances about the receipt of the flyer
more than what was on it. My memory about that could be
bad too, however.

[image: PIC]

Side Note: The German racing game being referred to here is the 1976 arcade game Nürburgring, released only in Germany. That game would be massively influential as three clones of it appeared in the US that year alone. By happenstance, Shepperd’s Night Driver would be the first released.

 I seem to recall it being warm in a crowded office. But all

the offices were always crowded on the Division Street
building there in Los Gatos. I was probably sitting at a
(my?) desk perhaps contemplating my next project or
finishing up on Flyball when somebody (Lyle Rains?)
dropped in and handed me the flyer. I don’t remember what
was said about it at the time exactly, but I think it might
have been something like “Take a look at this and tell me
what you think”. I recall thinking or saying I needed
more time to study it (maybe I was very busy with
something else at the time?) but was told, “Nope”, I
couldn’t keep the flyer and had to hand it back right
away.

 How long was “right away”? I don’t remember that. I
know for certain I couldn’t keep it over night, but maybe
they let me keep it for a couple of hours until I finished
doing whatever it was I was doing?

 Then when they came back to collect it, I had to quickly
scan and commit to memory the only parts of I thought
important. Whether it was a single sided Xerox copy of
the one side of an actual flyer or a genuine glossy I
couldn’t say (I’m thinking Xerox copy). I have only a
memory of the flyer showing a few reflectors, maybe 3
or 4. Also, I have a vague recollection of the cabinet
being turned more at an angle. And the language on
the flyer was definitely not English. It could have been
German.

 It is very likely marketing had gotten wind of the 3 other
projects like this currently in development by other

companies and about to hit the market and was hoping we
could beat them to the punch. So I think the project
was a “hurry up and do this” so we can get out first,
but since this was only my second project at Atari, I
don’t remember feeling that pressure as being out of the
ordinary.

[image: PIC]

Night Driver, released October 1976 by Atari, Inc.The game sold over 2,000 units.

 A few other vivid memories of the Night Driver
development. The hardware was based on a very clever
design by the engineers at Grass Valley. They called it
MOC-16 for (Motion Object Control [times] 16). It allowed
for 16 sprites to be placed anywhere on the screen.
I believe in their design, the sprites could be 16x16
and it might have first been used on the tank 8 game
(8 tanks and 8 shells, one each). Terry Fowler took
that design and modified it for Night Driver stripping
out a bunch of extra stuff. Our sprites were all just
rectangles of differing sizes so were pretty easy to draw in
hardware.

 Before I had written one line of code, I remember driving
to and from work along the freeway watching the behavior of
the fence posts, lamps, signs, etc. whiz by trying to
imagine how I could make those little rectangles appear to
do the same on a TV screen. If you are thinking of
3D math, and matrix multiplication on an 8-bit 1MHz
6502... Sorry to disappoint. Nothing as exotic as any of
that.

 I did use 16 bit arithmetic for some of the values
maintained for each 16 objects. However, I learned once it
was complete, I could have used 8 bits for those and it
would have worked fine and probably have been plenty
precise enough. But the processor was not pressed for
time or memory so it didn’t much matter. Some of
the variables for each object were kept as 16 bit fixed

binary point fractions with the binary point between
bits 14 and 13 (15=sign bit, 14=20, 13=2−1, 12=3−2,
etc.)

 I remember having cooked up and coded up this whole
scheme with the math, figuring out how the rectangles might
move both top to bottom and left to right, choosing their
size, etc. and haven gotten my paper tape and listing
with all this stuff in it never been run before. I coded
it such that all the things I wasn’t sure about could
easily be adjusted on the fly with just a patch to a
variable. I sat down in front of my hardware with paper
tape in hand preparing to put it in the teletype when
the project leader came in to see how the project was
going.

 I said to him, “I’m just about to find out for myself
for the very first time whether any of this is going to
work and what this is going to look like”. We waited
while the tape loaded. I told the AtariJolt to go and
Night Driver was born. It all just worked right out of
the box. The rectangles spread top to bottom and left
to right just as I had hoped. With the project leader
sitting there, we made adjustments for the position of the
horizon and I changed some of the characteristics of how
much the top-to-bottom and left-to-right spread there
was.

 One other notable thing about this game. It was
extremely popular among the company personnel. There was
a more or less steady stream of people from all over the

company constantly coming through my lab to see the game
in action. It was more than a distraction to me since it cost
me precious development time while they were doing their
dog and pony show and/or wanted demonstrations of the
work in progress.

 Interviewer: Would that include executive and marketing
personnel like Gene Lipkin, Nolan Bushnell, or Don
Osborne?

Side Note: Gene Lipkin would become president of the coin-op division of Atari after serving as salesman and Don Osborne was a regional salesman. Both men were deeply involved with the brainstorming and overseeing the production of game concepts.

 David Shepperd: I don’t remember marketing being much
of a bother on any of my projects (though I could easily be
mis-remembering). But Lipkin, that’s another story. I believe
everyone in engineering cringed when word came down that
Gene was on his way to look at the stuff in development.
Many times Gene wanted changes that completely upended
the current development or even he’d be unhappy with a
project still in early stages of development and quite apt to
cancel it.

 If an actual project review was not scheduled for a
particular game, the game team would throw the “Lipkin
switch” on the hardware (basically it just turned off the

monitor) so if Gene walked by he wouldn’t even notice the
game or if he were to ask, the team would just say “sorry,
the hardware is broken right now”.

 I only saw Nolan once in a great while after I started. He
too would walk through the labs checking out games
in development, but by the time I started Warner
Communications had already started making plans to give
him the royal boot so I think he had other fish to fry. I was
not privy to any of the goings on in either middle or upper
management.

 Interviewer: In addition to the “Lipkin switch”, there was
also an Atari tradition called the Stubben Test.

 David Shepperd: Yes, the Stubben Test was run to see if
the cabinet and/or controls could be broken, but there was
also the all important Owen (Rubin) test. Owen had an
unbelievable knack of breaking everybody’s "iron clad,
unbreakable" game code almost right away just by finding
just the right combination of control inputs to tickle those
odd cusp conditions in the game code not accounted
for and blow the game up, cause a crash and reset or
cause some very odd unpredictable game play. I don’t
think he did it on purpose either. It was just his normal
way of playing that managed to find edge cases. You
should get Owen’s take on things. His stories won’t
disappoint.

 Interviewer: Who were the people you had the most
contact with in the coin-op division? I’ve always heard great
things about the camaraderie between the engineers, so how

did everybody play off each other?

 David Shepperd: I don’t remember the names of all the
people I worked with over the years. Who was more
influential than others? I am sure that changed from time to
time. The first of us programmers, Tom Hogg, Ed Logg,
Mike Albaugh, Owen Rubin, Dennis Koble were among
them. Lyle Rains was a big influence and I worked with him
directly many times.

 I’d put Lyle up there in the genius category. He was
an excellent artist, game designer, hardware engineer
and he was a programmer too. He wrote a number of
development tools for us. I don’t think he cared much for
the management duties he got drafted into over the
years. At one point he became a "Fellow" which I think
allowed him to do whatever he wanted without schedules,
meetings, reports, etc. He had no nobody reporting
to him but I don’t believe he had any trouble getting
people to do little things for his pet projects, after hours
and under the table, of course. That would include
me.

Side Note: Lyle Rains served as VP of Engineering for the Atari coin-op division, then as VP of Creative Development, and finally Senior Vice President of New Technology.

 He and I did the animations for the 20 year anniversary
movie for Atari. I believe he did all of that on his personal

Amiga he brought in to work from home. I think he wrote
the program that would do the frame rendering and I must
have been the one to port it to run on all the Unix like
machines we had in the company at the time (I think we
were running SCO Unix, Esix, SunOS and maybe one other
on various PC’s equipped with 386 processors; there were
three Sparc II Sun systems). I’m not sure I had the
VAXen do any of that rendering work or not, probably
not.

 They were all networked together with Ethernet
and I worked out a Perl script that would basically do
what BIONC does now: gather finished renders and
ship a frame needing rendering to the next available
machine. Some machines were very slow and took hours to
render a single frame. I think the Suns could do one in
less than 30 minutes or so. Still there were 1000’s of
frames to render, I would start the "render farm" running
only at night after everybody had gone home and I
remember there was a time when we looked at the number
of frames left to render, the time it took on average
to do them and didn’t think we had enough time or
machines to finish the job before the deadline. But we made
it.

 In my line of work there I probably had dealings
with nearly everybody in engineering, both hardware
and software, very often and with obviously some more
than others. I don’t know what was going on in the
minds of the hardware engineers. I know there was a

turnover of hardware designers early on and it is possible
they were thinking "There’s nothing more for me to do
here" or some such and left. But I would have to take
issue with that thought process. The needed designs
were just different. And the video displays just grew
more and more complicated and faster and faster. That
frenzy continues to this day mostly between Nvidia and
AMD.

 What stands out for me in coin-op is the hardware and
product (game play) really had to be cutting edge. All the
time to be a success. And being hardware based, we could
push the envelop with both video systems, controls
and cabinets. Think "real" submarine periscopes, X-Y
monitors, 25" color raster monitors, dual monitors, mirrors,
black lights, trackballs, spinners, force feedback steering,
multi-channel audio, etc. The list goes on and on. Of course,
most of the more exotic things were only available once we
started making more money than we knew how to spend fast
enough.

 Interviewer: Which games did you have personal
production involvement in? People have collected credits
over the years for Atari employees but some may not be
accurate.

 David Shepperd: As for games I worked on directly, I can
tell you I coded up Flyball, Night Driver, Sky Raider and
Asteroids Deluxe. I coded up a few others that never made it
out of the lab. I don’t remember the names of all of the
unreleased games I worked on with the exception of (Mini

Golf).

 Other games I may be credited for may just because
the game’s producer (or programmer) felt generous
and is no doubt something to do with the many of the
development tools the game programmer ended up using. I
did not contribute anything to the game play or design
of those other games. For the later higher end games
I was responsible for much of the operating system
content that we ended up using in them; no help with the
gameplay.

 A note about credits appearing on screen. The company
frowned on doing that for many years in the early days. I
believe management was afraid it would make it much
easier for poachers and other head hunters to get the
names of the prized developers and Atari would lose
out.

 I don’t remember what or when it happened where they
relented and started allowing the names of the contributors
to appear on screen. Sometimes the game team would put
everybody’s name up there, even those who may have just
walked by and played the game once while it was in the lab
and made a remark (think of those miles of rolling credits
after a movie). There’s a chance my name is among them for
that reason. Others were more discriminating and only
listed those directly involved in the game design and
development.

 Interviewer: How long would the production schedule –
from programming to production – take for those late

70s games? I’ve heard that games like Breakout were
consistently delayed before they got there. What was
standard project cycle like?

Side Note: Breakout was a special case, and particularly more complicated due to the TTL-based logic hardware. More information about Breakout's production is featured in a research post by the author, A Breakout Story.

 David Shepperd: In the early years (1976-1979), I
think from concept to out the (engineering) door, it
could have been as short as about 6 months. That was
just with maybe one or two developers (maybe a game
designer and programmer; sometimes the programmer
was the game designer too). That time exploded into
many more man months as the video systems got more
complex.

 Doing the audio and graphics became way too much work
for one guy, so soon the projects grew to need several
support people (graphics and audio designers were shared
among all the projects) and the games themselves became
more complex needed more time to work out the details and
make it fun. The first games only needed around 4k bytes of
memory.

 Measure how much memory is needed by some of the
games today. Some of the simpler games I play on my PC

need 4GB of memory (disk and main memory) to hold all
their code, data, graphics, etc. That’s 1 million times as
much raw data. One should not be surprised that it takes a
team of 50 or more as much as 2 years or more to get that
game out the door.

 As for my projects specifically, I am not sure. I know my
first one, Flyball, was complete by the middle of 1976 and I
am pretty certain my second, Night Driver, was also
complete by the end of 1976 (we moved buildings at the end
of 1976 and I was done with ND by the time we moved). So
those two probably were done in less than 6 months
each.

 What I worked on in 1977? I am pretty sure I worked on
something that never went anywhere. Then I think later in
1977 and maybe part of 1978 I finished Sky Raider (I am not
sure about that, but I do remember being at 1265 Borregas
when I did Sky Raider and 1265 is where we temporarily
moved into after leaving Los Gatos in 1976). I think
Asteroids came out in 1979 and we were in our engineering
building at 1272 when that was developed. I don’t remember
exactly, but it must have been 1980 or 1981 when I did
Asteroids Deluxe.

 How long did it take me to do Asteroids Deluxe? I can’t
say, but I don’t think it was much longer than 6 months. It
might have been 9 months because I was also the hardware
engineer on that project. Still, not much in the way of
graphics or audio needed with that project and besides Lyle
Rains did the graphics and most of the game design for me.

We got our first VAX in 1981 so I’m pretty sure I quit
the game making about then to become full time tools
guy.

 Interviewer: I was looking at the schematics for Flyball
and I noticed it doesn’t say how much RAM the game had. I
know it was common practice for some game companies to
“Black box” components so that competitors couldn’t copy
their games, but is that something you would have been
aware of?

 David Shepperd: I see from the Flyball manual they
purposely left off the part of the schematic that included the
CPU, it’s ROM and RAM. But I notice from the parts
list, there are two 2111 chips unaccounted for in the
schematics shown. Those chips are 256x4 SRAMs, so I
can infer those two were used for the 6502’s page 0
and 1 RAM meaning I had the luxury in the project of
having 256 bytes of RAM for both variables and stack.
It was a treat I am sure I did not appreciate at the
time.

 Interviewer: How much planning would go into creating
one of those early games? Would you have reuse of code for
something like the coin receptor or would you rewrite that
from scratch every time?

 David Shepperd: I can’t speak for other programmers,
but I was more of a cowboy about it and continue to be to
this day (maybe we all were, except for Ed Logg). Although
while in school I learned all about doing flow charts and all
those other charts that are supposed to make one’s life

easier, I never could get behind any of it once I started
working (and I still can’t). It was always, "I need a function
that has X inputs and produces Y outputs", so I’d just sit
down and code it directly.

 The code itself was both the flow chart and the
comments. In those days it was in assembly and these
days it is in C or C++ (but I still code as though I am
writing assembly even while writing in C). Sometimes
I’d even add comments but rarely in the early days.
Comments took too much time to write and they rarely were
kept current with the changes. And changes sometimes
happened at a furious pace late in the project. I believe
comments that describe what the code was doing when first
written rather than what the code is doing now, is not at
all helpful. Also, in the early days, there wasn’t much
thought given to code re-use. That changed quickly,
however.

 One thing to keep in mind is the code in these early
projects was actually very small, especially when compared
to what we are doing today. In 1976 the project cycle
typically was six months from when the game idea was a
twinkle in someone’s eye to first product out the door and
the code writing and debug part of that was probably closer
to four or five months.

 I think all the games I programmed for the 6502 fit in
less than 8k of pROM. I was never able to get any of my
games to fit into 2K. I think both Flyball and Night Driver
needed a 4K (byte) pROM. Sky Raider might have also fit

into 4K. I think Asteroids Deluxe took at least 8K or maybe
even 16K, but much of that was code for the vector
generator.

 Figure the 6502 processor needed, on average, 2
bytes per instruction that means the entire game needed
somewhere between 2,000 and 4,000 instructions most of
the time. I just did a quick line count on the latest
microprocessor project I did which took only a couple
of months to do and it shows around 10,000 lines of
C.

 Maybe you will find this an interesting side note about
comments and function and variable names. In the earliest
days, our line printers printed on that green and white
striped 132 column pin feed line printer paper (in fact, there
may have been just one line printer shared between the two
PDP-11’s). The print head was a pinhead with maybe 9 or
15 pins (I forget; it was cheap). The head was dragged from
left to right with a stepper motor while pounding those pins
through a ribbon to draw on the paper then slap back the
left with a load bang. The noise it made was deafening, but I
digress.

 What many of us learned early on was we could get our
printouts way faster (and quieter) if we packed as little text
as possible on each line and the put it tightly to the left edge
of the page. That is the printer could print 132 times
faster if it only had to print one character in the left
column rather than a complete 132 character line, even
if some of those characters to the right were spaces

(I think all characters took the same time to "print"
meaning the head moved at a fixed rate from left to
right).

 So in the earliest days it would not be unusual to see
source code that looks like:

 A:.BLKB
 S:LDA I,0
 STA A
 ...
 JMP S

 rather than something more helpful when looking at it a
week later:

 ACCEL: .BLKB ; ACCELERATION

 START: LDA I,0 ; INITIALIZE ACCELERATION
 STA ACCEL
 ...
 JMP START ; NEW GAME, START OVER

 What we used for debugging the 6502, at first, was this
thing called Jolt. I don’t remember who made it but it
sucked so we copied it and called the copy an AtariJolt.
There wasn’t much to it, a small pROM and register and a
serial connection. We interfaced it to the ASR-33 which
needed a 20ma current loop and ran at 110 baud. The
programmable ROM lived in the 6502’s address space that
included the reset and interrupt vectors so the code in that
pROM always ran first.

 The code in that pROM had a UART [a type of serial
connector] emulation to read/write to the teletype as
well as provided a simple “monitor” that could be used
by the programmer to patch and view memory, etc. I
may have written the code that lived in the AtariJolt
pROM, or maybe it was written by Mike Albaugh. There
was an equivalent thing for the 6800 (Micbug?) but I
don’t remember if there was a need to make a clone of
that.

 I remember buying (or somehow getting a hold of) a
stepper motor driven paper tape reader. Maybe somebody
procured one from somewhere and asked me to get it
working with the AtariJolt? It must have needed a special
interface. It might have been serial or it might have just had
a “go” signal to turn the motor on and off and returned the
raw sprocket and 6 hole information which was optically
read (probably simple parallel is how it worked; I’m sure it
was cheap whatever it was).

 I’m not sure it was I that got it working, but it would
have been in my wheelhouse to do that kind of thing at the
time. I think once it was proven to work, the company
bought a bunch of them and the cabinet people made a little
black box to hold it and its power supply. It was way faster
and much more reliable than the paper tape reader in that
ASR-33. For a long time the AtariJolt and that little paper
tape reader was our development system for the 6502
projects.

 As I remember it, I’d just code up something I thought

might work with the subject hardware then try it out. Either
it worked or it didn’t. If it didn’t I’d work with the
engineer and we’d figure out whether the problem was
hardware or software or some combination of both.
Soon enough we’d get all those details ironed out and
I could get on with putting some game play on the
screen.

 Almost always, the first draft of the game play put on
screen wasn’t fun. The idea that sounded so good on paper
and kicked around in meetings, when put on screen with the
controls just didn’t pan out. The programmer and game
designer (if separate people) would hash out different
ideas and try different things. Sometimes the game
just wasn’t good enough and we wouldn’t find that
out until the factory was cranking them out by the
dozens.

 Other times, the game was so good, the programmer had
a hard time getting debug time on the one machine in the
lab he had to work on because all the other people in the
company would “drop by” to play this new game in
development. But oddly enough, even if everybody in the
company loved a game and couldn’t wait to play it, it wasn’t
a sure thing the game would be an equally huge hit with
players in the field.

 As for code re-use. This didn’t happen right away. For
the first few games, I believe we all rolled our own self test
and coin routines, etc. And each of us would re-use our own
code from our own previous projects. However, as we learned

the cheats the players had used to figure out how to fool the
coin acceptors and developed defenses against them, the coin
routines became standard and they would get included
in everybody’s project, but this took a while to flesh
out.

 Eventually, the self test functions became standard and
they too would get included in everybody’s project. Doing so
made everybody’s job easier since there was much less stuff
to write and debug. And if there was a bug fix or new
feature to either the coin or self test functions, everybody
got it at the same time. I think in the early days, the self
test was hurriedly written, mostly as an afterthought, after
the game was finished and on its way to production
(I’m imagining us thinking, “Why waste time writing a
self test for this thing if they are not going to build
it?”).

 I could be wrong, but I think for my later projects I
wrote the self test first as an aid in the development of the
new video hardware and to help the techs (and me) bring up
additional prototype boards.

 Interviewer: You briefly mentioned the monitor. How long
did it take for your development systems to have their
own monitors as opposed to the only output being a
teletype?

 David Shepperd: I can’t say exactly when we got
keyboards and monitors. I do remember the very first
ones we got must have been within days (or maybe a
couple of weeks) of my starting there, but they were very

primitive. The "terminal" was just a QWERTY keyboard
mounted on a small metal box that had 110vac input,
a BNC connector providing composite video out and
(I think) a DB25 connector having an RS-232 serial
output.

 Since the output was composite video and we had a
bunch of monitors we were using for our games, we just
hooked up a 12" or 15" game monitor to this box. It worked
fine, but Tom had the cabinet department make a pair of
cabinets that would each hold a monitor and a shelf under
each monitor to hold that box with the keyboard on
it.

 The "terminal" displayed just 12 lines of 80 characters
and the keyboard provided only upper case ASCII characters
and some of the punctuation characters. We may have used
them clear up until we got VAXes or they may have been
replaced with more sensible terminals at some point (quite
possibly DEC VT100s).

 Once a third programmer started which must have
been a month or so after me, we started up the "batch
mode" input I spoke of earlier. We hired two what we
called computer operators, Cynthia and Linda. Their job
was to type the long hand code we programmers had
written on sheets of paper (or the marked up code on a
previous listing) into a primitive RT-11 text editor,
run the assembler and get a listing. If there were no
assembly errors, run the linker and produce a paper
tape. Package the original input, the assembler and

linker listings and the paper tape, if there was one, and
put in the "out-basket" for the programmer to pickup
later.

 Both Cynthia and Linda got real good at their job
and would fix assembler errors on their own and even
occasionally "Type what I meant, not what I put down on
the paper". The turn around could be quick if there wasn’t
much in the in-basket or it could be a couple of hours. I
know some of us only required one or two turnarounds in a
day.

 If we were mainly debugging, we could go all day doing
manual patches of our code making notes of the changes on
the listings in red pencil. Sometimes it meant manually
patching in whole functions to the debugger but those were
probably not typical. Then we could drop our changes in
the in-basket on the way home from work and pick up
the new stuff in the morning. If we had to add lots
of new code or there were too many changes made,
we would submit for a new tape whenever that was
needed.

 What I found when I started working at Atari was the
lack of adequate tools one needed to do their jobs. It
could have been simple stuff like missing scope probes,
broken meters and other test equipment, there being only
one test instrument that had to be shared among all
the developers, etc. I couldn’t do anything about that
stuff (other than bitch about it). The software tools
were extremely primitive too; that I could do something

about.

 As mentioned earlier, we were using PDP-11’s running
RT-11. The guys at Grass Valley had coded up some macros
that could be used with the RT-11’s macro assembler (called
MACRO, normally used to produce PDP-11 code) to have
it generate 6502 binary (there was a separate set of
macros for the 6800). MACRO, being native to the
PDP-11 family which referenced everything in octal
numbers, only allowed for binary, octal and decimal inputs
for numbers and produced listings with all numbers
shown in octal. With all the microprocessor families
we were interested in using though, we wanted to use
hexadecimal inputs and have listings show results in
hexadecimal.

 There was no way input hex in MACRO so for that we
were out of luck and had to use only what it liked (with the
resulting requisite occasional confusion and errors). To make
the listings show in hex, those same guys at Grass Valley
wrote an RT-11 line printer driver that parsed the assembler
listings on the way through the driver to the printer
and converted what it guessed were octal numbers into
hex. That driver kinda sorta worked and mostly got
it right, but still made lots of mistakes. I used it and
groused about it, but none of it was good enough for
me.

 You might ask, “Good grief, why didn’t we just output
the listing to a file, then run a separate program to fix the
listing file?” To which I answer, simple: there wasn’t

enough room either in memory nor on the floppy disks to
hold the OS, the source files and the listing files let
alone a second copy of a modified listing file. Nope, the
assembler had to output direct to the printer or you got no
listing.

 Coupled with that, at first, all programs were best
written as a single source file targeted at a fixed absolute
memory address. It was possible to write relocatable code
and have global variables, but the linker produced a link
map with octal numbers which made it clumsy to figure out
where the functions and variables were in memory during
debugging. One could put code in separate files and fix each
of them at different fixed addresses, but that meant
the programmer was responsible for manually linking
the separate images together to make sure they did
not overlap, etc. For me, it was a painful step in code
management I thought should be performed completely by
the computer.

 I put up with it for the first two projects I did at
Atari, Flyball and Night Driver, but I was determined to
fix that before starting my next project. I believe it
was late 1976 when I started coding up a new linker
which I called linkm. This tool was going to link all
the object files produced by the assembler, produce
listings in hexadecimal, allow for dynamic placement of
page 0 variables and sections (a 6502 specific thing)
and produce a cross reference of global variables and
functions.

 It was written in PDP-11 assembly (everything on the
PDP-11’s was done in assembly). I don’t remember how long
it took to finish and I was probably working on it while I
was coding my next game (I don’t remember what that
was, no doubt one of the many that didn’t make it to
production). When I did finish it, however, it became the
tool of choice for all developers.

 I wrote tools that would manipulate input files of various
formats to break them into the appropriate pieces needed to
program into separate PROMS and ROMS (I don’t
remember all the different types of PROM programmers we
had or how we interfaced to them; some early ones
could have been via paper tape). This tool became the
standard used for many years. Again, I mainly wrote the
tools I needed to help me with my projects as I saw
fit and they were quickly adapted for use by all the
developers.

 At some point after linkm was done, I don’t know exactly
when I started or finished it, I wrote a new macro assembler
family, also in PDP-11 assembly, that would accept
hexadecimal inputs and produce listing in hexadecimal
directly. It was a single assembler, but could be built
with different defaults and opcode tables for the various
processors we were using or thinking of using at the time.
I’m not sure of all the CPU’s supported, but certainly the
6502 and 6800. It possibly included the 65C02, and 6809. I
named them kind of after their CPU: MAC65, MAC68,
MAC69, etc.

 One key thing with the 6800 family is they are big-endian
processors [the way they store bits], where most of the others
were little endian, as was all the stuff that ran on the
PDP-11, so the assembler and linker had to deal with them
differently. Something the native RT-11 assembler and
linker were not equipped to do. Linkm could deal with it
ease. These tool chains connected me to all the game
programmers all the time. They would come to me for
support and/or to ask for new features, etc.

 Interviewer: How much did hardware influence game
design as opposed to game design demanding hardware?

 David Shepperd: I think that depended a lot on
the technology put forward by the hardware engineer.
If the engineer was well versed with what the CPU
could do, s/he would give more work for it to do. If
the engineer was more versed on what the hardware
could do, they’d do more in hardware. For me, in the
case of Sky Raider, I had the hardware do most of the
work. I’m sure the CPU could have done more, but
even now, I’m not sure what I would have had it do
different.

 For Night Driver, there wasn’t much choice. Nobody had
much experience with microprocessors at the time. The basic
hardware was designed by the folks at Cyan. In the case of
Night Driver, consumer successfully ported the game (adding
extra stuff even) to the VCS and the CPU does most of
the work in that hardware. These days, I guess I’d be
very tempted to use real 3D matrix transformations

since the CPU instructions will execute 1000’s of times
faster, would be 10’s or even 100’s of thousands of times
faster doing the math and the math could be in floating
point and I’d be programming in C or C++ instead of
assembly.

 Back then though, the name of the game was "just make
it look like it’s doing the right thing". Sometimes that
meant using lookup tables instead of computing math
(I think all our sin/cos/tan/arctan calculations were
always done via lookup tables; it cost memory but it was
blindingly fast). The cheats I worked out meant the
computations in Night Driver were very simple and
fast.

 About the time we did Sky Raider, Atari had been
cranking out games and making more money than they knew
what to do with. So there was some freedom to explore
different, as in off the wall, ideas for games and video
systems. Lyle Rains had this idea to display a background
that hadn’t been tried before where each line was comprised
of a series of stripes of variable lengths each of a different
shade of grey.

[image: PIC]

Sky Raider, Released March 1978 by Atari, Inc.The shooting game features a three-dimensional playfield that curves towards the player as if it’s being rotated on a barrel.

 It was a display of serial data. i.e. 5 pixels of grey level 4
followed by 12 pixels of grey level 9, followed by 3 pixels of
grey level 2, etc. I don’t remember the specifics, but I think
it might have been there could be 16 different stripes on each
line and each stripe could be one of 16 shades of grey. That
would translate to 8 bytes per line and 128 lines (or it might
have been just 64 lines) for a total of 1024 or 512 bytes of
ROM per playfield. Thought to be a big win for cost
reduced hardware yet still have a very exciting and busy
playfield.

 The display could be scrolled vertically meaning the
starting address of the playfield could be chosen by the
processor to be any random number. I don’t remember how
much memory was in Sky Raider for this playfied but there
was at least two full playfields so probably 2K or 1K of
playfield memory. I designed the hardware for this product
and Lyle was the project leader, game designer and worked
with the graphic artist and did a bunch of the video
graphics. This thing was more of a proof of concept, but we
put in some targets and made it into a game of sorts
anyway.

 I was never happy with the gameplay. I thought it was
pretty lame, but the technology was very interesting and
absolutely a blast to work on. Atari at the time could sell a
bunch of just about anything, do it sold well enough I guess.
Designing a playfield under those constraints, however, was
terribly difficult. Lyle and I (mostly Lyle) had to re-work

what the artist came up with since it did not conform to
the strict requirements of "only 16 different stipes per
line".

 I remember the design was delivered on this giant piece
of vellum marked with different shades of grease pencil
representing each of the shades of grey. Lyle and I labored
for a long time transcribing those colored stripes into binary
then massaging the numbers to get something to look
reasonable on screen. It was torture for all concerned. We
never did it again.

 Interviewer: So Sky Raider didn’t have any programming
which made the 3D effect possible? Didn’t Richard Patak
also work on that game as well as Flyball?

 David Shepperd: For Sky Raider the display was done as
a complete cheat. Sorry if this is where you find out how the
sausage is made, but there is no computed perspective in
that game. Nope.

 As mentioned before, I already knew how TV’s worked
and figured we could make a simple patch to the vertical
amplifier input directly in the monitor to "bend" the
picture a little. The vertical amp is driven by a sawtooth
(plot of voltage vs. Time that looks like the teeth of a
sawblade; voltage rises from 0 to n at time t then snaps
back to 0; rinse and repeat) generator which is what
makes a linear top to bottom motion of the beam in a
CRT.

 What I wanted to make was an inverted tRC shaped
wave (plot of voltage vs. Time of a capacitor charging

through a resistor) instead of a sawtooth to cause the lines
to bunch on the top and spread at the bottom (a simple tRC
shape input would make the lines spread at the top
and bunch at the bottom). I was struggling with how I
might easily do that when Steve Bristow dropped by
suggested I use the easily produced tRC shaped wave and
just put the monitor in the cabinet upside down. So all
that need be done to the monitor was add a resistor
to the input to the vertical amp (a simple patch for
manufacturing to do) and we get bunched horizontal lines on
the "top" of the monitor that spread out towards the
"bottom".

[image: PIC]

Side Note: A screen of Atari's Sky Raider that features the distortion, giving an illusion of 3D. In the game, the player is tasked with bombing ground targets within a time limit with time rewarded for achieving a particular score.

 Perspective? Sort of. Each line was drawn with a
combination of a horizontal position counter and a variable
frequency oscillator. That is, the horizontal position
would kick start the VFO which would paint 128 pixels
then shut off. The frequency was faster at the "top"
and slower at the bottom and the starting position
moved left towards the bottom too (left edge came
from another ROM). Targets were just sprites that were
marked in a playfield lookup table (perhaps randomly
chosen from a list) and followed the play field down the

screen. The player’s shots hit if they were aimed right
and "landed" in a spot where one of the sprites were
at the time. Very basic. Very simple. I thought, very
lame.

 I have no memory of Rich Patak working on Sky Raider
with me. I just remember Lyle, Steve Bristow and me as the
principles (the three of us, as co-authors, were awarded a
patent on the circuit US #4,169,272). I have a memory
of Rich leaving the company soon after I started but
I could be wrong and I couldn’t tell you when that
was.

 I see that the play field was a 2K x 8 ROM and
there were a possible 32 pixels per stripe (5 bits) and
each stripe could be one of 8 colors or shades of gray (3
bits) but I think there must have been a minimum of 4
stripes (32 pixels each) and a maximum of 16 stripes
per line (the hardware would have just repeated the
same 16 stripes over and over until 128 pixels were
painted).

 Interviewer: Did Atari ever turn into a company
of chasing trends? Obviously there were follow-ups to
popular games like Night Driver, but did engineers ever
go into a product knowing they had to hit a certain
mark?

 David Shepperd: Yes, I think from the day I started there
if Atari saw a game from another company was doing well,
we’d want to do one similar too (witness Night Driver). We
tried lots of "me too" games but I cannot testify as to

whether they were successful or not. I was never much
interested in following the inner workings of the company. I
was much more a nose to the grindstone guy. Don’t bother
me with outside details, I have stuff to do. So I cannot
testify specifically as to what anybody else was thinking and
doing and when.

 I do remember the times there were very much a roller
coaster ride. There were good times when we could do lots of
out of the ordinary stuff and bad times when all that work
on non-ordinary project got the ax (and employees got
the boot too). I believe most of the game designers
much preferred to do original work and original work
sometimes paid off big time (Asteroids, Tempest, Missile
Command, to name just a few) but I think after things got
tight and projects got more expensive to develop, as
with the movie industry, there was reluctance to try
something new and different, untried and untested. Better to
do something familiar. Hence sequels and remakes ad
nauseum.

 I think we had always tried to penetrate the Japanese
market but I don’t think the Japanese ever liked any of our
games. Then I think the Japanese government made it
difficult to import foreign products too, but don’t quote me
on that. Then there was the (purported) thing where if it
was a good game and they liked it, they’d buy exactly
one and copy it a zillion times. That might just be
apocryphal.

 I can say I have some sympathy for the planners. As a

casual observer, I imagine it must have been a big time
PITA for them. The lead times for many of the parts
needed to make one of our games was sometimes long
(think 6 to 8 weeks) and regardless they always had to
guess how many of a particular game we were going to
make and sell. They could accurately estimate how
long it took to make that many games in the factory so
knew how much time to reserve a production slot for
it.

 However, if the vendor for one of those long lead
parts delayed or failed to deliver altogether, it threw off
the manufacturing schedule. If the game they planned
on making a lot of only sold a few, then they would
stop making them but that left a bunch unsold in the
warehouse and a hole in the production schedule. So they
would either have to close the factory or somehow find
something else to slip into the now vacant production
pipe.

 There were plenty of times where game development
teams thought they had more time to develop when
panic ensued and their product had to be rushed to
production to fill a hole left by some other project not
making their slot for some reason or another. I can
imagine headaches aplenty for all concerned. Lucky for
me, I never had to deal with anything directly in that
area.

 Interviewer: Were delays in production ever a problem
with tools for you guys? As things got more complex, how

long would the game programmers have to wait to actually
get something on the screen? When you started it was a
matter of a week or two, but I’m guessing the ruthlessness of
Lipkin wouldn’t have worked on projects early on once it
took longer to actually get anything on the screen. Did it
feel like chasing technology at that point or did Atari get
some good processes to allow for designers to get to work as
soon as possible?

 David Shepperd: We tried lots of different things to help
speed up finding out whether a game was a dud. One thing
Tom Hogg and I worked on for quite a while (many months
in the very late 1970’s or maybe even in 1980) was a thing
called a game simulation system (GSS). The idea was
to build a super powerful system with a very capable
video system and a fast CPU, one that was more easily
programmed than in 6502 assembly, could display 100’s of
sprites, on either raster or X-Y video, have lots of playfield,
a 25" color raster monitor and 25" vector monitor, easily
adaptable and changeable controls, etc. Everything was
RAM based so all of it could be quickly re-programmed.
It was ambitious and it kinda sorta worked at some
point.

 The processor I put in it was a not particularly fast
PDP-11/02 but it was a 16 bit CPU and had pretty good
development tools already in place. I enjoyed doing the
hardware and test software for it but this project was
doomed from the start. The only projects that were
destined to be programmed for it were those "marginal"

ideas were we weren’t sure whether it would be fun or
not.

 Even though it was easier to program on the PDP-11,
there was a distinct lack of enthusiasm for any game made
on the GSS first. I think game designers and programmers
figured any game made for was already probably a dud.
Even if the game wasn’t a dud, it would have to be
completely re-written for the real production hardware
thereby doubling the development time for an already iffy
game. Doomed, but it seemed like a good idea at the
time.

 So the GSS never got used. Programmers continued
to develop on prototype hardware. I don’t know how
long it took to get something playable. I imagine it
varied quite a bit from one project to the next. It seemed
to me chasing latest hardware technology was always
in the cards, but it had to be cheap too which made
it rather limiting as to what we could use at any one
time.

 In the 1980’s when Atari had lots of money and consumer
was cranking out custom chips for their products (and home
computer division), coin-op jumped on that bandwagon and
tried making some custom chips too. The one that I
liked a lot was the ASAP processor (Atari Simplified
Architecture Processor). The idea was to make a cheap
yet fast processor that could also double as a security
chip.

 As all the custom chips tended to do, they took way too

long to develop then it was a pain to find a foundry that
would build it in the quantities we wanted. Then there was
the tool chain we needed to help us develop code for it. A
giant internal project was underway building the in-circuit
emulators for it and other support items. Mike Albaugh
designed the instruction set and ported GCC to compile for
it. I ported my - by then general purpose - macro assembler
to produce code for it and somehow convinced GDB to
debug the code.

 I was working on an X11 program to be a windows based
source code debugger (it never worked well nor to my liking).
The in-circuit emulators never worked reliably (too much
trouble getting the connectors to stay put, etc.). Although
we never made a game with the ASAP we did make an
product with that chip used internally for the next
simple development system. I called it the ASCLEAP
(I don’t remember exactly what that acronym stood
for, but I’m thinking something like ’Asap powered
Standalone Control of a Lump of Ethernet Arcnet and
Parallel").

 It had Ethernet, Arcnet and Parallel interfaces on the
little board. Think of it as a precursor to the Raspberry Pi
decades ahead of its time. We never used Arcnet, but we
heavily used the Ethernet and parallel interfaces. I ported
the Xinu OS to run on it and every development system
in all the labs had several of them connected to the
Ethernet. We used them to download executable and
data images to the development systems. They worked

great.

 Interviewer: You said the last game you had direct
involvement in was Asteroids Deluxe as the Project Leader.
Can you tell me about that experience before you got into
tools and support?

 David Shepperd: With Asteroids being such a
blockbuster hit, it was decided a sequel was warranted
and I either volunteered or was volunteered to do it, I
don’t remember. I probably accepted provided I could
be the project leader too. Being the project leader,
programmer, audio and hardware engineer and chief bottle
washer turned out to be way too much for one person to
do.

[image: PIC]

Asteroids Deluxe, Released April 1981 by Atari, Inc. Largely a bug fix of the original Asteroids, the game also features some small audio-visual improvements.

 I’m pretty sure I wanted to do all that because I was
afraid of getting some nimrod as a project leader on it and
the hardware was basically just the Asteroids hardware with
a POKEY audio chip on it (I think that’s pretty much all
that changed; possibly I added more ROM and RAM to
make room for more functions/features). It taught me an
important lesson: don’t ever do that again. In fact, I think
that was the last game I ever directly worked on until the
late 90’s.

 I never really liked Asteroids. I was always annoyed at
how slowly the ship responded to control inputs. So my first
thought was to "hot rod" the ship and I made the ship much
more responsive to control inputs. That is pretty much my
game play input to this game. I think all the rest of
the ideas for changes came from Lyle Rains. It was his
idea to change hyperspace to shields, have spinning
asteroids and to have those nasty attack stars. I’m not
sure who thought of having the player’s ship explode
into spinning pieces (I might have done that on my
own). I know I changed the way the saucers worked.
Their aim got much better as the player’s score got
higher.

 The game was put in a very fancy cabinet and it sold
very well in this country but wasn’t selling well in Europe.
So they sent Mary Fujuhara (marketing) and I on a trip over
to Fankfurt, Germany then London, England to see first
hand why the game wasn’t playing well. What I noticed

right away is the European players played the game
with a cigarette in one hand and cup of coffee in the
other. That didn’t bode well for their getting a good
score on this game and I could see immediately we’d
have to make it much easier for those guys. So there is
a DIP switch option for "easy mode" aka European
Player mode. I don’t know what happened after that, it’s
possible it still was too hard for them and/or the game’s
reputation was already blown and it never did well in
Europe.

 Interviewer: I know for some employees the matter of
bonuses and compensation was a rather big concern
during their time at the company. Since you were the
project leader on Asteroids Deluxe, did you get any
larger reward for working on a successful product like
that?

 David Shepperd: Yes, the bonus system (there were many
iterations of it over the years) was always a bone of
contention for many (not me!). Several people left due to the
feeling they’d been cheated out of bonus. Some for very good
reason. I remember shortly after the first bonus system was
setup there was was quite a to-do once the actual dollar
amounts were computed.

 After a very successful game, one or more of the
engineers on the project was due to get a bonus that
(guessing here) must have been much more than was being
paid to one of those two guys in the corner office (like the
CFO) and he refused to issue the check demanding that

“Engineers don’t deserve to make that kind of money” or
words to that effect. I don’t remember what the resolution of
that was but I do remember it was enough to make one
hardware engineer quit.

 I believe there is probably always a sense of entitlement
among the masses. The early bonus pools were designed to
award the most (all?) the money to the primary designers
(game designer, programmer, maybe hardware engineer).
But I don’t remember all the details. I think the first very
generous bonus pool was put in place after my last game was
made so I never had to deal with the allocations (I got
some bonus for Asteroid Deluxe, but it wasn’t much
and was automatically allocated with a very simple
formula).

 Eventually the bonus pool worked such that the project
leader had to decide how to divvy up whatever was in it for
his project to the various players. If the project leader felt
generous, some money was trickled down to everybody that
had even the slightest thing to do with the project.
Others project leaders split up the money to just the 3
or 4 people directly responsible for the design of the
game.

 For me, being in a support role on all games and not
directly involved in any specific game development (just
making tools and doing what I could to optimize game code
and occasionally helping with the debug of some very nasty
obscure bugs), I didn’t expect to get anything from bonus. It
was always just that, bonus. If I got something, that was

great. If not, oh well. Sometimes it was enough to get a new
car.

 Interviewer: What led you to step away from game
development and begin working directly on tools? How
did Atari’s back-end technology evolve through the
1980s?

 David Shepperd: I always found it much more personally
rewarding to write a tool for the folks in the labs (and me
too) to use than to write a game. Although it was really
cool if they produced a lot of the games I made, those
shipments always happened months after I was done with
it, so there was not the immediate gratification one
gets from seeing a tool accepted among peers within
minutes.

 From the start I was the guy keeping the computers (and
printers and tape punches, etc.) running and as the company
grew it became more and more of a full time job to do that
leaving me less and less time to work on games. So at some
point (maybe 1979/1980?), I quit the game business and
became full time tool and computer guy. Tom Hogg moved
on to head up a new division so I took his place as
compute systems manager and was able to hire some
help.

 We got a VAX in 1981. Lipkin okayed the purchase of the
machine by asking, “Is it cool?” To which we replied,
’Absolutely”, so we got it. It was no where near as capable
as DEC led us to believe (we connected everybody in coin-op
engineering to that one little machine: 1MPS, 4MB,

2x100MB disks). It behaved very badly as you might
imagine. So in 1982 we got another VAX.

Side Note: The VAX systems were an extension of the PDP-11 line released by DEC. The system would host Atari's internal email service, VAX Mail which has been archived by Jed Margolin.

 When we got the second machine, I had to name the two
of them for the purposes of networking. So I called the first
one Ernie Slowvax (for the obvious reason) and the second
one Kim Newvax (obvious enough?). In 1983 we got another
VAX and I named it Sandy Covax since it was doing
(co)processing mainly running giant long batch jobs
that took days and days computing custom integrated
circuit designs. In 1984 we got a fourth VAX, a DEC
Microvax, so I named it Mike Rovax (for an obvious
reason). The machines actually were referred to for
everything by their first names, Ernie, Kim, Sandy and
Mike.

 We got another VAX a few years later (86-88). It was
one of the new generation VAXen from DEC with a
much more powerful CPU and could hold much more
memory. The first 4 VAXen were 1MPS machines, I think
this new VAX was a 3.5MIPS machine and could hold
32Mb of memory. I’m pretty sure I stuffed it with as
much memory as it would hold. The most I could put in
Mike was 16Mb and I think the most I could put in

each of the 3 11/780’s was 8Mb. This new machine
was devoted strictly for batch processing and was the
fileserver machine for all five of the VAXen. I called it
Gawd because all the machines depended on it, and if it
went down the entire computer center went down with
it.

 Interviewer: In that later 80s period when the consumer
division was split off from coin-op, did it feel like a
new era? At that time, how much changed aside from
not being able to enter as many buildings as before for
you?

 David Shepperd: I never had much affection for or
interest in any of the consumer product (still don’t). One
could say I was snobbish about the coin-op product. The
coin-op product was the most interesting to me because we
could push the envelop as far as providing a better gaming
experience. Better graphics, better audio, better controls,
etc. The explosive growth of the consumer divisions just
meant our coin-op division was getting left further and
further behind in the dust. I don’t recall seeing that as
anything but bad for coin-op.

 So no, the growth in the consumer product offerings is
not something I would look back on with fondness. But I
should point out that coin-op and consumer were almost
always completely separate from one another, in different
buildings in different areas of town (or even different parts of
the country). There was a short period of time just before
the company was split where much of consumer development

moved into the coin-op building in Milpitas. But that
was pretty short (I think just a few months; maybe a
year). When the consumer division was sold, they all
moved out. That was a bad time for all of us in both
divisions. Lots of contraction in both personnel and office
space.

 Coin-op engineering was always together in the same
building. The coin-op division had multiple buildings at
different times. I think at one time we may have had 4 or
maybe even 5 buildings but I’m pretty sure they were all in
the same office park. At the end, we were down to less than
one half of a building - the same building that at one time
was just one member in the 4 or 5 we once had. Engineering
was in one building (perhaps shared with some other aspect
of coin-op, I forget), manufacturing was in another, machine
and wood shops in another, upper management, sales,
technical writers, human resources, facilities, etc. was in yet
another.

 Interviewer: What were the coin-op buildings like? Did
you guys have any amenities besides the work-related stuff?
How about when you moved into new buildings over
time?

 David Shepperd: At all the buildings we ultimately
occupied, we had a sand volleyball court (it was well
used by yours truly) and a "game room". The game
room had a bunch of Atari games and maybe one or
two others from competitors (but maybe not), all set
to Free Play. I brought visitors to play in there on a

couple of occasions. I always just played the games in the
common area, we had Foosball and ping pong tables
too.

 For a long time we had bagels and donuts provided on
Friday mornings. I know the engineering building in
Sunnyvale had a Jacuzzi, sauna, showers, etc. I think the
Milpitas building at 150 McCarthy did too, and that one
might have even had a swimming pool, but I can’t be
certain. I recall using a swimming pool on a few occasions at
one of the locations we were in.

 I know the Milpitas building at 675 Sycamore, the last
place we lived in, had a sand volleyball court (yep, well used
by yours truly) but I don’t think it had much of anything
else. There might have been showers there.

 I found the moves tiring. As I recollect, coin-op engineering
moved from Los Gatos to Sunnyvale in 1976 (into the
corporate headquarters building), then less than a year later
moved again across the street (our engineering building
wasn’t complete when we had to move from Los Gatos),
where we stayed for just a couple of years then moved again
to much larger facilities (coin-op had many buildings) in
Milpitas.

 Then Atari blew up and consumer moved into our
Milpitas building for about a year so we had to shuffle all
our stuff around to make room. Consumer moved out of the
Milpitas building and within a few months we had to move
out too. We moved back to our old engineering building
in Sunnyvale and stayed there for a year then moved

once again back to one of the smaller buildings coin-op
had in Mipitas. This last move was in 1985 to the 675
Sycamore building where we finally stayed until they
closed up shop. You count the moves in that 9 year
interval.

 By the time we first moved to Milpitas (1982 or so), it
was my group that was responsible for getting the terminals
and development systems hooked up in the labs and offices
before anybody showed up for work in the new buildings.
And every move after that. And my group also did all the
office telephones in the Milpitas facilities. That’s why I say it
found it tiring. Too many moves and after 1982, they were
all due to cost cutting, so the budgets were low and
tight.

 Coin-op managed to continue with pushing the envelope.
Bumping up to 16 bit processors, out of assembler into high
level languages (C and Bliss), then 32 bit processors. Out
of EPROM into hard disks. Force feedback controls,
Multi-channel audio, Networking games together. None of
those options were open to the consumer game console at
the time.

 Interviewer: Did you have any say in what sort of
hardware that the company pursued or did you just have to
work with what you were given? I’m betting it must have
been nice after the 80s to not have a dozen different
microprocessor structures you had to learn and refer to
constantly.

 David Shepperd: When 16 bit CPU’s became available

and were all the rage, we chose the Motorola 68000 and put
it in a number of the coin-op products and continued
experimenting with others such as the Texas Instruments
9900 and the DEC T-11. We didn’t make any products
with the 9900, but the T-11 was used in many of our
games.

 That one, the T-11, was a case of supplier failing us.
DEC assured us there would never be any delivery issues and
provided a second source but they were unable to keep up
with our demand. We abandoned the T11 for any subsequent
products and stuck with the Motorola 68k series (68000,
then 68010, then 68020; I don’t believe we ever used a 68030
or higher in any of our coin-op products but I could be
wrong).

 When we moved into 32 bit processors, we designed and
had built our own CPU, the ASAP (Atari Simplified
Architecture Processor), and used it quite successfully
in our internal development tools but it never made
it into a coin-op product (it was supposed to be a $5
CPU and offer security since it would make it quite
difficult to clone our hardware). Then we discovered
the MIPS R3k CPU which, although more expensive
than the ASAP, not by much and it offered much more
functionality and expandability that did the ASAP. Then
we moved to the MIPS R4k, R5k and R7k processors
which were the last processors we used before we were
shuttered.

 The holy grail of a development system seemed to always

be just out of our reach. The ones that looked real cool were
too expensive, so we had to settle for something much less.
For the longest time (years), we spent a great deal of
time and manpower on developing our own custom
development system that would supposedly do everything for
everybody.

 First for the 6502 (I think it might have been able to do
all the 8 bit CPUs). It never quite worked perfectly. None of
our home built dev systems worked perfectly. When the 8 bit
CPUs got usurped for the 68000, we kind of gave up on
making our own dev systems and bought some 68000 dev
systems (from AMS, I think). They were cheap, with an
RS-232 serial interface through which we would download
code and do the debugging, but I believe they were in-circuit
emulators, so there was some very low level debugging
possible.

 We could program the 68000 in C instead of and
in addition to assembly, but I think it was more the
development tools available (both software and hardware)
that dictated what kind of CPU a game team wanted or
were destined to use. There were plenty of (cheap) options
for the 68000 but not so much for the other competing
processors. For some reason nobody was ever interested in
using anything from Intel.

 Our engineering eyes always sparkled when we were made
aware of some nifty, neat, fast, cheap processor coming over
the horizon but when we looked at what we had to use to
develop for it, the luster fell off and we stuck to the tried

and true 68000. It led to our developing our own CPU
and all the hardware and software tools that would
go with it. With the advent of the MIPS processor,
everything changed again and to my way of thinking, for the
better.

 I personally didn’t have any say in what dev systems
somebody could or could not use if they wanted, but I was
almost always on one team or another doing and/or helping
with the development of a development system of one sort or
another. One team went out on a limb and bought a
complete dev system for each of their programmers which
was basically a Sun workstation with the appropriate
hardware to become an in-circuit emulator for the 68000
processor (I don’t remember if those Suns were running Sun
O/S on a 68000 or Sparc internally). I don’t believe any
other team followed in their footsteps. I have a vague
recollection there was reliability troubles with some of those
machines.

 I have no recollection of being troubled over knowing all
the different machine languages of all the different processors
we had ever used. I’m pretty sure I enjoyed learning a
new language every time some new CPU popped up.
My first exposure to the new and different processors
was in the writing of an assembler for it (which was
simply writing the plug-in for my modular assembler
package).

 Interviewer: Were you always basically working from the
ground up, not really knowing how other companies were

using their systems? I find it really fascinating just how
differently companies approached development on a technical
level. For something like the Motorola 68000, there were so
many development environments to achieve the same result
of running games. Did you have Atari people that came in
from other companies which shaped the knowledge of how to
run this stuff, or was it all fundamentally "the Atari
way"?

 David Shepperd: As for me knowing or concerning myself
how other people did things at other companies, it didn’t
happen. I don’t believe I ever gave it a second thought
except if we chose to use a store bought dev system, it must
have been used the same way everywhere else that system
was sold. By accident? Our years of experience trying to
code the microprocessors on flakey hardware led us to
desire certain features of a development system so we
had our list. Nothing store bought ever had everything
on our list exactly the way we wanted it. Some were
close.

 I personally think the biggest mistake was insisting on
in-circuit emulation. That alone made them very expensive
and very prone to trouble. And it severely limited the top
clock speed that we could run the CPU (or indeed, especially
what type of CPU). The in-circuit emulator is what doomed
our last attempt at making our own devsystem for our
custom CPU. It just would not work 100%of the time. With
the MIPS and remote control GDB, I gave up on the idea or
need for an in-circuit emulator and just used a network

interface to the game processor directly. It worked great, not
completely perfectly either, but way better than with
the otherwise complicated maze of cables to the game
board.

 I can’t say if other companies did the same thing the
same way. All I can tell you is it worked for me and
because it worked for me, it also worked for all the other
engineers. So it went, no hardware development systems
required with the MIPS processors. Just needed a device to
connect the game processor to the network and a very
simple couple of wires from that device to the game
board.

 I cannot testify to an "Atari way". Each game team was
more or less free to do what they wanted but I believe they
chose to stick with the tried and true tools that were
available to everybody and if they needed something special,
they could easily get it from me or my team. If they went to
a custom system, they might not get something they
need or they’d have to pony up some cash to get it. Or
if they had trouble with it, they’d be depending on
outside help to get it working again. I suspect they just
might not have wanted to take the chance on something
unknown given that their whole game idea was also an
unknown.

 Interviewer: When Atari Games was owned by Namco,
did you ever feel a Japanese element entering the company?
Previously to that, Atari had imported a few Japanese
games, though I don’t know if you did any work on

converting them.

Side Note: Namco purchased Atari Games in February 1985 as a majority-owned subsidiary. In 1987, the company relinquished its majority by selling a minority ownership to Atari employees, then Atari Games would become a subsidiary of Time Warner in 1991. See Michael Current's Atari Timeline on Atari Games for details.

 David Shepperd: I have no recollection of the Japanese
connection having any direct influence on my work at
the time. Other than one of the first Japanese games
we built under license from was it Namco? was a very
large driving game [called TX-1]. The prototype for
that game was in the common area a few feet from the
door of my office. All day long it was sitting in attract
mode loudly announcing the start of a race in that
broken Japanese dialect followed by three beeps 3...
2... 1.. It was doing a decent job of slowly driving me
insane and probably explains the state I’m in these
days.

 I cannot testify as to what had to be done with the
Japanese designs to get the produced by our factory. I
wasn’t involved in any of that. I am pretty certain it wasn’t
a simple process and at least some changes were required
since I am also pretty certain a design took some time to
make it through the pipeline. Nowhere near as long as

something we had to design so it was a huge head start, but
I don’t believe it was just a simple take their drawings
and make a game. I can state with some certainty the
reason we chose to make those games under license
was simply because without them the factory would
have to close for long stretches between releases of our
home grown product and a closed factory meant no
income.

 So except for the near panic that I could read in the
eyes of the executives when there appeared to be a dry
spell in store for the factory, some of which could be
calmed with the arrival of a new licensed product, there
wasn’t much I could personally see about the Japanese
influence.

 I should note that I recall there being some mumbling
among the troops when their home grown product’s
production got postponed because a hotter licensed product
was taking up space in the factory. That happened on
occasion but from the factory’s perspective it was more of a
high class problem (too much product to make and too much
work to do) and accounting’s perspective with accounts
receivables getting further in the black.

Side Note: One documented example of discontent that predated the buyout of Atari by Namco was the Sun Electronics game Kangaroo.

 Interviewer: Exactly what kind of tools were you
providing for the back end in these later years? How did
other developers at Atari appreciate your role?

 David Shepperd: The bottom line being I was always
right in the mix with all the game designers and other
engineers. As my role changed to what would now be called,
IT, I was still in constant demand from the programmers for
various computer resources. Keep their terminals and
development systems hooked up and working. Keep the
VAXen running and happy, backed up, printers in good
repair and full of paper, etc. Later that included all the
telephone and Ethernet equipment too.

 At the same time, me and my team was also in demand
from sales, tech writers, accounting and manufacturing since
they too had connections to the computers in "my" computer
room. Even though sales and manufacturing were in different
buildings, they were like across the street or just down the
block so it was a short walk to get to them when needed. It
was mostly fire fighting. When things were working as they
should, I could rest (rarely), but when something didn’t
work or broke, it was always an emergency to get it working
right away.

 As for tools, the ones I mainly worked on were assemblers,
linkers, EPROM programmers, other single purpose
programs. Later when we started using disk drives in our
game, I wrote the game’s operating system and file system
and the tools necessary to get the files copied to the game
from our LAN [local area network] and I worked on the
making development systems. These would be the hardware

that connected the game systems to the LAN so the
programmers could do debugging from their terminals and
get data copied to disks and ROM emulators in use at the
time.

 When we started using 3DFX video and MIPS processors,
I wrote the low level code to get those processors to
boot and the library functions in assembly language to
get them to run as fast as possible. And I ported a
TCP/IP stack to our hardware so our games could use
it to talk to one another and everything else on the
LAN.

 Interviewer: As an aside, I’m curious what you felt about
the company about the company when it changed it’s name
to Time Warner Interactive and later to Midway Games
West. Did it feel like the Atari name was being kind of
forgotten?

 David Shepperd: I personally was never involved in the
choice of company name. I went with the flow. I always
called the place Atari (and continue to do so to this day) no
matter what it said on the corporate letterhead. The only
thing I can be given credit for is the choice of the Internet
domain name.

 When Atari broke into two, the Atari Corp. portion
quickly earned a reputation in the industry as deadbeats.
They didn’t pay their bills on time, if at all. Our division
wanted to keep the name Atari so we named our self Atari
Games, Inc. but the vendors just clicked on the name "Atari"
and assumed we were the same deadbeats, so it was tough to

get equipment and supplies. All the vendors I had to deal
with insisted on cash in advance.

 When it came time to choose an Internet domain name, I
shied away from including the name Atari in it just for that
reason and instead chose, agames.com.

 Interviewer: There seems to have been a complicated split
in terms of what Atari Corp. received versus Atari Games,
since I know some patents like on Atari Football went to
Atari Corp. Do you have any knowledge about how that
might have transpired?

 David Shepperd: We were in a lawsuit with Nintendo for
I don’t know how many years. Lots of back and forth with
depositions. Their lawyers asked for random stuff from us
(such as raw printouts to our game code for a number
of projects, maybe all of them, I don’t remember). I
do remember running boxes and boxes of line printer
paper through the printers at one point. Even I got
deposed somewhere along the line I think over one of my
patents.

 I believe their lawyers were probing for details of the
when and where of the development tools we were using that
I made but never said as much. Most of the inner workings
of the lawsuit were kept quiet, at least from the likes of
me. Very hush hush. Then one day, the two companies
kissed and made up and we became best of friends.
Knowing what exactly transpired there is way above my
paygrade.

 How the IP got split up between the two companies

remains a mystery to me. The way we always described
it was Tramiel got all the assets and Warner got all
the liabilities. Whether that was true or not I don’t
know.

 Interviewer: That’s a very good way to describe it! So as
the games moved out of the abstract 8-bit technology, how
did Atari Games evolve and begin to explore that area in 3D
game development? I imagine that must have changes things
from a tools perspective.

 David Shepperd: The stint I mentioned earlier about the
development of the ASCLEAP devices just made me long for
the days when I got to work with hardware and program
microprocessors. So I quit the computer maintenance
business and joined a newly formed group called the
Technology department (they had been trying to recruit me
since their creation). The group was tasked with the
development of all new hardware to be used by the game
teams.

 I joined as one of the developers and maintainers of the
what could be loosely called the O/S and general hardware
test functions that ran under the hood on all the game
hardware. At the time this team was deep into the design
and construction of a prototype video engine they called
Zoid. I think called that because it was multi-headed having
multiple MIPS R4000 CPUs and some custom chips in it. It
was a giant hardware with a tall stack of 5 or 6 boards
each somewhere around 12” square. Even as it was, it
was very slow as video systems go and there was still

another one of those 12” boards yet to be designed and
built.

 The project was slipping its development schedule later
and later. The game teams were getting impatient and
panicky. Everyone in my department was working on that
project (except me) in hopes of getting it back on schedule.
But taking people off their normal work and putting
them on a different project to help speed it up doesn’t
work and only slows down both projects (IMHO). Not
only that, I had my doubts our factory could build
the thing as it got even more (crazy) complicated, let
alone that it would continue to operate in the harsh
environments of an arcade cabinet. I was thinking we were
doomed to failure. The end was near. This was about
1995.

 Along came Midway and they bought whatever was left
of Atari Games from whoever owned it at the time (I think
Time-Warner was back to being the principal shareholder at
the time). I’d been in that new Technology group for
probably (much?) less than a year at the time. This was
great for me, but not so great for most of the others in our
Technology group.

Side Note: Midway Games purchased Atari Games in 1996. The company would have its name changed to Midway Games West in 1999 but the staff would remain in Milpitas.

 The game development at the Midway offices in Chicago
operated under a wildly different MO. It seems, the boss
over there had chosen to pit the game development teams
against one another. I believe the idea being almost like one
of those reality shows of today. Only the maker of a game
that sold well got to keep their jobs. The team(s) that
produced a game that failed in the market got kicked off the
island as it were.

 The upshot was there was tremendous secrecy in the labs
over there in Chicago. Nobody shared anything with
anybody. All the labs were locked with no visitors allowed
from any other team, etc. Loose lips sink ships, and I can’t
imagine it to be a pleasant working environment. I am sure I
would have hated working there.

 There were a number of problems about doing things
that way. Morale just being one of them. The main
problems that led them to do something about it were
practical and had to do mainly with their manufacturing
processes. With each team designing custom hardware, the
factory had a hard time keeping ahead of procurement
and stocking of more and more different types of parts,
etc. So some thought went into doing more standard
hardware.

 To that end, the bigwigs at Midway corporate allowed
the creation of a Technology Group much the same as we did
at Atari. And as it happened, I think the Midway guys
started their technology group probably about the same time
as Atari did (like maybe a year before Midway bought

Atari; certainly it was more than 6 months before the
purchase). However, there was no corresponding change to
the policy at Midway of each team being independent.
That meant the new Midway technology group had
the unenviable task of not only developing a kick ass
hardware, they then had to go and “sell” each game
team with the idea of using a “standard” hardware
and also to choose the hardware developed by this new
group. As I understand it, each game team had the
option to not do it. The super-star teams had special
autonomy.

 The hardware developed by this group was quite kick ass
for the time. The prototype was a “kitchen sink” design
having tons and tons of features. And to prove the design,
they also developed some demos to prove the capabilities of
the hardware in order to help sell it. The main idea was the
game teams could choose from a buffet of this hardware’s
features to be included on their project and the technology
team would spin a set of hardware unique to the game
team’s requirements. However, if all the game teams chose to
use this hardware even if they didn’t choose the same set of
features, at least most of the items could come from a
common pool of parts from manufacturing’s point of
view.

 As I understand it, the Midway technology group hadn’t
yet sold any of the Midway game teams on their new
hardware when Midway bought what was left of Atari. So
very shortly after the purchase (probably within days), the

Midway technology group brought their demo and some
prototypes from Chicago to California to show us and try to
sell our teams on it. As mentioned, our game teams were
already disappointed in what could be expected of Zoid
with no set date of completion in sight and were very
excited to see this new Midway hardware (probably would
have been excited to see anything that worked and
allowed them to ship their game on time). All we had
to do was somehow get our game systems ported to
theirs.

 I believe there continued to be lots of hope by our
technology guys that Zoid would actually work and there
remained resistance to abandon it. I had no such affinity for
Zoid, so I took it upon myself to figure out how to interface
our development systems to this new Midway hardware and
converted our compilers to produce the right code. We were
using the MIPS R4K processors in Zoid and, coincidentally
they had also picked the R4K processor (just one needed)
for their system; the difference was only that ours was
operating in big endian and theirs was configured for little
endian.

 Unlike what Atari designers did, instead of trying to
outdo the video chip designers of the companies making
them for PC’s, the Midway designers instead chose
the much more sensible approach and installed a PCI
bus so one could just plug in a “standard” PC video
card. The video card they chose to use with one from
3DFX and somehow they negotiated with the 3DFX

people to get the sources to their video library so we
could easily interface to it with something other than
Windows.

 I think it only took me maybe a week to get our tools
and test code to produce video on the monitor using the
Midway hardware. Bruce Rogers had a game in development
(Mace?) and I believe his project was chosen as the first to
try out this new hardware because it was the first scheduled
to hit production of all the games currently in development.
He had already done whatever had to be done to get
either Maya or some home grown tool to produce the
texture and geometry data for his game required of
the 3DFX chipeset. Once we got a clean compile and
download, his game was running on his lab setup and it
was running way faster and looked way better than
what he was getting with his Zoid prototype hardware.
He was sold. He might have even been getting 30fps
with no optimization out of the box. Everyone was
wowed and all the game teams wanted one of those
right now, but it meant doom for Zoid and all the Zoid
developers.

 The most interesting thing to me is this whole thing from
when we were first shown the Midway hardware until we had
our first game playable on it was probably less than a
month. When the teams at Chicago saw how fast we got our
games running, at speed, on this untried hardware from their
own internal design group, they too quickly signed on as
soon as they were able. The Midway technology group

suddenly had more customers than they could handle. A
high class problem for them.

 Interviewer: Any particular experiences in working with
that technology that might be interesting to hear?

 David Shepperd: One that stands out a little bit in the
late 90’s was after we had been swallowed up by Midway. At
that time we had chosen our hardware to be the 3DFX
chipset and a more standard OpenGL like video engine. The
tool used for the art and animations was Maya running on
SGI computers. Bruce Rogers, the programmer and
project leader, had an idea for an action game (I forget
which one exactly, but I’m thinking a game called Mace)
where multiple cabinets were connected together via
Ethernet with one player at each cabinet. This is one
instance I know of where he had most of the game up and
playing in the labs before there was any actual game
hardware.

[image: PIC]

Mace: The Dark Age was released in October 1997 by Atari Games.The 3D fighting game was driven by 3DFX Voodoo GPUs.

 He used the SGI workstations as the game display and
since all the engineers and artists had an SGI workstation on
their desk, they all could, in theory, join in to a single game.
The game was written in ’C’ and by then the CPU
in our game was a 64 bit processor (a MIPS R4K), it
was a relatively quick port to get the game running
on the actual hardware once it was ready. I believe it
did allow Bruce to do quite a bit of tuning to find out
whether the game would be fun before it was committed to
hardware.

 I think there were even instances when players were
playing the same game on the first and only prototype game
hardware along with other players playing on the SGIs. I
don’t know of any other project that did that. There might
have been others that did something similar, but I didn’t
know about it.

 Interviewer: I guess the only thing left to go over is the
ending period of everything. Was there any particular
moment or departure that singled to you that Atari was no
longer going to be viable? In those last few years, did it feel
like you could continue being happy in that work? Aside
from the conflicts with the Midway parent, did it feel like
the team could continue to push forward on ideas they
wanted to pursue?

 David Shepperd: Was there handwriting on the wall?
Yep. When did I see it? Probably at least a year before it
happened. Maybe even two years before the plugged was

pulled. I could see we were on borrowed time even though I
had no direct contact with the finances. The continuous
contractions in both personnel and office space we were
going through each year could only mean the end was
near. I did not believe they could keep doing that and
keep the company viable. I don’t remember it making
me think less of the company or to take my work less
seriously. I just could not recommend and in in fact
discouraged anyone I knew from applying for a job
there.

 I can tell you my experience when the decision came
down to shutter the coin-op stuff. As mentioned earlier, I
liked what I was doing, especially the last 10 years or so. So
much so, I was busy working on some problem or other with
some potential future coin-op product when a fellow
employee dropped by my office to tell me the decision had
been made to shutter all of coin-op. While it made
everyone else in the company want to just quit what they
were doing and go have a beer, I continued to work on
whatever it was I was working on until I finished it which I
am pretty certain wasn’t until well into the evening or
night.

 I really didn’t care whether what I was doing was ever
going to be used or not, I enjoyed what I was doing and I
wanted it to work at least once. I am sure you’ve had the
same experience but probably didn’t even notice it. Imagine
you were working a puzzle or game of some kind, just for
your own amusement. At some point you know you are

going to finish the puzzle and when that happens, it
will be a permanent end for that particular puzzle or
game.

 I have to ask, would knowing there is an end to what you
are doing change your desire to complete it especially if you
were enjoying what you were doing? That was my thought
process. The end of coin-op was just the point at which I
would start again on some other puzzle. Really nothing
changed.

 In this particular case, where Midway decided to close up
coin-op, but to keep most of the employees and office space
there at Milpitas and we all shifted gears from coin-op into
consumer making games for the Nintendo, Xbox and
Playstation. I think just for one year, 2002 to 2003, we did
maybe three titles (I forget their names; although I’m pretty
sure Gauntlet Legends was one and the one I liked, Dr.
Muto, didn’t sell). When Dr. Muto didn’t sell, Midway
decided to shutter all of the Milpitas location in early
2003.

 However, as it happened, in 2003 after the Milpitas
offices were closed for game development, a coin-op customer
who had a bunch of Rush 2049 cabinets wanted to spruce up
the game and asked Midway if there was anything that could
be done. I was asked by the project leader, John Ray, if I
could get the code from the defunct Rush 2049 Tournament
Edition, strip out all the tournament code and convert it
into a normal game that could be kitted into those cabinets.
Although I did some support work on the Rush project, I

never did any actual game code for it, but I agreed to see
what I could do.

[image: PIC]

San Francisco Rush 2049: Special Edition was released in 2000 by Atari Games.It was the last game to carry the logo of Atari Games, and was a minor revision of the original San Francisco Rush 2049 from October of 1999.

 They let me use some empty space in the Milpitas
building (all but just a couple offices had anybody working
there) where I set up some development systems. I worked
on the project part time for a couple of months and got
something working they were happy with. So I got to do a
little more coin-op work for "Atari" more than a year after
they got out of the coin-op business.

 As to expanding into areas other than coin-op, I’d have
to say yes, that happened on occasion. However, it is my
observation that those ventures only were started when the
coffers were full. When things got tight, the first projects
that got axed, were these non-coin-op things. We’d contract,
in personnel and/or office space, retreat into doing just
coin-op until a little money piled up, then feel some
Wheaties and want to branch out, only to rinse and repeat.
The branches always got whacked (except for Tengen; I
think that branch did okay).

 Interviewer: It was so good that you prolonged the end of
the company! Seems you truly were the very last technical
person to be involved with (the real) Atari. Thank you so
much!

Chapter 3
File #3

 Rich Moore

Programmer and Manager for Atari, Inc.
and Atari Games

1978 to 1993

Representing a new wave of programmers which entered the
industry in the late 1970s, Rich Moore was a guru who had
his computer education enhanced by the presence of popular
mainframe games. Most notably, this would prime him as
the programmer for Lunar Lander, which was in part drawn
from memory rather than strict recreation. He would also
start the process of 3D game development at the company
with the flight game Red Baron, which also served as the
technology base for Battlezone.

 Rich has a great deal of insight about the culture of Atari
as a whole, vividly describing the personalities he worked
with as the hard-working savants that they are. After
leading a few games on the technical end, Mr. Moore would
move into a management position in the arcade division,
which provided the programmers with a knowledgeable
person in the larger decision-making process. Rich Moore
describes how he got to that stage by the early 1980s and

the exciting game development stories from the world’s
greatest arcade company.

 Interviewer: Like a lot of the Atari employees were you
from California?

 Rich Moore: Yes. Born and raised in California.

 Interviewer: What area?

 Rich Moore: Born and raised from San Jose. My dad
actually worked at Lockheed. Actually born in Berkeley
when my dad was going to school there; I went to school
there as well. It turns out where my wife and my daughter
went to school too. So I have pretty strong ties in the Bay
Area in total. It’s kind of the Silicon Valley/San Jose area as
well as Berkeley. The Berkeley, Oakland, San Francisco
area.

 So yeah, pretty familiar with the culture or the
environment of Silicon Valley. I’ve lived here a long time in
the many decades so saw all the home development,
obviously business and commercial, but also the teardown of
orchards that used to predominate the Silicon Valley
area

 Interviewer: Was your father an engineer for Lockheed?

 Rich Moore: Yes he was. Not a programmer, he was an
electrical engineer. He worked on the space program. So tech
was a pretty active part of growing up as a kid. I actually
had one of the first programming courses - although I don’t
know if it was really formally a programming course - in
high school. For lack of a better word: the gene pool or gene

source is in the tech tree.

 That’s interesting to me because now because all the
people that are in entertainment or gaming say, “Oh yeah
my first thing I did, I remember having an Atari 800 or 400,
5200, 2600 and that’s how I got interested,” in gaming
or tech or whatever. Everytime I share a story, either
with a new client or new work or team or whatever,
and you share “What do you? What do you know?”
You mention Atari, you see people’s faces just light
up.

 Interviewer: When you did that introductory programmer
course what were you programming on?

 Rich Moore: [Laughs] It was a Hewlett Packard.
The best I would describe it as a programmable office
desktop calculator. These predate the HP-35 and 45
handheld calculators, a larger format of that. It had
a card reader, but the card reader you actually filled
them in with number two leaded pencil, you filled in the
little squares. That’s how you coded and programmed.
Essentially you were doing assembly language for this
calculator. It was kind of a smart calculator, which at
the time was really a small computer. That’s how it
got started. Not punched cards, but the same physical
format.

Side Note: Likely the HP calculator being referred to was the HP 9100-A or a similar desktop calculator from that time period.

 Interviewer: At Berkeley did you go for programming?
Was that a thing that you could do at that time?

 Rich Moore: Yeah. It started in the early 70s. It had just
moved from a science school to a formal engineering school
or School of Engineering there. It was formerly WCS.
Specializing in the computer science degree is what I
did. People could also just do Comp Sci directly and
that was typically on the science side. Probably in no
small part because of my dad’s background, I had a
stronger interest in sciences, physics and stuff like that
so I want to go to engineering school more than just
science.

 I did everything there. Started with punch cards on CDC
[Control Data Corporation] mainframes: that only lasted one
year. That was converting at that point in school from
punch cards and Hollerith codes very very quickly to Digital
[Equipment Corporation] mainframes and mini-computers,
and then languages. So it was rapidly transferring to
Pascal, C, LISP, FORTRAN, all of those languages I
had experience with and have utilize that at school
there.

 Interviewer: What sort of applications were you being
taught to create? Obviously not games!

 Rich Moore: No, it wasn’t games, but it’s interesting you
bring that up. The first game I programmed - well, second
game, I did a pinball and a couple of other small projects -
was Lunar Lander which was the first vector-generator
(X/Y) game that Atari manufactured and produced. I

actually had a job on campus in the Electronics Research
Lab and they had a Hewlett-Packard mainframe or
minicomputer there, and they had a display and the game
they had on it was actually Lunar Lander. [Laughs] That
was pretty appealing. I was pretty fortunate and pretty
lucky. That was in the labs, it was not accessible by very
many students there.

 HP did that as a bit of a demonstration of that hardware,
like today you have your pre-load applications on whatever
you bought, right? That was kind of one of the pre-load
applications to show you what was possible with these
computers to get you interested in their hardware. So we
actually had a Lunar Lander. It was pretty fortunate, my
first boss there, a new project happened to open up
for the games. You know, “Do you happen to know
about the Lunar Lander game?” “Uh, yes! I do!” That
was fortuitous because I could relay on exactly how
the gameplay was and solve the nature of the design. I
spent… More hours than I should have been playing it
there.

[image: PIC]

Side Note: The Lunar Lander program which Mr. Moore would have played - formally called Moonlander - was originally created as a display for a DEC terminal rather than Hewlett Packard. It is possible - though not confirmed - that the game could have received a port to an HP terminal.
 The program was created by Jack Burness in February of 1973 for display on the GT40 terminal by DEC. It was a graphical adaptation of earlier text-based lunar landing simulations which go back to 1969, the year of the historic Apollo 11 Moon Landing. More information can be found in Benj Edwards' article 40 Years of Lunar Lander.

 Interviewer: [Laughs] I was curious, I’ve seen some photos
of the Lunar Lander game where they’re playing it with a
light pen. Is that how you played it?

 Rich Moore: Yep, exactly. I’m trying to think if there was
any other control interface was besides that… I’m sure there
were other things that were on there, more function and
business applications on there as well. That’s obviously the
one that stuck in my head, obviously the Lunar Lander
game.

 Interviewer: So what what kind of programming were you
looking to go into then?

 Rich Moore: So that’s a great great question. I actually I
took a little bit longer - I took like four years and two

quarters - to graduate and part of the reason I took that I
took a little bit more is I actually did a co-op work - a
work-study job - down at Hughes Aircraft in Glendale,
Southern California. The project I had there was actually
microprocessor based. It was the radar group and they had a
bunch of different test systems.

 The first one was a test system for the power supply to
the radar system that was being automated and being used
in programmable testing. So I got a chance to work with
microprocessors and doing assembly language there, and
probably one of the first jobs there doing that as a co-op.
[Laughs] I was not even a full-time person there doing
it.

Side Note: UC Berkeley had a work study program for enterprising students to take classes for six months a year then work for real companies as interns for six months. Both Steve Bristow and Al Alcorn of Atari took this course to work at Ampex Corporation where they met Nolan Bushnell and Ted Dabney.

 That actually led to Atari. I worked at Hughes for six
months made some nice money. There was a fair amount of
overtime that was required cuz they’re trying to get done
during a timeframe. So it worked out pretty well! Funded
the rest of my school and stuff after that, and that
microprocessor experience turned out to be very valuable.

The difference in interviewing afterwards, the confidence
and everything was just completely different. The work
environment and having that history was a pretty pretty big
deal.

 I didn’t interview with Atari on campus, but the reason I
got selected and was able to interview with Atari at work
was that my boss scanned resumes. We did all that stuff at
the job placement center at Cal back then. My boss scanned
resumes and he saw that I had microprocessor experience.
Atari at that point was going from dedicated hardware to
microprocessors - the 6502 back then - for their game
boards.

 So again: Fortuitous, worked at the lab on campus;
fortuitous, knowing Lunar Lander; fortuitous, having
done the work study at Hughes and then working on
microprocessors. It all lined up, like dominoes.

 Interviewer: What was the microprocessor you were using
at Hughes?

 Rich Moore: There were two primary ones we were using
at Atari. We were using the Motorola 6800, which was
Motorola, and we were using the 6502. Can’t think of the
manufacturer…

 Interviewer: MOS Technology.

 Rich Moore: There you go. Both 8-bit processors, pretty
rudimentary especially compared to now. Pretty basic.
Those two processors were the ones we used. Before
too long, probably matter of maybe two, years we’d
upgraded. I think it was the 6809 and then the 68000

which was the first 16-bit microprocessor that came
out. All the systems kind of updated as the technology
improved.

 Interviewer: So were you doing 6800 at Hughes?

 Rich Moore: I was actually doing the Intel 8080 at
Hughes Aircraft. The concepts were all very similar across
the different families. It’s really just, what’s the number of
registers. It was pretty much all assembly language at that
point. We did upgrade to C probably in that two-to-three
year time horizon, but at that time I think it was all
assembly.

 It was relatively easy. You had the little programmer
card, a manila card board. They kind of fold it back
and forth vertically and had all the instructions on it.
That made it pretty easy to move back and forth across
stuff.

 Interviewer: I saw that a Rich Moore at Atari was
mentioned as a pilot at some point. Were you a pilot back
then?

 Rich Moore: I was not a pilot. There were a couple
Rich/Ricks there at Atari. There’s a fellow named Rick
Moncrief you’ve probably run across. He was a pilot, Dave
Sheppard was a pilot, Dave Stubben who was VP of
Engineering was also a pilot. So there was a few people who
did fly.

 I did - after Lunar Lander - Red Baron which was
a flight game. Part of the prep for that game, Rick
Moncrief had (I don’t know if he owned it at the time or

had a joint-share ownership) a small airplane and we
went on a flight. Took us up in the air around the bay
for a couple hours. The whole idea is to kind of get a
sense of what’s some of the characteristics, what would
feel like to fly and stuff. To utilize that in the game to
get a sense of not only flying around but what’s some
of that physical attributes of turning left and turning
right.

 Interviewer: I guess this was a Rich Moore in the
computer division.

 Rich Moore: Yeah, it’s not an uncommon name. There’s
the Rich Moore director that did Wreck it Ralph.

 Interviewer: [Laughs] Yeah!

 Rich Moore: I didn’t necessarily know everyone on
the consumer side. I knew quite a few of the people
but not everyone. There’s are a number of Ricks and
Richs, and there are some names that are really really
close.

 Interviewer: So, you told me a bit about how you got
into Atari coin-op in the pinball division. Tell me a bit
about what was your impression when you first got
there.

 Rich Moore: Ahhh, it was fairly casual. I never felt it
was high-stress. Most of the people there, I mean I
was young out of college, most of the staff was young.
There was a team attitude not only working at the same
company and being part of the same organizational
team, but also just since the lifestyles or age and stuff

like were very similar, going through the same kind of
stuff.

 It was almost like our lives were marching kind of in
sync. People getting married people, on their first kid,
people buying their first car, buying their house. We
were mostly just out of school so kind exploring going
from the cheap beers and the cheap wine to a little
higher class beer and wine! [Laughs] I started to discover
cocktails. We spent a lot of time both in the office at work
but also a fair amount of time socializing outside of
work.

 Then as you got into it there were a number of different
trade shows that happened. So if you were successful and
kind of built up your career there you generally would rotate
in and be able to go to the trade shows. You could help build
up the community because you’re not only working at
your job but then as you finish your game you got the
opportunity to kind of demonstrate it and show it off to
distributors and operators (for me in coin-op). For the
consumer side it would be like CES [Consumer Electronics
Show] shows.

 I went beyond - even though my role was developer and a
coder - I still got exposure to the overall industry. That
whole dynamic. By industry I mean marketing, sales, and
the business aspect of “Okay, what are you gonna price this
at? What’s the competitive landscape of other games out
there at the same time? What’s the kind of dynamic of
manufacturing? What’s the release quantity? What’s the

re-order?” Stuff like that.

 Interviewer: So you were you were paying attention to
that kind of stuff even though that wasn’t your specific area
when you were first brought in.

 Rich Moore: Exactly. Everyone’s ego was- People had
pretty strong egos there, pretty opinionated. As with any
group of people there’s the whole range of personalities. You
learned that in college and in high school to perceive
their stages of life. It’s not like it was really thought
about it a lot of the time but thinking about it you
understand that the dynamic of personal relationships,
the dynamic the work environment, people’s opinions,
the ability to work together, the importance of it goes
up.

 You could say at school, “Well, that’s fine it’s my clique
or my group and I’m in this. I’ll play band.” (I’m not the
sports guy, I was a band geek). You have your peer groups
and as you get to working, not only do you have your peer
groups but - as people would say now - your life depended on
it! Your success is how well you work through those mazes
and those challenges.

 At the time, you didn’t think about it that much but
obviously when you talk about how was it was: It was casual
and less stressful but also inherently behind that - and
maybe not me recognizing it at that age - there was
still at the end of day, “You’re gonna have to make
money and produce product and sell or the business
isn’t gonna be around and your job is not gonna be

around.”

 There’s certainly a level of intensity and focus that built
out of that experience and searching out of that experience.
There was a natural growing up. There was a very energetic,
a very exciting, interesting, and casual environment but
also kind of a level of importance and - I’m not sure
whether I’d call it stress or not - but probably focus.
Trying to do good work, trying to be innovative. There
wasn’t a lot of references for what to do because it was
still very new, still there was a lot of focus on making
something interesting and compelling that people wanted to
play. The fun factor was obviously a big part of that.
How do you make things fun? How do you learn and
master?

 Interviewer: Who were some of the people in that
original pinball division? I know it kind of faded out from
there.

 Rich Moore: I’m trying to think of how it was at that
point… The pinball group was also going through an
evolution. Williams was the big competitor, the center of
interactive gaming was really in Chicago with all the
pinball companies and redemption equipment (little claws
that existed, carnival games). So that was really the
center of the universe, right? Trade shows were based
in Chicago. I think Atari, almost like simultaneously
when I started - although I think it predated a year
or two - Atari decided to start the pinball group as
well.

Side Note: Atari ran a pinball division from 1977 to 1979 that released games like The Atarians, Superman, and Hercules. The major issue that shuttered the division was an inability to attain pinball parts in California, leaving them unable to compete with the Chicago-area pinball companies with existing relationships in their area.

 There were sort of opportunities to work in that but it
was kind of a temporary or almost like a borrow situation,
where I was part of engineering but on assignment work on a
project that would be a pinball game. There was a lot of
that kind transfer or a project assignment in pinball, and
then once you finish that maybe you do another pinball
game - I think I did - but it would not be that uncommon
“Okay now time to come back home and let’s do a video
game.” It was fairly dynamic.

 I think pinball was, particularly for new hires, a good
way to kind of break in on coding out of school.

 Interviewer: Before you came into Atari were you a fan of
coin games?

 Rich Moore: Yes, very much. My boss at the time at
Hughes, who I went out with for beers and pizza a couple
times, we’d go to place that would have a video game. Indy
4 or Indy 8 had just come out, one of the larger format
games that allowed multiple people to play a race against
each other. He really liked that.

 About that time Breakout had just come out, it may
have come out my last year doing college. I’d play with my
buds in college and who would buy the next pitcher of beer
was who won the game of Breakout! It was a part of college
and work around video games. To a certain extent pinball as
well but certainly video games was kind of a captivating
thing at that time.

 Interviewer: Do you know where Atari got their pinball
technology from?

 Rich Moore: Some of it they kinda rebuilt from scratch. I
think they probably hired some people out of the Chicago
area, some people that would have formerly worked at
Gottlieb or Stern or Williams or any of the other pinball
companies. It turned out one of the guys that worked in that
group was actually someone I went to high school with. A lot
of the mechanical engineers themselves I think were hired
out of San Jose State or Santa Clara, kind of local Bay Area
as well.

 Interviewer: Steve Ritchie was there I know.

 Rich Moore: Steve Ritchie was there, he end up moving
back to Chicago and basically was one of their founders for
the video game section at Williams.

 Interviewer: Which pinball machines did you work
on?

 Rich Moore: The first one I worked on was Superman.
That actually got released. That was one of the first
microprocessor based pinball games which Atari did.
Then I worked on a really really large format game

called Hercules which actually used a cue ball rather
than the metal ball. And I think I started on another
one.

[image: PIC]

Superman, Released May of 1979 by Atari, Inc.It is most notable for being the largest pinball machine ever built, using a cueball for its ball. The game technology was developed by independent arcade developer Arcade Engineering.

 My boss Steve Calfee was creating software libraries that
could be used across different product categories. He built
the base development environment as well as the base core
libraries. In fact he designed a psuedo-language that could
be used for pinball games. The coding I used - which is
another reason here why pinball would be a natural
good first first project - was really in a pseudo-language
rather than having to code all the routines and the
actions.

 It was relatively straightforward and in a higher level
instruction to be able to create the rules. To say: You hit
these three targets in order to get bonus 100 points,
you hit these sequence of bumpers then this light goes
on. All that kind of “business logic”, if you will, he
had put together with a pseudo language that helped
out.

 Interviewer: With those cue ball things, I’d certainly like
to hear some of the problems with that but I’m also curious:
Do you know who came up with that?

 Rich Moore: The design? I’d assume it’d be whatever the
management team there, reviewing concepts. I was new to
that. I had just been hired, so I wasn’t actively engaged in
the game design process. We did usually one major
brainstorming session each year, sometimes a couple sessions
each year. In the pinball division, I wasn’t engaged with
that at all. The presumption would be a very simple
parallel to what existed at the video side which was some

form of game brainstorming sessions: a process that
would come up with ideas. We were owned by Warner
Brothers so, you know, a lot of the games both in pinball
were Warner properties. Superman - and in a similar
way moving forward - a lot of video games came from
licenses.

[image: PIC]

Superman, Released March of 1979 by Atari, Inc.Designed by Steve Ritchie, the game was the height of Atari’s shortlived coin-op division.

 Interviewer: What was kind of your role with those early
games? Did you have a specific role or was it just “Here’s a
problem, have at it”?

 Rich Moore: At that time the video game team was really
the hardware engineer and the programmer. Maybe you’d
get a chance to have some type of creative person, some type
of art component they help out. Pretty much the games were
myself doing essentially everything from a development
standpoint, outside of the hardware.

 Interviewer: Okay. So it was only those two pinball tables
you did?

 Rich Moore: Yeah, that got released while I was
working on it. I started on another one but did not finish
it.

 Interviewer: Tell me a bit about your boss Steve Calfee.
What was his sort of style of management and how did he
bring projects to you?

 Rich Moore: He was an easy-going fellow as well.
He went to Berkeley, so that’s common (quite a few
people went to Berkeley so there’s a shared history
there). Pretty easy to work with. I can’t think of him
ever getting angry and yelling. Pretty matter of fact. If
you came in and did your work, you’d generally be
okay but you wouldn’t be successful. He was pretty
good at challenging people to the level where they can
handle it. You never felt like you were asked to do the
impossible. He found a way to survive and structure

things.

 Interviewer: That goes to the thought of, “We could do
anything so nothing’s impossible!”

 Rich Moore: [Laughs] Yeah, there was a bit of that.
There were challenges for you but nothing that was
insurmountable. Obviously what we were doing back then
was physics approximations, or coming up those ways to
make it seem gravity was working like in Lunar Lander.
“Good enough” was probably not the phraseology used
around how you meet the objectives with the tools, the
processors, or the calculations available to you.

 At the end of day we end up finding and discovering –
David Shepperd probably did a fair number of these as well -
finding good approximations that could solve mathematical
or physics problems. A lot of them have that nature to it. I
think that was good and because there was good team
dynamics and team morale. You felt if you were stuck, we
generally had lunch together (most of the buildings had a
cafeteria of some sort).

 There’s the classic water cooler conversation: You’re
running against some problem, people were there to help you
out and brainstorm. Someone could say, “Hey, I’ve got a
neat bit of code or whatever that solves this thing.” They
could say “Neat! I could use that.” A lot of sharing of
comments and solving problems as a team. There wasn’t a
competitive aspect to say “Hey here’s a secret logarithm, he
can’t see it! He can’t have that.” It was the opposite of
that.

 Interviewer: How about a Howie Delman?

 Rich Moore: Howie? Well Howie was my project leader -
as we called it back then - on Lunar Lander. I think it
was John Ray on Red Baron. We ended up doing both
the upright game and then we did the cocktail version
(and Howie was much more generous). Howie was a
pretty fun guy to work with. Funny character. Good,
approachable fellow. Loved life - still loves life. Still has
fun.

 He could get a little bit more emotionally engaged, get
angry and frustrated than Calfee did. It was never overly
long. Very, very few people there burst the lid. Certainly
he was more emotional than Calfee and as a manager
supervisor. Good guy to work with. Focused on solving the
problem, not getting off on silly things, strange things. Very
much focused on getting the job done in game development,
making progress.

 Interviewer: I know a small contributor to Lunar Lander
was Ed Logg. How was it working with him? He stayed there
for a very long time.

 Rich Moore: Ed Logg was there quite a long time. He’s a
very sharp guy. He actually optimized some of the stuff
I’d done. He had access to all of my source. He took
all the character design I actually came up with first.
Lunar Lander was the first vector game [at Atari], so
all the character sets I developed but he did it and
made it better. He optimized some of it, found a better
subroutine, and kind of defined the framework better than I

had. Very very focused, very organized, very very sharp
guy.

 That’s just one of the things where sharing and take
advantage of stuff. In this case something I had done but he
would evolve it, take it to the next level. At the tail end of
when I was working on Lunar Lander, he was starting up on
Asteroids. There was some overlap of development there as
well. So there’s no doubt probably stuff that I borrowed
from him. No doubt that happened. It’s not as fresh in my
mind.

 There was not only the opportunity but really the
practicality of people sharing stuff. Talking over lunch or
having beers, or whatever it was. “Anything new you came
up with this week?” or even code reviews. “I looked over
some stuff I think there’s something here. Maybe you can
make this a little bit faster or better.”

 Interviewer: Now did you interact much with Lyle
Rains?

 Rich Moore: Yes. I reported to him quite a few for quite
a few years. I actually was promoted to VP of Engineering
and Lyle reported to me for a little bit. Lyle has a pretty
dry personality. Probably the most serious of all of
them. You think about Howie and Calfee, certainly
more serious than I am. More business-like, more of a
manager personality from day one. It took me a while
to work it up, I learned probably a lot more than I
could have, certainly at the beginning. I had a lot of fun
working with Lyle. A lot of challenges and frustrations

but at the end of the day I still enjoyed working with
him.

 Interviewer: I don’t know if Lyle was from Berkeley but I
know that Steve Bristow was.

 Rich Moore: I think Lyle went there too. Calfee, Bristow,
Howard Owen...

 Interviewer: There’s a lot of Howard’s too!

 Rich Moore: Yeah! A lot of Howies, a lot of Howards.
Steve was the big one. Seemed like half the people working
there were Steve.

 Interviewer: So you started in pinball and you were doing
programming there, but what you were doing was kind of
synced with the hardware in a lot of ways. Did that, down
the line, lead you more in interest towards hardware? That’s
what I’ve seen from some of the VAX Mails later, you were
more of a hardware guy, right?

Side Note: The internal Atari email list - the VAX mails - has several emails addressed to Mr. Moore that appear to have concerned hardware modifications. This appears to simply have been due to his role in management rather him making decisions on that front. The error is on the author.

 Rich Moore: No, I was always a coder. Certainly a
software guy, definitely not a hardware guy. I took hardware
classes and I was familiar with and could kind of do it well,
but I would not be the guy to work out the schematic and

design the hardware. Probably not my skill or wheelhouse. I
could read schematics and I could deduce - on some level -
what was going on, but I was definitely a coder software
guy.

 I worked on several art tools, like what we called
the picture processing system (PPS) and then a lot
of the utilities like the art generation or really large
image file for version utilities. I did a bunch of that
stuff as well. Coding the tools stuff like that was my
area.

 Interviewer: To go into the vector games, had you seen
any of the other vector arcade games out there before you
started working on Lunar Lander?

 Rich Moore: Oh, yeah. Can’t think of the name of it
now…

 Interviewer: Space Wars?

 Rich Moore: Yeah, yep. Space Wars. That one was big in
college at the time, that was one of the first ones, right? I
played that quite a bit in the arcade before. There’s
probably one or two other ones that were out. We were all
pretty much familiar with that.

 One of the things we do quite a bit at Atari is we bring in
the competitor’s products and when they got released, the
new games. We would rotate it through our labs. We’d get
those fairly early on, on release. It’s almost like - we
wouldn’t quite get serial number one - but the distributor on
the West Coast, when they got their first shipment, one of
them off the first truck would more or less come to our

offices.

Side Note: Moore notes here that he played Space Wars in an arcade during college, but the Cinematronics Space Wars game – the first arcade vector game – was not released until 1978, after he joined Atari. It is likely that Moore is thinking of Computer Space, a game that influenced a number of Atari alumni at the same time. It was not a vector game however.

 Interviewer: Right. The vector system was developed up
in Grass Valley. Do you know anything about who might’ve
been the person at Grass Valley that actually did the
hardware system?

 Rich Moore: I probably do remember their faces;
their names are not fresh in mind. They may come to
me.

 Interviewer: Because it was kind of detached, right?

 Rich Moore: Yeah, they were. Every once in a while they
would come down to the Bay Area and they kind of walked
through and you would say, “Who are those guys?”
“That’s Grass Valley engineering group.” You get a chance
to meet them once in a while. There wasn’t a lot of
camaraderie.

 It wasn’t so much that they were necessarily standoffish,
but it just sort of like visitors from another division or
group. You can say hello to and talk to them, that was fine,

but they were sort of there to accomplish some business
here, a couple of days, three days, and then they’d be back
up there. Some interaction but not a lot of engagement, at
least at my level.

 Interviewer: Did they have a microprocessor for the
display and then you would have to have one for the game
too?

 Rich Moore: No. There wasn’t one specifically for the
hardware. It was just the game itself. The game program
would run on a processor. It was digital electronics with
obviously a fair amount of analog because they were driving
the beam on the CRT. There’s components that obviously
were analog, differential amplifiers and stuff like that, but no
there’s no processor. Those were only in the display
itself.

 Interviewer: By the time you get the hardware in, has the
Lunar Lander project started or do you get the hardware in
and then Lunar Lander comes around?

[image: PIC]

Lunar Lander, Released August of 1979 by Atari, Inc.The game was a minor hit for Atari and their first use of a vector monitor.

 Rich Moore: That’s a great question. The hardware was
pretty far along at the time I got it. I probably had a
prototype and the first prototypes we did with wire
wraps. The circuit boards were wire wrapped. So the
first one I probably had was no doubt was a wire wrap
version, but fairly quickly it went to PC (printed circuit),
that was a fairly quick process. That would be some
matter of numbers of weeks or a couple months, three
months. It was probably not too far along a project when
I had a real PC. Probably not quite the production
version, but probably one or two revs away from of
it.

 I started on the wire wrap, but it would probably be the
project on the wire wrap was kind of debug and working,
kind of proven. The game project would be very, very close,
so there wouldn’t be a lot of gap there. It wouldn’t be sitting
on the shelf collecting dust. There would be be a game
project on it pretty, pretty darn quickly. Again, I wasn’t too
engaged in the brainstorming process at that point, but no
doubt there’s been multiple concepts that have been talked
about and kicked around.

 The fact that Lunar Lander existed as a real game on the
HP system, that was a pretty easy pick. You can look at
that and say, “Hey, we can do that and this is hardware. We
know the game is fun. The fundamentals are there. The
enjoyment factor is there.” That’s where Howie was taking
the format, “How do you turn it into a game? So how do you

monetize it? What’s the game arc to it and what are you
charged for?” Stuff like that. Yeah, brainstorming and I
probably got involved a little bit on that, but at least in
play, or at least in strong formulation. If not, it’s pretty
close to finalization between some of the basic coin-op
aspects.

 Interviewer: But it was always a vector game.

 Rich Moore: Yes. Always a vector game. I did work on a
regular, standard raster game right before that… Stretching
my mind here. I worked on one other pinball game, it got
transferred to Norm Avellar. He had just been hired out of
[UC] Davis - which is where I think he went - he was there
for under a year or two. So I had started on third pinball,
but that went to Norm. I was working on a raster hardware
for a short period of time and then got onto the Lunar
Lander, X/Y game.

Side Note: Documents at the Strong National Museum of Play in Rochester, New York, hold a number of early Atari project reports dating back to the mid 70s. Several memos from around 1975 show that Atari had been working on a raster-based version of Lunar Lander for several years before the game was revived with Howard Delman and Rich Moore.

 Interviewer: So you were actually working on the
hardware?

 Rich Moore: To answer your question, when the
prototype vector generator hardware was ready, I moved to
that. When you can start coding it, programming it,
move stuff around, I moved to that when it was at that
stage.

 It’s almost like right out of hand. All the engineers say,
“Yeah, check out all my logic and everything works
correctly.” Calfee, literally that second. Next second, “Rich!
Need you to start putting the games together.” [Laughs]
But like right before that I was working on a raster
hardware.

 I can’t even remember the game design concepts. I was
working on a raster hardware. I got the development system
set up, could assemble programs, write programs, get them
running, and be operational. Interrupts, handlers, all that
kind of good stuff. Then moved to Lunar Lander virtually
when the hardware the hardware engineers debugged it. We
literally took the baby away from and said, “Okay, now it’s
time to program. Let’s do something!”

 Interviewer: [Laughs] Okay. What was the development
system at that time? Cause I know you guys went through a
few over the years.

 Rich Moore: Yeah. It was floppy disks, and they were like
the eight inch format floppy disk. You’d load that into an
advanced system and then you could download that to RAM
that was in the place of what would eventually ROMs.
The development boards were all RAMs. Hit the reset
button on the board, have it kick off, then try to run the

program.

 Interviewer: Was it the PDP system?

 Rich Moore: Yeah. We had two ladies that would code in
your program. You basically would write it out on pencil on
paper and then read lines as she got a print out. They would
just code all that in. They would actually type all that
in onto the floppy and run the assembler. You’d have
your source text files and code, then you’d have the
assembler executable that could get loaded into the
hardware.

 Interviewer: I think the number that I’ve heard in terms
of cabinets for Lunar Lander was about 20,000. Does that
sound somewhat accurate?

 Rich Moore: Oh gosh, many years ago. That sounds
about right.

 Interviewer: Yeah. I know it wasn’t as big as Asteroids,
obviously.

 Rich Moore: No, Asteroids was obviously the killer. My
claim to fame was, that was the first one we did, the first
X/Y Vector game. Obviously towards the tail end of that
production cycle, it consumed the production lines for many,
many, many months.

 Interviewer: Then they had the had the upgrades with
Asteroids Deluxe and all that. Then after that, they’re
working on Battlezone. Did Red Baron come about while
Battlezone was being worked on or was that completely
afterwards?

Side Note: Battlezone and Red Baron were brainstormed at about the same time. Red Baron took longer to develop and came out in 1981, whereas Battlezone released in 1980.

 Rich Moore: Once we got into Battlezone, I did a small
game called Red Baron. At that point we had added a kind
a bit-slice math component - actually a sub board - that
allowed running batch matrix operations. That was a new
hardware specification and that was used for Battlezone,
Red Baron, several game developments that were never
released, and then obviously the color version of that later
went to Tempest (but it’s a really different hardware
set/platform then what was used for Lunar Lander and
Asteroids).

 Interviewer: Right. Who was the person that sort of came
up with the 3D technology? If you know. Or was that the
Grass Valley guys?

 Rich Moore: There were quite a few people that kind of
participated in that. I think probably Michael Albaugh
and/or David Shepperd probably did some of the bit-slice
coding. I’m trying to remember now. The hardware
engineers, I’d probably give the wrong credit there. I would
guess Howie Delman had some engagement with it, but I
just remember it was a team effort. I’m sure there was a
principal engineer that owned that design, but it could very
well use internal consultants or team to break apart some

aspects of that hardware. Different sections to different
people.

 Rick Moncrief was pretty heavily engaged in some of that
tech. In my memory he served as the interface to Grass
Valley and some of the other R&D stuff. Of course, that’s
where the Vector components came from. He was Applied
Research so he would pick up some of that stuff from a
transition standpoint, I guess, and then really in all cases
there would be an assigned hardware engineer that owned
that particular project. Whether it be a Battlezone or Red
Baron or what have you.

 The Red Baron project manager was John Ray. He was
responsible as a project manager of the project. I did all the
coding. Then Ed Rotberg got Battlezone. Pretty sure
he did all the tank models, although I’m not sure if
he may have used some art resource for some of that
stuff.

[image: PIC]

 Side Note: Roger Hector actually drew up the tank models. They can be seen here with his signature.

 Interviewer: I don’t know when Rick Moncrief was part of
Atari. Was he there for pretty much the time that you were
there?

 Rich Moore: Yeah, he was. He was there before I was, I
think in the coin-op group. He was responsible for Hard

Drivin’ and that was really successful. He was there before I
joined and had Applied Research, essentially an R&D
group. They certainly had their own projects with the
Hard Drivin’ being the principle one as a development
group.

 Interviewer: So with these kind of early 3d games, how
would you kind of map out the surroundings? Would you be
doing, like you do in ROM where you do a top down thing
where you mark out “Here’s where the planes spawn from.
The mountains over here.” I forget what it is in Red Baron,
but I know in a Battlezone there’s these big triangles that
form obstacles. I don’t know if there’s any permanent
objects aside from the mountains in the distance in Red
Baron.

 Rich Moore: Yeah. Well in both of them there was an
“atmosphere sphere”, like the horizon.

 Interviewer: We call it a skybox now.

 Rich Moore: Yeah, exactly. I vaguely remember we had a
bunch of graph paper, I used that to map out the three
coordinates for all the different planes (it may have been a
plane). For Red Baron, you were more or less on a rail so
almost like you’re on a race course. There were objects that
were there that may have added some somewhat to the
atmosphere, but it’d be almost be like programmatic: a
formula to say every so often, based on speed or something
like that.

 You were on a race course, really on a rail. You could go
left and right, but the game in terms of the coding

was going to force opponents to come at you. Some
relative X/Y translation on the screen, and then off in the
distance the velocity or acceleration would be determined
by the game speed. I think we sped it up over each
level.

 In Ed’s case… I’m trying to remember here. There
were landmarks on his grid. At some point you would
have had to have a big grid graph and say, “What’s my
universe? It’s this.” I think his world rotated in on itself. It
was the extra connected curve right here on this strip
that wrapped around. Pretty sure it kind of repeated
that way. He had some of the pyramids and some of
the other landmarks, so he had some reference points
every X number of miles (or whatever you call the units
there).

 In terms of triggering opponents, he would introduce
things in different parts. That may have been scripted at
some point, I’m not sure how variable it was. You did want
to follow that cause it could have something else that
didn’t show up on your left or right, you’d want to
pivot around and face them while you’re being shot
at.

 Like you said, it was a skybox essentially (or a
mountain-range box). There was always scenery off in
infinity and then there was those reference points, landmarks
you would rotate around. They were specific locations, but it
rotated after you got to the end of the edge of the world and
you basically got sent to the beginning of the world on the

other side.

 Interviewer: I’m sure you’ve heard the stories about
players trying to reach the volcano in Battlezone. Was there
anything like that for Red Baron? Any interesting behaviors
that you observed?

 Rich Moore: Not really. At that point we were almost at
the beginning of starting to think about Easter Eggs and but
not any real planned intent there. We were more worried
about if you did something that you may not take it or
debug it completely and may come in when you don’t want
to come in. [Laughs] I think we were more paranoid about
putting in little secrets that could hit you in the face
because it wasn’t really designed as well as it could
have.

 There’s the story with the original version of Asteroids
where you could get all the free lives and the game would
slow down because the refresh rate would slow down, so you
had more time to react. It was probably at that point where
we had the concept of a surprise or an Easter Egg was
starting to show up. I don’t remember really having
anything in Red Baron myself… I should say, I don’t
remember having anything intentional in the design.
[Laughs]

 Interviewer: The staff listed for Red Baron are you, John
Ray, Jed Margolin, and Joe Coddington. Does that sound
about right?

 Rich Moore: Yeah. Joe Coddington would have been the
tech. Actually, that kind of answered the question you had

earlier. “Who was responsible for the math engine?”, that
would have been Jed. He did do the bit slice. The Applied
Research team, Rick Moncrief’s team, Jed would have been
responsible for that bit slice component that plugged into
the board.

 Interviewer: He’s a smart guy.

 Rich Moore: Jed is a very smart guy. Real interesting
fellow. I have a lot less history with him, but a great, very
bright guy. Very good guy, talented engineer.

 Interviewer: And I know that later he kinda took the
vector hardware and he made his own kind of flight game
that they never actually put into production. He has a lot of
that stuff on his website.

Side Note: Jed Margolin’s website features explanations of the Atari vector hardware as well as the final ambitions of the technology with game called TomCat, which would later morph into Atari’s 3D hardware with Hard Drivin’.

 Rich Moore: Yeah, there’s always all sorts of little side
projects. Some little concepts or stuff that maybe people
would work on, almost like the test bed or the verification
for the hardware before it got released to the team and was
really a game. Software would run it on and an application
would load on it. There may be some little tricks a
little bit or demo that the team or the designer put
together.

 Interviewer: It was kind of a collaboration on Lunar
Lander and then on Red Baron. You were pretty much
the sole guy under direction from John Ray. Did it
feel like a leap, that you were getting up in the Atari
wrung?

 Rich Moore: Yeah, I think so. I mean, Lunar Lander
wasn’t my first game, but first video game. It was a
step for a new guy, a rookie. So once you get your first
one out then your second one, you definitely felt more
confident. I guess work you work your way up in the
organization.

 Interviewer: I am curious a bit about how the design kind
of came together. How much did you contribute to the
development of the market research in this early time? How
did the designers talk with each other and how to interface
with the leaders in the coin-op group? Gene Lipkin and
Frank Ballouz.

 Rich Moore: If I remember correctly, the game concept
was probably John Ray. He probably came up with it (it
may have been someone else). They would have pitched it to
the annual game brainstorming session. I think all the execs
would have been aware of it. In terms of projects that got
approval or work their way up, concepts and stuff like that,
the would have been aware of it. “Here’s the stuff that’s
working its way up. Our queue projects and things like
that.

 I wasn’t engaged with those, I wouldn’t really know what
was happening. There were standard reports we were doing

on projects like project status (that’s where the project
manager came in). Then, what are the new, pending
concepts or pending game ideas that are next at bat, being
considered for the next project. They would certainly weigh
in and have their opinion, recommendations and stuff like
that.

 There were regular sessions (I can’t remember how often
we had it) I’ll say it was monthly. We’d more or less have a
demo of the current games and the sales staff would come in.
We also had product dean - it was like the ongoing joke - if
you ever saw a sales person walking through, the labs
quickly hit the kill switch to just turn off the display.
[Laughs]

 Interviewer: That was the Lipkin Switch, right?

 Rich Moore: Yeah. To me it was almost like a bit
comical, if it’s like more of a joke than a reality to me. I
think probably other people took it more seriously! [Laughs]
We did have formal times where intentionally they’d show
up, come through the lab, and see what’s the current state of
the games.

 Interviewer: Yeah. There that, and then there’s also the
Stubben Test, right?

 Rich Moore: Yeah, yeah. I remember Ed Rotberg with
Red Baron would come in, turn away from the display
and just shake the joystick back and forth and fire.
Particularly at the early part of the game, I more or
less forced the first few planes to come right at the
player. So like you could just do this, hit the fire button,

you’re going to blow up a couple enemy planes. He
liked pointing that out every once in a while. It’s kinda
funny.

 Interviewer: One of the issues we talked about a lot
with the early Atari creative contribution is the idea of
accreditation. How present was that issue there? Was that
something that was brought up a lot?

 Rich Moore: It’s interesting how that developed. You can
almost relate it to any creative enterprise, right? It’s sort of
like the same thing that happened decades before in movies,
then TV, then there’s this whole thing with unions - SAG
(Screen Actor’s Guild) and everything else were formed. The
other thing I remember was DVDs and pay for play
and all that stuff coming in. Strikes from writers in
Hollywood happened. So creative accreditation, that
concept or issue you can say applies to every creative
enterprise.

 We probably talked about it a bit internally. I think that
the position and the understanding if you’re management is,
“I don’t want to put people’s names on a screen, because
then other game companies are going to come in and know
who to call.” The natural defense and the natural reasoning
from the company standpoint was, “By doing that, we’re
opening ourselves. We’re basically just giving our staff
contact information, if they’re a headhunter they can go
after guys.”

 I think what happened, when Activision split off - I’m
not sure if my timing’s quite right there - I recall that

accreditation, whether it was in coin-op or consumer or both
(probably coin-op at that point) started showing up. We
were certainly not the lead that did it. It started showing up
with some other company, whether it was Williams or Bally
I can’t remember now. Someone else did it first and then it
sort of became the situation that, “Well, if they’re doing it,
you know, why can’t we do it?” It’s sort of like the
cat’s out of the bag, right? You can’t really have an
excuse for doing that anymore and we think we deserve
it.

 That’s a side of the business, as success grew and the
company was always making money on conversions to
consumer, so natural human ego arises and they want to get
a little notice for being part of that.

 Interviewer: You know, the sense that I’ve gotten is that
the reason it didn’t really come to a boil was the fact that
everybody was treated well anyway.

 Rich Moore: Oh yeah. It was a fun place to work at. I
think there was a generally good feeling. It came from its
roots of the sandal and shorts and t-shirt environment when
it got established. It definitely wasn’t aerospace and
Lockheed or IBM with a white shirt and a tie. It was
definitely a more casual, fun place to work at with an
environment that wasn’t high stress, although there were
points where you had that. Stuff that happened and
deadlines and stuff like that. I think some of that’s
true.

 I think the other thing that’s actually very, very

true is that everything was limited in the early days,
particularly on memory size. Every byte mattered. All
that directly leads to memory costs, memory was still
scaling up to the point where you didn’t have to be so
concerned.

 We were still programming in assembly language, so it’d
be as efficient as close to the nose as you can. So I think to
put names in there and have them scroll like, I need another
ten/twenty thousand - whatever it may be - I need more
memory. That means I’m putting memory against this stuff;
that means I’m compromising the depth of the game. I just
call a lot of it being kind of technically limited just on that
efficiency.

 Once we got into 3D games we were on the bit-slice, we
had moved to the 68000, we were programming in C with a
compiler so we had more memory available. Then you can
not make the argument and say, “Oh, we don’t have
enough memory.” or, “If we add these we can add another
two or four bucks to the cost,” that sort of went away
too.

 My personal opinion, I’d probably put it more to the
technological aspects where other people may pick it up
more as emotional and psychological. The soft skill human
aspects of me look at it more than that. I just always kind of
looked at it logically.

 Interviewer: Yeah. Like if Al Alcorn could have put his
name on Pong, I think he would have, but he just didn’t
have the memory to do it.

 Rich Moore: Yeah, I mean certainly Al is a pretty strong
personality, pretty big guy in history. He may have, I can’t
speak for other people.

 I never felt I was on the stronger end of the ego side of
the equation. I mean, everyone has egos. I never felt like I
took it and part of it, to be honest. The killers there were
people like Ed Logg and even Rotberg, later Mark Cerny
and other people that had the top 10 games. I was probably
a fair journeyman and in the middle of the pack, sometimes
above average sometimes below average. Not up at that
stratosphere, claiming a hundred thousand run of a
game.

 Interviewer: One of the reasons I asked this is because I
try to make sure that everybody is duly credited on things
and Atari’ s pretty good about this. The games that I have
you listed as direct contributions on are Lunar Lander,
Red Baron, Marble Madness, Road Runner, and Race
Drivin’.

 Rich Moore: Yeah. We produced a particular hardware
later which I helped create. Coin-op operators were
interested in a programmable platform and that’s where
System 1 came from. Marble Madness was the first one on
that platform. I was a manager/director at that point so I
cross-matrixed managing teams. I did some technical stuff to
support Mark Cerny. He needed some tools and things
done. I certainly contributed to the game, but my work
contribution was more around the tools and the production
pipeline, not the game code. I don’t think I did anything to

the game code per se.

[image: PIC]

Marble Madness, Released December of 1984 by Atari Games.Marble Madness was a transitional game for Atari which helped bring about a new technological era for the company.

 I was also responsible for the PPT, a Picture Processing
Tool. I supported that tool and the infrastructure in the
studio, and then I’ll support a number of conversion tools
that would take a dozen images and the artwork and convert
it into the various forms and go into ROM. To some extent I
could say any game that was produced over that period of
time, they support that tool that was raster. I had some…
Touch is the wrong term, but I was in the back office, back
tech.

 Hard Drivn’, I was VP of engineering at that time.
That was Rick Moncrief’s, that’s clearly Rick and his
team. Those guys busted ass, put a lot of blood, sweat
and tears on that. From an overall manager standpoint
and at least having responsibility that stuff happened I
could do that but I wasn’t coding so I wouldn’t have
contributed code in there. The overall teams are the
executive producers on stuff. As VP of engineering, that was
under my watch then. I can say it’s during my period
there.

 Interviewer: Right. After Red Baron you started to get
more into those leadership positions. Can you tell me how
that happened and how that changed your interfacing with
both the engineers who you were peers of, and then the
management who you ascended to?

 Rich Moore: Yeah, I mean, it’s a lot of stuff. Looking
back at I was still relatively young, I’m not that experienced
as a guy. There’s a lot of things I look back that I did pretty

poorly, I’m pretty critical of myself. I could have been a lot
better. It changed the relationship, in a lot of ways. In some
ways more my perception than necessarily realities, I
probably translated this stuff more hardcore and more
impactful than it really was. That was more in me, I think,
then necessarily others.

 You know, now you have responsibility that you have to
influence and try to control. Sometimes you control it well,
sometimes you don’t. Some of my techniques deployed
were good, a lot of them were - looking back at it -
bad and weak, things I should have done better. I still
spent a lot of time in the trenches walking through
labs, talking to people, having lunch with people, and
participating. I’d run brainstorming sessions and be
responsible for that. I still had a lot of engagement, but a
portion of my time went to management things, budgets and
teams.

 Unfortunately, we sort of had a reputation of having a
layoff every three or four years, “rightsizing”, so I had to
manage a couple of those which were obviously very
unenjoyable activities.

 Interviewer: I know that you did project management
with some of the imports Atari brought in from Japan.
There was the game Arabian, and I think maybe the
Kangaroo game too.

 Rich Moore: Yeah. A number of those got... I can’t
remember all those now. There’s that one group out of
Boston, Massachusetts who we did a couple of games with.
There was that racing game... I did have my hand on that
when I was manager or director there. Part of that is again,
sort of time availability. We had skillsets, so it’s the license
thing. I can kind of manage that project in addition to the
other projects which had their own project managers on
it.

Side Note: The Massachusetts group referred to here may have been General Computer Corporation, most famous for the development of Ms. Pac-Man. For Atari coin-op they created the released games Food Fight and Quantum.

 Interviewer: What were you doing with these? Cause you
know, in a logical sense, there’s not a whole lot to do once
you get the board in. What are you doing to facilitate
manufacture of these foreign games?

 Rich Moore: Fundamentally you’re sort of resolving the
licensing aspects of the business. You comply with the
business aspects of completing the license, reviewing that
agreement with legal, but really we’re getting that into the
pipeline. You want to keep your running field tests,
collection tests, find out what kind of performance, making
changes or recommendations to the game design.

 There almost always would be some type of feedback
back to the licensee, sourcing “We need to have this kind of
stuff.” Then you’d manage the whole cabinet design process
of the artwork. “Which cabinet are you gonna use? What

else?” All that sourcing stuff, making sure that you
have the right power supplies, part selection, the right
components.

 Interviewer: In terms of, the interface back with the, with
the licensee was, is that like translation, stuff like that they
would change?

 Rich Moore: In some cases. Yeah. I mean, obviously I
have to have the English version of it, if it was from Japan
or something.

 Interviewer: Who was the management head of coin-op
by the time you were there? Was that Ken Harkness or John
Farrand?

 Rich Moore: Well, they both were. John Farrand was
responsible when we were releasing System 1, so I actually
had a meeting with them back in Japan and pitched it to
Namco. They were both there. Then if I remember right, I
think when Warner purchased us, John went to another
business inside the camera team company inside Warner. I
was familiar with both of them. At the time that I was VP I
was actually reporting to Hideyuki Nakajima, president at
that point.

 Interviewer: That’s a whole different era of Atari so
we’ll stop there. Thanks so much for your time and
memories!

Chapter 4
File #4

 Tom McHugh

Programmer for Dave Nutting Associates

1975 to 1982

Programmer for Action Graphics

1982 to 1985

Within history, there is always a deep desire to identify a
‘first’ as to put all other developments in context. All of the
stories in this book represent the very epoch of professional
programming for video games, but the first game to use a
microprocessor has been long identified as a defining
moment for video games. The long-claimed holder of that
title in the arcade has been Gun Fight, released by
Midway Manufacturing in November of 1975, and it may
still hold it’s place depending on how one defines the
question.

 The game was developed by the firm Dave Nutting
Associates (DNA) in Milwaukee, Wisconsin, run by the
eponymous Dave Nutting. A rather visionary creator who
entered the coin-op industry well before video games,
Nutting and Jeff Frederiksen established DNA in 1974 to
take advantage of the new microprocessor technology

emerging onto the scene. They created a feasibility pinball
prototype using Frederiksen’s expertise, but to move forward
they would necessarily need dedicated programmers to
develop this concept further.

 Frederiksen had a connection with the nearby University
of Milwaukee and the robotics instructor Richard Northouse.
Northouse would provide the opportunity to work at DNA
to several of his students, the first of which being Tom
McHugh. McHugh was a precocious young student who
self-admittedly didn’t care much for games, but as a
problem-solver his dedication was second to none. For the
first time he tells his story of how he came to create the first
microprocessor games, how he became one of the first
work-from-home developers, and why the Arcade Video
Game Crash scuttled his potentially vibrant career in the
sector.

 Interviewer: Have you always been in Milwaukee?

 Tom McHugh: Yes.

 Interviewer: Were you born there?

 Tom McHugh: Yeah, I was born there. I spent some time
in the military, but other than that I’ve been in Milwaukee –
Wisconsin, per say.

 Interviewer: What did you serve in?

 Tom McHugh: The Army.

 Interviewer: Okay, just the straight forces. Just as a
regular soldier?

 Tom McHugh: Yeah. I was – You know what the NSA

[National Security Agency] is?

 Interviewer: Yeah.

 Tom McHugh: Each one of the military services has
course plan military version of that which is typically for the
purpose of gathering signal information. There’s usually
antenna farms which listen to other people are doing and
saying, I was part of that.

 Interviewer: Did any of that involve electronics work or
was that purely just recon and things?

 Tom McHugh: No, I was really in the signal intelligence
part which transferred messages between different places. A
lot of the stuff went to the NSA.

 Interviewer: When did you first get interested in
electronics then? Was it before that or was that kind of your
first exposure?

 Tom McHugh: That really wasn’t the kind of exposure,
to tell you the truth. After I got out of the military, I went
back to school and discovered programming and really loved
it. That was how I got together with Dave Nutting and Jeff
Frederiksen.

 Interviewer: What were you looking to go to college as if
you weren’t- Because I don’t imagine you were going there
to do computer programming.

 Tom McHugh: Yeah, I was. I took a course on it and I
thought, “Oh, I really like doing this.”

Side Note: McHugh later clarified that he first entered college to get a business degree, "being the least worst option".

 Interviewer: Okay. I wasn’t fully clear on that. How did
you first get exposed to computers then?

 Tom McHugh: Well I went to UW Milwaukee and that’s
where I got exposed to it.

 Interviewer: Was that the course with Dr. Northouse?

 Tom McHugh: Yes.

 Interviewer: Can you tell me a bit about him?

 Tom McHugh: I can tell you anecdotes but I can’t tell
you very much about the person.

 Interviewer: Yeah, right.

 Tom McHugh: I think he went to Purdue, that’s where he
got his degree, his master. One of the anecdotes was that he
went to the computer gathering of ‘whatever’ in New York.
They have companies set up a little area, and one of them
had a big sign up and said “Can you guess how much
our profit was last year?” and the person who guessed
closest is going to win a minicomputer. He was the
one who got the closest, I guess he missed it by two
dollars.

 He came back to Milwaukee and said, “Hey I just won
this minicomputer” and the people who were there said
“Oh. Now what do we do?” So they came up with this
concept, they called it the RAIL Lab, “Robotics Artificial

Intelligence” which is like way beyond what it was really
doing. He set up this lab which was basically these two large
rooms next to each other that had stuff in them. One of the
rooms, a lot of the MBA students were working in there and
he had this big elaborate train layout. The idea was that
it had switches all over the place and people would
do their master’s thesis on switching stuff, switching
theory for an example, on this massive train layout.
Which is kinda weird, [Laughs] but that’s what they were
doing.

 Anyway, I came along, I decided to go into the master’s
program and I was looking for something to do. There was
no software people that would take me on because there was
no software people there! So then there was Northouse and I
said “Would you be my advisor?” and he said, “Sure, what
do you do?” I said, “Software.” He said, “You know what?
We don’t have anyone here that does software, we’ll take you
on.” You can imagine what happened then. All the software
came my way. “You do this? You get to do it. You do
that? You get to do it.” That’s where Northouse came
in.

 Jeff probably told you he took a course from Northouse.
Did he say something like that?

 Interviewer: I haven’t been able to talk with him fully. He
works at Apple now. I talked with him briefly and he said
you would be a guy to contact, basically.

 Tom McHugh: [Laughs] Thanks a lot, Jeff! No, I don’t
mind, I don’t mind.

 So actually Jeff and Dave Nutting had this place in
Milwaukee and they were trying to build something and they
needed some software people. They went to Northouse and
Northouse came to me and another guy he had working
there – he was a hardware guy but he knew a bit of coding.
Basically he hired us out to Dave and Jeff to start working
on their very first game.

 A little ways after that the other guy decided he really
wanted to go back to school, he was basically teaching there.
He had his MBA and he was doing some lecturing, he
thought that was more fun than this other thing that Dave
and Jeff were doing. I thought it was great! That’s how we
got together.

 Interviewer: Just one other question about the RAIL lab,
what sort of minicomputers were you using there?

 Tom McHugh: It was called a MODCOMP Model 3 or
something like that? It was one of those things that had a
disk in it, 256K disk in it or something (and that was back
in the 70s). It came in 3 consoles that were kind of next to
each other. It was pretty good computer but they didn’t
have much use for it. They did something, they were
building a robot man, they ended up having like a tether for
it. They didn’t get to a point of separating the robot from a
computer.

 Interviewer: Did you meet Fenton before you got into the
program? When did you meet him?

 Tom McHugh: Fenton was always just kind of there. I
don’t know if we ever had classes together. I knew of him, I

saw him around cuz you know we went the same circles and
I’m not sure which circle he was in, but he wound up with
Dave Nutting. I think he started off doing pinball machines
using an F8 Fairchild processor. There were a lot of
companies doing stuff like that back then before they started
consolidating.

 Interviewer: Did you know that Fenton was also
part of Northouse’s class or you just didn’t even know
that?

 Tom McHugh: No, I didn’t know that.

 Interviewer: Heh. What he said is that you both came
from the program and I thought that meant you came
together, but I guess [Laughs] you just didn’t even know
each other.

 Tom McHugh: It was another guy that I came with was a
teacher there, he was an instruction. Then he decided half
way or a quarter of the way of the first thing he worked on
that he really didn’t want to do that and he basically
said, “I’m not gonna do this anymore.” He dropped
out and then it was just me. I don’t know if Fenton
came on later, after that. I think he did, but I don’t
remember.

Side Note: McHugh only knew Fenton when she presented as male in the mid-to-late 70s.

 Interviewer: When you went down to where they were
stationed, what was your first impression of Jeff and

Dave?

 Tom McHugh: I thought both of them were two
really serious people. My impression was that they knew
what they were doing and whatever they were going
to do they could bring on. Some of the things about
Dave was [he] was pretty wealthy I guess. He was an
industrial engineer and he would make things, some small
number of them, then they would stop selling, he would go
bankrupt, start another company, and make something
else.

 Interviewer: [Laughs]

 Tom McHugh: The same thing would happen over and
over and over until he got together with Jeff, and I don’t
know how he got together with Jeff. Then they started
looking at doing video kinds of things because some of
the other things that Dave did were not really video,
per-say.

 Interviewer: Right. That’s funny the way you described
that because that’s what I’ve seen. He had two companies
before that and they both went bankrupt. [Laughs]

 Tom McHugh: It was just something for him to do
because he had enough money but he needed something to
do with his life. So he would do this and he would do that
and the thing that he got into really wasn’t that big of a
demand. The thing is when he really started working with
Midway that was the same kind of thing almost, in the sense
that there was a larger organization but they would build
these consoles that they sell 2,000 or 3,000. That’s it, then

you go onto the next thing. It was the same kind of thing
except that they sold a lot more [Laughs] and he didn’t go
bankrupt.

 Interviewer: [Laughs] Were there any other employees
there at the time when you came in to meet Jeff and
Dave?

 Tom McHugh: Do you know where they did this, the
place itself? They started out in this place in Milwaukee and
that’s what I’m asking you, are you familiar with that
place?

 Interviewer: Well I know Dave Nutting Associates the
company, I‘ve never seen the building or anything.

 Tom McHugh: Okay. The building that we all started in
was a warehouse. It had this thing in the front with two or
three offices and there was some people in these offices.
There were three people in this organization and this
organization was called Red Baron. They did something- Do
you know anything about that?

 Interviewer: Yeah, that was an offshoot of Dave’s
previous company, they were running arcades. [Note: The
previous company was Milwaukee Coin Industries. A
subsidiary, Red Baron, owned a warehouse for games which
Dave Nutting owned personally even after he left the prior
company.]

 Tom McHugh: Yes, okay. There were actually I think four
people there, because what I’m leading to here is that there
was a president of Red Baron then I think there was a
secretary and a bookkeeper. Then there was a fourth person

who was like a fixer of arcade machines, of pinball machines.
That fourth person (and I forget what his name is) he was
the other person that worked for Dave Nutting. He was
like a technician. Dave would say, “I wanna build this
thing.” Jeff would come up with the design of it and
start building it. This other guy would do a lot of the
soldering, for example. He was there, I think, on day
one.

 This building where we were in, like I said, the front part
was these several offices and the middle part was like this big
open area. Apparently what happened was Red Baron had a
lot of pinball machines out in the city of Milwaukee. Then
for some reason, Red Baron was told they had to get all the
pinball machines out of places that they were in, so
they took all the pinball machines and put them in this
warehouse. That was the middle part of this warehouse.
Then in the back there were a couple rooms and that’s
where we were. We were in the back. The cool thing about
the pinball machiens was they were all set up that you
just go out there and you flip a button and you could
play them. That’s one of the things that we did a lot
of.

 Interviewer: Nice. With those people there, I know
a couple names maybe they’ll ring a bell. DeWayne
Knueston?

 Tom McHugh: That’s him. That’s the guy that I
was trying to remember. What other names do you
have?

 Interviewer: Dan Winter I think was the president.

 Tom McHugh: Yeah, could be. He never interacted with
Dave Nutting Associates, really. It was really all about Red
Baron.

 Interviewer: He kind of split off, didn’t really do
that. Then one other name JoAn Mason, was that the
secretary?

 Tom McHugh: Yeah, she might of been. That doesn’t
ring any bells. Like I said, they did their thing and we did
our thing we really didn’t cross paths much.

 Interviewer: You just shared a building?

 Tom McHugh: Yeah.

 Interviewer: Did it seem kind of weird, the idea that they
were setting up a contract game manufacturer? Had you ever
heard of that, a different company would make a game for
someone like Bally or Chicago Coin?

 Tom McHugh: Not at the time but a lot of those games
came from Japan too it became that way. At that time,
now.

 Interviewer: Were you ever a big game-player yourself
whether it be coin-op games or regular games?

 Tom McHugh: Not really. I mean that’s not really why I
was drawn to it. It was just an interesting thing to
do.

 Interviewer: Though by that time had you seen the early
video games that were starting to make inroads?

 Tom McHugh: Well depends what you mean by that. The
only other one that was really around was Pong. The thing

that Dave Nutting started was actually the very first video
game that was run by a computer, a microcomputer as it
was called at the time. There wasn’t anything that could
compare to that, really.

 Interviewer: Right. Before they were doing it with the
video games they also had the pinball machine that you
mentioned. Did they show you that pinball machine?

 Tom McHugh: I don’t know if it was before, it may have
been after because that’s when Fenton came in. That’s why I
said Fenton came along later. They started doing this
thing with the Intel processor to do video games and
that’s how they got on the Fairchild processor to do
pinball.

 Interviewer: They had a couple other microprocessor-based
experiments. Did you see any of those or did you only ever
see the video game? Or were you only ever told to do the
video game? They were experimenting with microprocessors
as controllers for several different machines. Did you ever see
any of that or were you told ‘Video game is all you need to
focus on’?

 Tom McHugh: Well I didn’t really care that much about
the pinball machines. That’s the only other thing I was
really aware of. Video games on the one hand and video
games on the other, I don’t know if pinball really went that
far. I don’t know how far Fenton went with them. They
moved down to Chicago and I don’t know if Fenton went
with them or not.

 Interviewer: I’m not 100% sure. Just to get a sense of

the time span, do you recall what year you left the
company?

 Tom McHugh: I left them when they were going down.
The way I left them was, there were a couple people there
that were working at Dave Nutting’s place that wanted to
spin off their own organization that was called Action
Graphics. Dave said, “Tom, we can’t go on like this, you
should talk to this other guy,” his name was Bob Ogden who
was running Action Graphics “I’m pretty sure you could
work for him but we just can’t do anything anymore.”
Because that was about the time the whole industry was
going down.

 That specifically was the thing that Dave Nutting was
more into was the console games (what I mean by console
games is these big wooden things). That’s what Dave was
into and he was doing it for Midway manufacturing. At the
same time Midway got into this other thing [the Bally
Professional Arcade]. Something like that which Dave was
getting into, but at that time the whole industry was going
down. They weren’t selling anything and they couldn’t
support employees. Action Graphics tried to take off and
they did a couple things, they went under too then.
I worked for them for a while until everything went
bust.

 Interviewer: You spoke a bit to the relationship with
Bally. What was your understanding of that at the
beginning? Did they just say, “Hey, this is the people that
we’re doing games for”. What did it feel like to you,

the relationship between Dave Nutting Associates and
Bally?

 Tom McHugh: Well maybe I should tell you one other
thing first. When Dave Nutting said “We’re moving down to
Arlington Heights” he says “You’re coming with us, aren’t
you?” I said “No I’m not. That’s the last place I want to go
is to Chicago.” This kind of went on for a month or
two.

 There was a development system that Intel came up with
called the MDS-800 which was the development system after
the little blue box that they made which started the whole
thing off. (They used to call that the Mod 80 or something
like that). They had just gotten one in. I said, “Dave, I’ll tell
you what, I will purchase one of these things if you want me
to. I’ll work for you but I won’t go to Chicago.” So
we thought it over and then he said, “Okay, let’s do
that.”

Side Note: The Intellec 4 was the more advanced offshoot from the original Intellec development boxes with full computer integration.

 At the time I lived over on the east side of Milwaukee
with my wife and after a little while my wife and I decided
we wanted to move out to Southwest Wisconsin, we wanted
to get way out in the boonies. I worked for Dave Nutting in

Milwaukee for a while, then we went out to Southwest
Wisconsin and lived there for a while (still worked for Dave
Nutting). That was about the time it may have switched
over to Action Graphics.

 We decided after a while that both of our families were
from Milwaukee and we were spending a lot of time going
back and forth. We had the kids and it was like a 3 1/2 hour
drive for Christmas, Easter, and stuff like that. We said,
“We’re gonna move closer.” We ended up moving to a place
called Plymouth, something like that, which is about an
hour North of Milwaukee.

 I worked for… I don’t know if it was Dave Nutting then or
Action Graphics. It might have been Action Graphics, that
might have been the change over time, just after we
moved there. I was a ways from Arlington Heights for
all this time. So my understanding of what Bally was
doing and their connection with Dave Nutting was like
third-hand.

 Interviewer: So when you were brought on was there
actually a formal interview process? How did they gauge
if you were any good at software to bring you on to
DNA?

 Tom McHugh: There wasn’t any. They said, “We need
people, we need them right now!”

 Interviewer: Okay. [Laughs]

 Tom McHugh: And Northouse said, “I know some
people.” After doing that for a month or two, I went to
Northouse and said “I want to work for Dave Nutting

directly.” Basically I was working for Northouse who
was contracting with Dave Nutting. He said, “Okay, if
that’s what you want.” Really, that’s what I wanted.
That’s what I did and started working for Dave Nutting
directly.

 Interviewer: What sort of stuff were you doing through
Northouse then?

 Tom McHugh: Oh, all kinds of stuff. Northouse had
National Semiconductor [come] to him with a four-bit
processor. They said, “You can have this 4-bit processor but
you need someone… What we need from you- We’ll trade you
this hardware if you give us some software.” Basically he
wanted an assembler kind of thing, but when you get into
four bits it’s just kind of weird.

 I was kind of the person, and then I was working as a
teaching assistant. I went to one of the professors who was
running one of the classes there, I said “Do you know anyone
who would be interested in a final project?” He found two
people who were interested in doing this thing, so I
was kind of the overseer of these two people who were
doing this thing for Northouse who was doing it for
National Semiconductor. That was one of the things I
did.

 Another thing I did was on this MODCOMP thing, they
had a FORTRAN compiler. The way it worked, it basically
converted FORTRAN statements into macro assembly
statements and then compiling them (which is kind of a
dorky way of doing things). We kept running into problems

because one of the classes I had with Northouse I had to do
some kind of frequency analysis or some crap like that.
They kept coming up with different answers and I was
going to the main school computer system and run
something, then over to this MODCOMP to run the same
thing; come up with two different answers. So another
thing he had me doing was, “Go on and figure that out!
Figure out what the problem is! Go talk to them and
tell them to get their act together.” That was another
thing.

 Then I got involved with that robot for a while. They
needed a way to talk to the MODCOMP, they needed to
understand how the ports worked on whatever, then they
had some sort of hose that went behind it or something.
That was another thing I did. That was the kind of the
thing- I was the only guy there so I did whatever really
needed to be done.

 Interviewer: That exposure to the National Semiconductor
chip, was that the first time you had seen a microprocessor
or did you know about it beforehand?

 Tom McHugh: I think that was probably the first time.
When we started doing that first project with Dave Nutting
Associates, that was the Intel processor and I hadn’t even
heard of that when we got there.

 Interviewer: Of the Intel processor, were you always using
the 8080 or were you using the 4000 beforehand? What were
you first starting with?

Side Note: The Intel 4000 Series is what’s meant here. There is no Intel 4000.

 Tom McHugh: We started out with the 8080 because that
was the first one. That’s all that was really available to
do that. What Jeff built was a shifter kind of thing
to trace different patterns because the patterns had
to have different shifting whatever. That was done in
hardware but it was done with 8 bits so he needed an 8-bit
processor. That’s all that was available, there were no 16-bit
processors.

 Interviewer: Was computer graphics ever an interest for
you? Because of what you were doing was it more just
making things move essentially?

 Tom McHugh: No. Neither, actually. I was more
interested in the logic of something. Could be a computer
graphics thing or could be anything. How do I make this
thing happen, then what do you want to make happen?
Then you go back and say, “This is what I want, how do I go
do that?” So the software, it’s a design driven kind of
thing.

 Interviewer: What were the systems that you were using?
Were they the Intelect systems? I think that’s what they
called the development kits for the microprocessors, the
Intelect.

 Tom McHugh: Is that the thing that went into the MDS
[Microprocessor Development System] 800? There was

something that plugged into it. On the one hand, let’s say
you wanted to assemble something, you wanted to write
some code and assemble that code so that it can be used
somehow. That you would do with this MDS 800 thing.
There also was something else that might have been on a
separate board, it had this big ribbon cable coming off of it
that at the very end looked just like the CPU. You plugged
this thing into your board that you’re making up for the
game (or whatever you’re doing) and that was the emulator.
That might have been the Intelect, I don’t really remember
what it was called. I think it was called an In-Circuit
Emulator.

 Interviewer: Were you loading things via paper tape or
how were you loading it?

 Tom McHugh: Yeah, that’s how it started out. When we
started out there was these machines- I think they were
called KSRs (Keyboard Center Receive) – and it basically
had a paper tape puncher on it and a paper tape reader on
it plus this keyboard. What we started out doing, we had
these pieces of paper tape that were your program. It was a
real pain in the ass, because in order to make a change you
have to re-punch the whole program out and then read it
in.

 Interviewer: What was the first project then? What was
the first thing you were told “Make some software for this”
when you were in DNA?

 Tom McHugh: Yeah, it was a game called Gun Fight.

[image: PIC]

Gun Fight, Released November of 1975 by Midway Mfg.Generally regarded as the first microprocessor video game, Gun Fight was a huge hit for Midway. It was an adaptation of the game Western Gun by Taito, released in September of 1975.

 Interviewer: There was nothing before that, just straight
to Gun Fight?

 Tom McHugh: That was it, that was the very first
one.

 Interviewer: Were you shown the game that they had
imported, the Western shooting game? It was called Western
Gun, I believe.

 Tom McHugh: No, I was not. Basically this is all Dave
Nutting. Dave said, “Here’s what we want to do on the
screen. We want to do this.” I went out and did that.
“Then we want to do this.” I did that. I did the next
thing. He showed me- I don’t think I ever saw that
game. I may not have even been aware of it until much
later.

Side Note: According to Dave Nutting, he did not spend much time examining Taito’s Western Gun before communicating his game design ideas to McHugh. Western Gun was created by Tomohiro Nishikado, most famous for fathering Space Invaders, which in itself used a hardware similar to the one created at DNA.

 Interviewer: So tell me a bit about the process of how you
got to the end result. How were you able to make this puny,
small microprocessor able to generate what was on the
screen?

 Tom McHugh: Well really there was two parts to it: The
background and foreground. There’s an interrupt, I think on
this one, at the bottom of the screen. So at the bottom of
the screen you’d do foreground stuff. In other words: You
would write things onto the screen. I’m talking about the
raster scan now, right? The raster comes down, hits the
bottom of the screen, gets an interrupt, then start writing on
the screen because the raster’s no longer there. You start
writing at the top of the screen and what you don’t want to
have happen is the raster catch up to you writing. So
you do background stuff and then you do foreground
stuff.

 The foreground stuff was all immediate writing, I gotta
do it right now. It may be that arm is moving and you have
to move the arm to a new location. You might be shooting a
bullet. That has to happen in foreground, but there are
other things that happen too. There’s scoring and stuff like
that happening in the background. That’s really the concept,
you don’t really want to get caught in the raster. While the
raster is away from you, you write stuff into that location on
the screen.

 Interviewer: So the way that the arm moves, was that
something where you were just drawing it directly to the
screen or were you calling on something to tilt or signal
another image? It had like six degrees of movement in front.
Are you just literally, the character’s being redrawn with
his arm in the new position or did you actually have
something where you stored the arm movements like
sprites?

Side Note: Discussed later in this interview are the difference between “sprites” and “objects” within a game development setting. Sprites are a particular type of object which can be positioned at any part of the screen, using it’s own separate memory. In these early games, objects had to be drawn with a bitmap and therefore were not independently rendered.

 Tom McHugh: Yeah, I think the arm movements were
stored. I think there were two parts to that because there
was like a mirrored reflection down the center of the screen,
you look at the left and the right. The right might have been
the mirror on the left, that kind of thing. So I think the
original positions were stored in memory as specific things
but the mirror image was calculated in the background and
put into an area of memory that wasn’t on the screen at
all. That’s where it was used from, but it had to be
reversed. It wasn’t the full image, it was just whatever
changed.

 Interviewer: So that would be like the movements of the
arms and the feet and that’s pretty much it?

 Tom McHugh: Yeah. This is real primitive stuff
here because that processor couldn’t handle a whole
lot.

 Interviewer: [Laughs] Right. How did you insert

Side Note: As it turns out, it’s an error to assume that Gun Fight had music. Due to some improper emulation, the famous “Funeral March” by Frédéric Chopin was edited into some versions of the ROM online. The sequel to Gun Fight, Boot Hill, does have music. See the blog article titled First Music: The Mystery of the First Video Game Soundtrack by this author for further reading.

the things then? I’ve heard a lot of ways that people
implemented graphics. Was it, did you have to do the whole
hexcode? You had to calculate it on graph paper? How did
you get it in?

 Tom McHugh: Yes, yes. That’s how you got it in. It was
probably in hex. Basically Dave Nutting would draw it out,
I’d translate into hex, and translate the hex into a table
that went into the EPROM (well actually the ROM).
Everything we did was with EPROMs. Jeff came up with the
blacklight.

 The concept is an EPROM looks just like A CPU chip
except it’s got this little window in it, right in the center.
You take the EPROM, set it right on the blacklight for
like half an hour and that will erase it. That was the
thing we did to erase them, I think. Then we would run
that program into the EPROM and that’s how it was
executed.

 Interviewer: Did you ever have a situation where you only
had a partially erased EPROM or was an hour pretty much
good to wipe it clean?

 Tom McHugh: Yeah, it was pretty much good enough. It
wasn’t a big deal. You just went and got another, there was
like five or six of them sitting there.

 Interviewer: How did you add in the music?

 Tom McHugh: That was the one thing that I didn’t do.
First of all, you have to understand that it’s not music. It’s
sounds. What happened was, someone would say “This is
the kind of sound we want” and somebody else like
Dwyane maybe would start putting probes on different
parts of the hardware and saying “Does this give us the
frequency for the sound that we’re looking for?” So the
sounds basically came off the board. That was early
on.

 When we started getting into actual games with these
custom processors I think I wrote a little sound generator
kind of thing and there was another guy who did all the
sounds. I would do all the work on the game, he would do
the sounds. I’d say, “We need this sound, blah blah blah,
here it is.” The processor was already on the chip. He would
give me- It’s almost the same thing we were talking about a
little while ago, just a table of sounds. That was later on, so

you have to understand the distinction here between the
early days and how things are really primitive and the later
days where things were less primitive (but they were still
primitive).

 Interviewer: [Laughs] Who did you mention in terms of
the sound? I think you said a name and I don’t think I
caught it.

 Tom McHugh: No, I did not say a name and I can’t
remember the guy’s name. If you could rattle off a bunch of
names I could remember it but I can’t remember his
name.

 Interviewer: I’m not sure who worked [there] early on. All
I know it was Fenton, Nutting, Frederiksen, and you. That’s
the only people that I know.

Side Note: Dwayne Knudston and David Otto were present at the start of DNA though at this point it’s unclear if they were actual employees.

 Tom McHugh: This was after they moved down to
Arlington Heights. It was a guy that they hired then and he
would do other things down there too. He was kind of like an
interface to Dave Nutting Associates, they did a lot of things
just for me. For example, one of the things that we ended up
doing was we were using a modem to get the code for the
game down and he would be on the other end of the
modem.

 Interviewer: Do you have any other stories about creating

Gun Fight then? Was there any complications or any
interesting parts of it?

 Tom McHugh: There was one complication, Jeff
Frederiksen got mad at me once. He said, “You know, I’m
going to take over the foreground part of this.” So that’s
what he did. He did the foreground stuff. The problems were
you had to be very careful where the raster is. The problem
is just a bullet is really two pixels high and the pixel here is
a really large, massive thing as opposed to what you see
today. If you don’t get it right, what you see is basically the
old pixel and the new pixel but they’re not next to
each other because they’re one raster removed from
each other. There’s stuff like that you have to worry
about.

 Interviewer: As far as you know then, was that the first
video game that ever used a microprocessor in like any
capacity?

 Tom McHugh: I would say yes.

 Interviewer: There’s been a lot of people that have been
trying to definitively say whether or not it is. We’re pretty
sure, we’re just not 100%.

Side Note: For further reading on the early microprocessor contenders, see the blog post Exploring the First Microprocessor Video Games by the author.

 Tom McHugh: Yeah. You see the problem is Intel just
came out with that, at that time, so there really wasn’t time
to do something before that. The only other thing that was
graphically oriented at the time was Pong which was not
really done with a microprocessor.

 Interviewer: Was the game ever known by anything else
other than Gun Fight?

 Tom McHugh: No. Not that I’m aware of. That’s what
was on the screen.

 Interviewer: [Laughs] You had to write that whole thing
out? Did you create a character set in the thing? You made
a ‘G’ and a ‘U’, things like that? Did you make those an
interchangeable thing or did you just-

 Tom McHugh: No, they were just a table. A table of
some bytes.

 Interviewer: When you were creating the game did you
know it was going to be a hardware system that was going
to be carried forward or was it entirely “We’re making this
product now”.

 Tom McHugh: That’s difficult. I assumed it was gonna
move forward because it made so much sense. All they
had to do was make a profit so they could do the next
one and I couldn’t see them not making a profit. It
didn’t have to be a huge profit, but I think on the other
hand they were doing this for Midway under contract so
they were getting some money for it that they could
count on. There was more of a long-range relationship
there.

 Interviewer: As far as you know, was it a good success?

 Tom McHugh: Yeah! Yes. In the sense like Pong
was. I mean Pong took the world by storm but not
a lot of people really noticed. You have this kind of
dichotomy thing that people really into that thing said,
“Hey, this is really neat!” but most people weren’t into that
thing, “What does that mean?” It wasn’t until the home
versions of things started appearing that people started
noticing (I’m not sure when that happened, to tell you the
truth).

 Interviewer: After Gun Fight, was Sea Wolf right after
that?

[image: PIC]

Sea Wolf, Released April of 1976 by Midway Mfg.The game was likely the largest video game arcade hit of the mid 1970s.

 Tom McHugh: Yes, yes.

 Interviewer: What was sort of the inception of that
then?

 Tom McHugh: That was Dave Nutting. Dave said,
“Here’s what we want to do.”

 Interviewer: Okay. [Laughs] So with all these games you
were just coming from a complete blank slate? You were just
interested in the technical side? You didn’t really know how
people had done it before at all?

 Tom McHugh: Oh no, I had no idea how people had done
it before. In a sense Dave would say, “This is what we want
to do” but then I would take that and make it into a real
game. It wasn’t that Dave had everything all set up, he
would present an overview of “Here’s how this is going to
happen.”

 We did this one game called Wizard of Wor and basically
he said “We want to do something like this. What do you
think? How do you think we should do this?” Basically he
wanted to do this and I’d put it all together to make it into
a game, that kind of thing.

 Kind of the same thing with Sea Wolf and kind of the
same thing with Gun Fight except Gun Fight there was so
few things you could possible do with it that Dave said “We
want to do this and this and this” and that’s it! It wasn’t all
Dave saying “Do this” and me saying and me doing it, it was
kind of a transfer of the design or logic of what you want to
do.

 Interviewer: To speak one more thing on Gun Fight, say
the fact that you had limited ammo, was that something
that came completely from Dave? “That’s what you need to
do”?

 Tom McHugh: Yeah, probably. Yeah. That would
probably be coming from Dave.

 Interviewer: Mhm. On a technical sense that means you
need to put a little bullet icon on the screen and then
remove it. That’s something he would tell you, that “We
need this bullet icon and it needs to disappear”?

 Tom McHugh: Yes. Until you mentioned that, I didn’t
remember that it even did that.

 Interviewer: Yeah. Cuz that’s one of the things that’s
different from the original, the Western Gun game, that you
have limited ammo. That’s something that he came up with
then.

 Tom McHugh: Yeah.

 Interviewer: Did the theme of Sea Wolf seem kind of
weird? You’re jumping from a Western game to a submarine
game and then later a baseball game? Did that seem kind of
weird?

 Tom McHugh: No, not at all. It’s basically, you have a
blank palette and you’re going to do something with it. It
doesn’t have to be the same thing as you last did. As
a matter of fact you probably want to do something
different to appeal to different kinds of people. There was
no interlude in between them. It was like, “Okay, we
finished this, we’re going to start the next one.” We’re

not going to sit around for six months and see what
happens.

 Interviewer: How long generally did it take to complete a
game? Those early games, how long did those take?

 Tom McHugh: I’d like to say three or four months. I
never really paid much attention to it though so I don’t
know if that’s accurate or not, but that’s about what it
seemed like.

 Interviewer: Right. Did the hardware significantly change
at all between Gun Fight and Sea Wolf?

 Tom McHugh: No.

 Interviewer: There seems to be a lot more objects on the
screen in Sea Wolf so was that just optimization?

 Tom McHugh: I can’t answer that. I don’t know. The
problem is that there were two Sea Wolfs and the second one
sticks in my mind more than the first one but the second one
came way later.

 Interviewer: Like two years, thereabouts. One question,
maybe you might be able to answer, I don’t know if
it’s also a technical thing or it’s just the way you were
told… The enemies in Sea Wolf, they don’t shoot back
unlike in later games. Do you have any idea why that
was?

 Tom McHugh: That’s what Dave wanted. He said, “We’re
trying to increase score based on the three different sizes of
the things that you hit.” You get more based on smaller
things that are moving faster. It’s basically just a scoring
game.

 Interviewer: So you think you probably could have if you
wanted to have them raining down bullets as well, Space
Invaders style?

 Tom McHugh: No no. No, because there’s no way to feed
that back into the game itself. It didn’t fit the design and
that’s what he wanted. He wanted something that basically
just moving across the screen.

 Interviewer: Right, but in a technical way you could have
had those things coming down.

 Tom McHugh: Oh yeah, but there’s a whole bunch of
definitions that have to be put in place for that. You know,
what does it mean to have something coming back at
you?

 Interviewer: I imagine that sort of creates clutter, in
terms of visuals. I don’t know how many objects you could
actually drive on screen with that hardware.

 Tom McHugh: Yes. At some point what they did is they
changed from the 8080 to the Z80 and I don’t remember
when that was.

 Interviewer: Was that when they went color? The original
games, they were monochrome and then later you had a
color system. Was the Z80 the color system?

 Tom McHugh: Well the thing is the Z80 didn’t really
have a whole lot more than the 8080 did but it had the
ability to do certain things that the 8080 did not have. It
was just like an addon to the 8080, it wasn’t a complete
“Hey, this is like 10 times better.”

 Interviewer: So after Sea Wolf was Tornado Baseball?

 Tom McHugh: Yes.

[image: PIC]

Tornado Baseball, Released July of 1976 by Midway Mfg.The game was an upgrade of the game Baseball by Ramtek from November 1974.

 Interviewer: Did you guys ever do little experiments of
games that didn’t go into production anywhere or were the
things that you were put on pretty much “This is the stuff
we’re going forward with”?

 Tom McHugh: Actually there was maybe only one thing I
can think of and that was many years later. After we did
Wizard of Wor, Dave wanted to do a variation of Wizard of
Wor where you walk in space or something like that. He
said, “We want to do this, we want to do that. Can you do
it?” I said “Yes but I doesn’t make any sense. Yes but I
doesn’t make any sense.” [Laughs] So I did it, it didn’t make
any sense, and it didn’t go anywhere. Visually there’s
nothing to hang your hat on there. The cadet doing
something else and there was never the rest of that designed.
I didn’t know where he was going with it, but it was
like “Well, yeah we want to do… Something.” That was
it.

 Interviewer: I know Fenton said the first thing that he
was working on when he came in was a poker game of some
kind. Were you guys working together at all or were you just
entirely in separate corners?

 Tom McHugh: Actually we were almost completely
separate. I’m not even sure what that poker game was. With
one exception though: At the very end of the Sea Wolf game,
I caught something. I had the flu or something like
that or influenza. I was out for a week right at the very
end of the game. The game was all done and the only

thing that had to be added to it was the settings. I
hadn’t done that, I caught something. So Fenton came
in and he would work on that. He would give me a
call at home, I’d get out of bed, I’d stay on the phone
for a few minutes, I’d hang up, and get back in bed.
He would go work on the rest of it, he finished up Sea
Wolf.

 Interviewer: Good thing too because it was also very
successful.

 Tom McHugh: Yeah. Well it would just have waited
another week, that’s all.

 Interviewer: Well I don’t know. Were you under strict
deadlines at all?

 Tom McHugh: Not really, no. In the sense that Dave
would say “How you doing?” I’d say “Well, I think here’s
where we are.” He would work out the deadlines with
Midway, but I never really was part of that. There was never
a time that we said something would be available (with the
possible exception of Sea Wolf that I just talked about) at a
certain date and it wasn’t.

 Interviewer: Right. The baseball game, I had heard that I
think Frederiksen was working on it before it actually got
going. Was there anything there or was that also from
scratch?

Side Note: That the baseball game was the first video game being worked on at DNA was claimed to Keith Smith of All In Color for a Quarter by David Nutting. This may not be true based on other testimony about the early development system by Jeff Frederiksen.

 Tom McHugh: That was from scratch as far as I
know, other than to say when you have this different
kinds of things you have to have an idea of what the
layout’s gonna be. How is the screen going to be oriented
for the front panel, for example, where the controls
are? What are you seeing? If you’re gonna see a ball
park, then how’s that going to work? For example, there
might be a mirror in there and the screen might be
laying down and facing up. The mirror reflects it to
you so everything you have to do is reversed except
that the reversal might be done in hardware, so you
don’t really care about reversing it from a software
perspective.

 Interviewer: Who was it that came up with the mirror
then? It’s really cool to have that color background even
though it’s not really in color.

Side Note: Using mirrors was a well-trod method to display fancy visual effects in arcade games. David Nutting appears to have been the first to apply it to video games however, using it to give the monochrome image of Tornado Baseball a colored background which did not bleed onto the game objects.

 Tom McHugh: I don’t know. That’s Dave Nutting and
wherever he got that from. Midway had done a lot of these
things because that’s what they did, built these arcade
games.

 Interviewer: Right. Talking about the number of
objects on screen, I do find it kind of funny that in that
game you have all the outfielders represented but the
one person who isn’t represented is the batter. You
just have a little line that does the bat. Was that a
thing that you were told to do or was that a technical
thing?

 Tom McHugh: Don’t know. Those things really aren’t
that important. What’s important is you have these joystick
controls or whatever, maybe it’s a button to- I don’t
remember how the ball came out. Something caused the
ball to come out then you had this joystick control
that controls where the bat is actually swinging and
when it’s swinging. So the ball and the bat are the
important part of the whole thing. Does the bat hit the ball

correctly.

 Interviewer: [Laughs] Since all those games were
two players, was that ever a complication? Were there
concessions that had to be made for that? There’s only
one screen so it’s not like you’re doing split screen or
anything.

 Tom McHugh: No, I mean you couldn’t. You couldn’t not
do it. For example, Gun Fight… Was it two people or was it
one person and a computer?

 Interviewer: No, it was two. Maybe Boot Hill has AI, I’m
not sure.

 Tom McHugh: Yeah, I don’t remember.

 Interviewer: Was it, you were spending all your time
driving graphics on the screen or was it that nobody thought
you could do an AI opponent at all?

 Tom McHugh: You couldn’t. There wasn’t enough time.
These were really primitive chips.

 Interviewer: One other thing with the baseball game, do
you ever recall having to make a fix for it? There’s this
program card mod that needed to be slotted into the
machine. I know that’s hardware, but do you ever recall
that?

 Tom McHugh: No, not at all. I don’t know, did you ever
find if that game… Was it a good game or did it bomb?
[Laughs]

 Interviewer: [Laughs] It sold less than Sea Wolf and Gun
Fight but Tornado Baseball was pretty good. All three of
those games got sequels so I imagine they were all good

performers. [Laughs]

 Tom McHugh: I always thought Tornado Baseball was
really dumb. [Laughs] That was my opinion.

 Interviewer: [Laughs] What was your thought on it
then?

 Tom McHugh: Oh, it’s because it wasn’t intuitive what
you had to do win the game. It was very complicated. The
distinction between hitting a good ball and missing the ball
wasn’t all that obvious, whereas with Sea Wolf you could
shoot something, you could see it going up and see “Oh, it’s
missing!” You could tell there’s something going across the
screen at a certain speed and this thing is going up vertically
at another speed and you could use that to reevaluate how
you’re going to do things.

 Interviewer: So were you starting to get a sense of how
players were going to react to the games? Obviously you
guys weren’t doing market research or anything. Were you
starting to get an intuitive sense of how to make systems
that were easy to interact with?

 Tom McHugh: No. No, it was more like “what appeals to
me” or “what does Dave want to do” and try to make it
interesting to me. Sometimes you can do that and sometimes
you can’t.

 Interviewer: [Laughs]. Yeah. Fickle bosses.

 Tom McHugh: Yeah, you look at it and say “This is
really dumb and it’s hard to do” so you don’t want to do
that. You want to do something that makes more sense. Just
a bit of common sense there.

 Interviewer: One last thing did you have any involvement
with the consumer products division stuff they were doing?
You mentioned the console before. I know they also did a
pinball table and things like that. Tom McHugh: I did one
game. They did this – I forget what it was called – tabletop
type game, you put a cassette into it. I did one of those. The
name of the game was called Cosmic Avenger. We were
talking about this guy whose name I couldn’t remember who
did the sounds, apparently he was trying to do a game, this
game called Cosmic Avenger. He got to a certain point and
said, “You know, I just can’t do it. It’s not working
out. Tom, could you do it?” I looked at it and said,
“You know I’ve never really done anything like this, but
sure, let’s give it a try.” So we did that and we did
Wizard of Wor I think for that one too. Wizard of Wor
was an arcade game then it came out on this other
thing.

 Interviewer: But you didn’t have any involvement when
Bally was creating that console system or anything like that?
You were just solely doing arcade games through that whole
period.

 Tom McHugh: Pretty much, yes. Midway was the
one who did those, who went to the other way too. I
went down there, and I got to their factory, they were
showing me around at the time they first started building
those things. They showed me how you lay out the
circuit boards and all that equipment for that kind of
thing.

 Interviewer: And you just generally weren’t interested in
that because you were mainly a software guy?

 Tom McHugh: Well it was interesting but I really was
more into the arcade thing more than anything else.
It really was a different kind of environment but not
that different since Jeff came up with this custom chip
and I think it was used both in the arcade games and
the home games. I think it was the same chip. So the
distinction between the two wasn’t all that great, but on the
other hand there are things you have to do in an arcade
game that you don’t do in an arcade game and vice
versa.

 Interviewer: So it couldn’t be directly ported over or
anything.

 Tom McHugh: Correct.

 Interviewer: I imagine a lot of that was also the pixel size
that you talked about before. I think the system that you
guys had was something like 256 by 222 and home games
were much different than that.

 Tom McHugh: That could be, yeah. I’m not sure about
that though.

 Last I talked to Dave Nutting was when he said, “You
should go work for these other people”, the people I told you
about, Action Graphics. That was it. Never talked to him
after that. All the time I of course had not been working
there. I’d go down to Arlington Heights a couple times a
year and that’s it. At the time I might have lived in
Southwest Wisconsin. It wasn’t a daily kind of thing, seeing

him daily and finding out what’s going on, it was just really
hearing from other people.

 Interviewer: I wasn’t 100

 Tom McHugh: When I went down there I would basically
go down there to talk to either talk things over or pick up
some hardware for our new games. It wasn’t very often. I
was basically just an employee of this, like any other
employee. I saw the thing that Fenton did and I’m not sure
what his relationship with DNA was. Initially he was an
employee and there were times that I saw him down there
and he’d be working on one thing or another thing. I
thought he was an employee at the time, but seeing that
video sounded like he really wasn’t an employee, he was kind
of on a stipend or something like that. I don’t know. I really
don’t know. All the time that I was there I was basically an
employee, but I was not working there, I was working
remotely.

 Interviewer: And did you ever have an official title
there?

 Tom McHugh: No. Not at all. I wasn’t aware that
anybody had any titles.

 Interviewer: Yeah. [Laughs] That’s the sense that I got,
that Dave wasn’t very much a guy for hierarchy or anything
like that.

 Tom McHugh: Yeah, okay. We’re all just doing a job.
Addressing things that were interesting and getting paid for
it.

 Interviewer: Yeah. It didn’t seem to me that David saw

himself as a President or anything. It’s just, “This is Dave
Nutting Associates, we’re doing games for Bally.”

 Tom McHugh: Right. I never got that impression
either.

 Interviewer: You said initially you were working in the
warehouse. Did they ever get a real facility before they
moved down to Arlington?

 Tom McHugh: No. They went right from the warehouse
down to Arlington Heights.

 Interviewer: Do you recall what game you were working
on when they moved?

 Tom McHugh: No. [Laughs] A lot of that is really fuzzy.
The one video that we were talking about, the early Wizard
of Wor game, it kinda sort of almost jogged a memory but I
couldn’t exactly remember how all that went. It looked like
that first one was almost a prototype and there was only one
of them. Is that possible, that there was only one of those
things?

Side Note: Dave Nutting Associates moved from Milwaukee, Wisconsin to Arlington Heights, Illinois, in 1977, which was prior to Wizard of Wor’s development. It’s unclear what McHugh would have been doing between his early games and Wizard of Wor but he does claim to have worked on a number of clone games for Bally in the late 70s period.
McHugh refers to a video of an early version of Wizard of Wor called Invisible Monsters, uploaded by YouTube user Crimefighter.

 Interviewer: Yeah. To my understanding, normally what
you do is once you guys got into software you would make a
version of the game, put it on location, see if it makes
money, and then go back and finish it basically. Is that how
you recall?

 Tom McHugh: No, not really. Again, I’m trying to
remember how that all went, but I’m so away from
it because I was remote. That could be possible that
they could put one out there for a while to see how it
does.

 Interviewer: And then just forget to take it back?
[Laughs] Essentially.

 Tom McHugh: Yeah. Depends on what you mean by ‘put
it out there’. Is it one of the employees who owns a string of
arcades, is he taking it out? Or are they actually selling it to

somebody? I don’t know.

 Interviewer: I have no idea where the thing came from,
just suddenly someone posted it on Twitter. I was like, “Oh,
that’s kind of interesting. I was trying to contact this guy.”
[Laughs]

 Tom McHugh: Yeah. But just one of them? Did they
leave a small amount? I don’t know, I can’t remember
that.

 Interviewer: Right. Do you recall that being the name of
the title in development though, Invisible Monsters?

 Tom McHugh: I can’t remember that either. I really
really don’t remember that. The thing of it is, you asked me
what they started working on when they moved down to
Arlington Heights. That may have been the game right
there. The start of it.

 Interviewer: Right. That would have been around the ‘80
period, somewhere in there.

 Tom McHugh: Yeah.

 Interviewer: You talked about Bob Ogden before. Can
you tell me a bit about him, working with him there and
later onat Action Graphics?

 Tom McHugh: Yeah, I don’t remember if Bob Ogden was
even a part of DNA. I really don’t remember that at all. My
earliest memory of him is Action Graphics, but there had to
be something there. There had to be a very close connection
somehow.

 Interviewer: He claimed to have helped on Wizard of
Wor a little bit but that might have been from the

Arlington location helping Dave shape what was going
on.

 Tom McHugh: Okay. The games that I worked on, I was
the sole person on the game part and usually there was a
guy who did the sounds. There really wasn’t a lot of
collaboration when you were doing a game, it was just the
one person doing it, otther than the feedback from Dave
Nutting (or the direction from Dave Nutting [Laughs], one
or the other).

 Interviewer: Do you remember Scot Norris at DNA?

 Tom McHugh: Yes. He was the person I was talking
about before.

 Interviewer: Okay. He was the sound guy.

 Tom McHugh: Yeah. I don’t know what his role was. He
was kind of the other end. He did the sounds and he did
basically… I don’t know!

 Interviewer: Before I was saying that they didn’t
really departmentalize things, but it was kind of you in
one section then Fenton in another section doing the
consumer stuff, right? You didn’t really get involved with
that.

 Tom McHugh: Initially, like I said, Fenton came into do
the pinball thing. It was more like a project kind of thing.
That’s how the breakout [came and went]. I was more
familiar with the 8080 and Z80 stuff, that’s why I stayed
along with that. I think the reason Fenton eventually got
into games themselves was because there was a need
for more people to do games as opposed to a need for

more people to do pinballs. That’s how he got into
it.

 The processors themselves were so much different that
there was a little bit of a learning curve there. You don’t say,
“Today we’ll do this and tomorrow we’ll do that other one
which is really dissimilar”.

 Interviewer: [Laughs] Right. I know he was put on some
pretty challenging stuff when he got that. He had a first
person driving game, a card game sort of thing, Checkmate.
He got thrown all of that stuff and you kind of got the
sequels. Sea Wolf II, Boot Hill, Extra Inning, all that
stuff.

 Tom McHugh: I don’t think I ever got into the sequels.

 Interviewer: Oh okay.

 Tom McHugh: I did a first person driving game once
too.

 Interviewer: Oh, okay. That was the Midnite Racer
thing?

Side Note: Jamie Fenton also claims to have done Midnite Racer/280 Zzzap as a solo project.

 Tom McHugh: Yeah, that might have been it.

 Interviewer: Do you recall anything about how that idea
came up?

 Tom McHugh: No. That’s just another Dave Nutting,
“Here’s what we want to do now.” They’d just look around
and see what games are popular. Driving games were

popular and shoot ‘em up games were popular so that’s kind
of where these came from. “What’s popular? Let’s do our
own variation of it.” That Gun Fight game was really
somebody else’s game but we did our version of it. It wasn’t
like you buy their game then put their game into a console
and sell that.

 Interviewer: I have heard that Dave kind of separated the
people who were doing game design and the engineers, in
terms of bringing up ideas for games. You said in terms
of people you were interacting with that was mostly
Dave. Were there other people that tried to ascend to
that level or were they mostly happy being engineering
staff?

 Tom McHugh: See, that’s just it, I didn’t really interact
with a lot of people so I don’t know. It was just Dave
and that was about it. After a while the only reason I
talked to Jeff is he made this computer we were using
after a while, we called it the ICE box. It was the next
thing after the MDS 800 after that turned out to be-
Actually I think the MDS 800 was really just for the 8080
stuff and then when we went to the Z80 is when Jeff
made a bunch of these boxes and called them the ICE
boxes.

 They were computers that were maybe three feet long,
eight inches high, and eight inches deep. About as high and
deep as a standard card was at the time. That’s probably
why it was designed the way it was, because the hardware
people designed it for the hardware cards they put in. That

was what we used and that was what I used right up until
the end.

 There was a thing you could get on the telephone line
you’d get spikes on there, feels like lightning or something. It
would blow out something on one of the boards which would
make the whole thing inoperable. If there was a lightning
storm and it hit one of the electrical lines and brought it
into the house. This happened maybe once or twice a
year. I’d have to go down and get it fixes. [Laughs]
That was probably the sum total of my interaction with
Jeff.

 Interviewer: Did the ways of transferring software get any
more sophisticated when you moved to the Z80 system?
Before you were saying it was paper tape and typewriters.
Were the ICE boxes any more sophisticated?

 Tom McHugh: Well, okay. The first thing we started out
with was the paper tape but the next thing we went to was
these big 8 inch platters of floppy disk. That might have
been in the first game, even. We were doing the paper tape
stuff for a little while but not for real long because that was
just really difficult to work with! The company name that we
used was ICOM. They made these boxes that had four
floppy disks in them, 8 inch floppies, but typically the boxes
we had only had two floppy drives and that’s all we really
needed.

 I remember, just after they left (I was still in Milwaukee
with my wife before we moved out to Southwest Wisconsin),
I contacted the ICOM people and I said “Hey, would you be

interested in an assembler for this? Something that you
could distribute when you sell these boxes.” They said, “Yes,
how much do you want?” I said “$10,000.” They said,
“That’s too much.” So I said, “What about if I make it for
both the 8080 and the Z80?” and they said, “Okay, we’ll do
that.” [Laughs] So I made an assembler to do that to
distribute with the box that they sold.

 Then I thought, since I was using the assembler myself to
put things together for the games, I actually made a little
operating system for it. It’s kind of funny because the way
the operating system worked (it was really primitive), it
worked with two floppy drives. One floppy drive you would
do all your editing on and the other you would do your
assembling and linking on. That would be the second one.
I used that for years. They wanted to use this other
operating system called CP/M. That was one of the early on
ones but it had some problems because of the areas
of memory it wanted to use conflicted with what we
wanted. That’s why I ended up writing my own operating
system.

 Years later the first hard disk came out. This is really
cool. They sent me this hard disk but it came in this big
metal box. The box was like, oh, 16 inches wide, 12 inches
high, and 12 inches deep, something like that. It was all
sheet metal. That was the box. Then on one side of it
there’s a ribbon cable connector and a power cable
connector. I got really interested, “What is inside this
box?!”

 I went and got a screwdriver to open up the box
and inside the box was one of the first generation hard
disks, which is actually the same size as the second
generation hard disk in it’s footprint but it was maybe
three inches high. When you looked at this it’s this
semi little thing that’s sitting in the middle of this big,
gigantic box and I thought, “Why did they do that?”
[Laughs]

 I ended up adapting my operating system to do
the same thing. I ended up having a whole bunch of
drives that went up to ‘X’ I think. [Laughs] X drives!
They were all the same size as some of those 8 inch
floppy drives and they all worked the same way. You
had one for editing and the other one for compiling. I
ended up using that for the rest of the time that I was
there.

 Interviewer: Did you ever make any debugging tools for
it?

 Tom McHugh: No. Initially the debugging tools- I talked
about this circuit emulator thing. It was a board that went
into the MDS 800 and it was the emulator for whatever your
hardware was. You’ve got a motherboard and it’s got a CPU
socket and instead of having the CPU in the socket you have
this emulator plugged into that socket. You would run
through this board, it would emulate whatever you
built.

 The first generation we used the EPROM and I told you
about the blacklight and how we erased them. This is the

second generation. After the EPROMs were gone we
were using this emulator. The third generation was this
ICE box thing that I just talked about, this low, wide
computer thing. That’s what Jeff was doing, making
all that hardware up himself and then implementing
it.

 Interviewer: Did you have a terminal for it or were you
still using a teletype?

 Tom McHugh: Oh no, we had a terminal. It was an
ADDS [Consul] 580 or something like that. You see some of
those old shows with the first generation CRTs that look
kind of look really [modernistic]? It was one of those. Big,
huge sucker.

 Interviewer: I want to see if you recall this. Do you
remember seeing Space Invaders for the first time?

 Tom McHugh: First time I saw Space Invaders was in an
arcade. I thought, “That’s pretty cool!”

 Interviewer: Did you frequent arcades or was that just
kind of a thing to do?

 Tom McHugh: I did not frequent them, but if I was near
one I would check it out just to see what was popular.

 Interviewer: And hope that people were crowded around
the Midway games? [Laughs]

 Tom McHugh: Yeah. [Laughs] Whatever. I still do that.
If I’m near one, just to see what people are putting money
into.

 Interviewer: Right. That’s just something you’ve always
kept up on, to see what technology is the flavor of the

day?

 Tom McHugh: Yeah. Other than that I really didn’t go in
to play.

 Interviewer: So with that sort of game coming out and
with that new hardware system that’s all in color and
everything, was there any pressure to really up the fidelity of
games? To make the humans look more human and make
more sprites moving on the screen?

 Tom McHugh: Yeah, definitely, but there’s always a
limitation. “What can you do?” I mean it’s very much a
shoehorn kind of thing because these systems are really
primitive. How can you make the things you want to do get
done with the hardware that you have? It’s not like you have
a blank slate, you can do anything you want. It was the
opposite of that. “Here’s what we’d like to do. Can you even
do that?”

 Interviewer: You said at Action Graphics you did home
stuff, right?

 Tom McHugh: Yes.

 Interviewer: Did that feel restrictive, having to bend to
that hardware while still upping what the games could
do?

 Tom McHugh: Not really because those systems were
pretty much the same as the console systems. As far as the
availability of the hardware they’re pretty much the
same. They weren’t better, per say. They might have
been a little bit more modern in the sense that ten
years ago things were a little bit more primitive no

matter where you were. In the home, in the consumer
side, or in the commercial side, but that’s normal you
know.

 Interviewer: Do you recall a game that was worked on at
DNA called “Demons and Dragons”?

 Tom McHugh: No.

 Interviewer: Did you ever work on any of the vector
games there?

Side Note: DNA prototyped a number of vector games as well as a Tron arcade game which were never put into production.

 Tom McHugh: No. I remember being shown the vector
games but I never worked on one.

 Interviewer: Was that just because you were headed
out at that time, you didn’t want to work on it, or
you were just never given the prerogative to work on
it?

 Tom McHugh: I don’t know. I would guess though that
the hardware and the development hardware was different,
but that’s just a guess.

 Interviewer: I think after that was Wizard of Wor. What
was the idea that Dave came in with?

[image: PIC]

Wizard of Wor, Released July of 1981 by Midway Mfg.Inspired by the movie Alien, Wizard of Wor stands out as a quirky mix of science fiction and fantasy of the era.

 Tom McHugh: I don’t remember that. The problem with
Wizard of Wor was there was several variations of it. I’m
confused as to when things happened. When I saw that
video you sent me it kind of jogged a little bit of a memory,
then I saw some of the other ones. It sounds like I may have
worked on three variations of that. The first one that was
that prototype, the second one was the actual arcade
game, and the third one was on the Bally Professional
Arcade thing (on the little consumer box). When all those
things happened, I can’t remember when they exactly
happened.

 Interviewer: I imagine with this sort of stuff things kind
of run parallel as well, you’re working on several projects at
once.

 Tom McHugh: Well not really, no. I always worked on
just one project. Up until you get to a certain point,
you’re building a prototype – if you think of it that way
– then when you’re done with the prototype you’re
actually moving on. Then you may come back and do
something based on feedback to build the final one but
there’s not a whole lot more you’re gonna do there. It’s
really only one project at a time, it’s not a multi-tasking
thing.

 Interviewer: Can you tell me a bit about working on that
game though? Were there any particular challenges?

 Tom McHugh: Not really. The biggest challenge, I
think, was making the mazes, deciding what worked and

what didn’t work. You’d come up with a mapping of a
maze- you know, that’s really what decides those games
is the mapping of a bunch of different mazes – you
come up with one, try it out, see how it works, and if
it makes sense (this is after all the other things were
working).

 You have the monsters running around – the wizard and
the warlock doing their thing – then you just played around
with mazes and make the whole thing fit together into a
cohesive game that people would be interested in. For
instance that business of what comes out when, when does it
move faster, things like that.

 Interviewer: Was it difficult? Because the idea of
the game is turning off the sprites when you can’t see
them but you can potentially have all the sprites in one
scanline. Did you have to make sure that it could handle
that if that circumstance actually occurred or were you
expecting it to not happen (have all the sprites on one
thing)?

 Tom McHugh: No, no. That wasn’t a problem, I don’t
think. Remember the thing that’s important there is the
raster scan. So if they’re on one line at any point- I think the
whole thing was basically randomly driven so every corner
you come to is open three ways. The way you went was
random. If it’s not open, of course, you can’t go that
way.

 Interviewer: Putting this in a maze, were you working on
this before Pac-man came out?

 Tom McHugh: Yes.

 Interviewer: So just a lucky coincidence that mazes were
kind of in vogue at the time? [Laughs]

 Tom McHugh: Yeah, yeah. In fact I did a game called
Amazing Maze, I think. The idea was there was an opening
at the top and an opening at the bottom. You had to find
your way through it in a certain amount of time or
something like that, and I got so good at looking at mazes I
could look at it and see the solution for it. The thing that
created the maze was all random.

Side Note: Jamie Fenton also claims to have been the sole architect behind Amazing Maze. However, it is possible that McHugh might be thinking about the consumer version (which includes a Tic-Tac-Toe game as well), though that version is credited to Bill Jahnke.

 It was kind of funny because I had done it over and over
and over and over and over, so many times. I don’t think
that game was very popular. [Laughs] I thought it was kind
of cool, but after being with it for three months it got to be
very easy to do. I think it was one of those games that was
just too hard. No traction there.

 Interviewer: How did you come up with those sort of
psuedo-random procedures? Were there certain equations
you were using? I’ve heard a lot of interesting ways
that people kind of accomplished that. How did you do

it?

 Tom McHugh: Yeah, I just picked a psuedo-random
generator of some sort. I mean now what you’d do is go on
the internet and look, but I had the book and I’d dive in the
book and see what it said as to how you create something
like that.

 Interviewer: I’ve heard of people using Fibonacci
sequences and recursive lists. Lots of interesting ways in 4Kb
that they’re able to make random numbers.

 Tom McHugh: Yeah. I don’t remember which one I
picked.

 Interviewer: Another one of the cool things in Wizard of
Wor is your next life comes out of the little cage at the
bottom of the screen. Was that just a Dave idea or where
did that come along?

 Tom McHugh: Oh yeah. Typically that’s the way
games worked, you had some number of attempts to do
something, that’s all that was. It was just standard
gameplay.

 Interviewer: The idea of the life being represented on
screen and then it becomes your character when it walks out
of the thing.

 Tom McHugh: Yeah, that was probably a Dave Nutting
thing.

 Interviewer: Was it always meant to be a wizard? You
had Gun Fight where they have actual guns, then in
this they have this kind of pest cone that they use for
shooting.

 Tom McHugh: Well Dave was always playing with
different inputs. One time he did one, I remember, it was
with these little buttons called piezoelectric buttons. It’s a
little button, it looks like a stack of maybe five quarters. It
doesn’t move, but you’re touching it made it register that
you’re trying to press it. In comparison to the older buttons
that you push in (mechanical, more or less) I think he was
looking for something that would not be as mechanical and
fail at some point in the future.

 He would come up with a lot of those things and
typically I wouldn’t even see that. I would have something
else that would be a lot more primitive but it would be
similar to what would end up on the actual game itself.
That’s how that part of it went. I would be working on
software and he’d be working on hardware.

 He’d say, “I want to do this and we’re going to have this
and this for our inputs.” You may have a joystick or a
button or a combination of it or something. He knew how
the inputs were going to interact with the game and he just
had to build them.

 Interviewer: So that piezoelectric thing the idea was that
you just touch it and then it registers?

 Tom McHugh: Yes.

 Interviewer: When you actually put stuff out did he build
cabinets or was he mainly with circuitry?

 Tom McHugh: I think he build the cabinets too. I
remember he needed something from a CRT, just the front
part of it, so he ended up somehow or other busting the back

end off of it. What I mean by the backend is a CRT has this
space on it and it kind of tapers down to the back. All this
taper stuff was above it too, so he busted all that stuff off of
it because he wanted to use the front to do something. So I
think part of what he did was actually build the cabinet
itself.

 Interviewer: Obviously you were mainly on the software,
but did you ever have to take into account what could be
done in terms of the construction of the cabinet? Did you
ever have any ideas-

 Tom McHugh: No. Absolutely not. Had nothing to do
with that.

 Interviewer: The Wizard of Wor port for the Astrocade,
the Bally console, that was an Action Graphics thing
right?

 Tom McHugh: No, I don’t think so. No.

 Interviewer: So when you were making those games then
you were just using the ICE boxes? It was kind of the same
idea because it was the same processor?

 Tom McHugh: Yeah, yes. Remember, this Bally
Professional Arcade thing, the way it worked was you had
this thing you put on your TV set. It was basically a metal
box that went into the antenna input on the TV then
you could switch it with the TV one way or the other
way (switch it to the TV or you could switch it to this
arcade thing). What Jeff ended up doing was he did a
direct drive to a monitor for me to use. I didn’t use
the same technique and I’m not even sure how that

worked.

 Interviewer: But he literally just wired it in? He just
stripped some wires on got it in there?

 Tom McHugh: Yes.

 Interviewer: Those sorts of connections, those little forks
are so difficult to get on your TV! [Laughs]

 Tom McHugh: Yeah, but Jeff knew what he was doing.
He was very good at hardware. You asked me what I
thought about Jeff and Dave: I thought both of them were
really good at what they did.

 Interviewer: And certainly you were as well because you
had to work within a paltry amount of memory and slow
processors. Why I’ve really liked looking into this company
particularly is because the things you had to do to make
those games were just mind boggling in their time! Very
interesting. In terms of arcade stuff was there anything after
Wizard of Wor then?

 Tom McHugh: Oh, well like I said there may have been
several variations with Wizard of Wor and there were things
between that. We lived in this one place and I saved all the
stuff, the folders with all the layouts and everything, and the
final floppy disks. I had this big box of stuff, then we
moved to another place, moved the box, then moved to
another place, then we were gonna move again, and I said
“You know, I’m gonna throw this box away” because I
never look at it. Afterwards I thought, “You know, I
shouldn’t have thrown that away at least for the perspective
that I don’t even remember the games that I worked

on.”

 There was a lot of them. A lot of them didn’t do very
well. One of them that I remember was called Clowns. It had
three rows of balloons at the top of the screen and this guy
that you bounced up to the top of the screen using like a
springboard or something. Everytime you hit one of the
balloons it made you pop up. The idea was you kept
hitting the balloons until the balloons were all gone, that
was a good thing, but if you didn’t keep hitting the
balloons you would end up falling, that was bad thing. So
there was a lot of those games that I kind of remember
because it was such a silly thing, but I don’t think it did
anything.

[image: PIC]

Clowns, Released January of 1977 by Midway Mfg.A clone (possibly licensed) of Exidy’s game Circus.

 I remember seeing one of the- Again this was probably
one of those that came over from Japan. It was kind of a
similar game but the play was similar to what they had.
That was always the intent. You’d take the concept that you
bought from somebody else and if you can you make it
better. At least you make it different because it’s being done
with different hardware.

 Interviewer: Tell me a bit about the experience at Action
Graphics then. Were they based in Wisconsin or were you
doing remote stuff there as well?

 Tom McHugh: Well I was doing remote stuff for them but
they were I think based in South (or Noth) Barrington which
is one of the suburbs of Chicago. They weren’t that far from
Arlington Heights. It may have been twenty miles or so, it
wasn’t that far.

 Interviewer: Right. What’s some of the stuff that you
worked on for them?

 Tom McHugh: Oh, I don’t even remember. I remember I
did a Jeopardy game, I think [Family Feud]. I did another
game that had to do with the Summer Olympics [The
Activision Decathalon]. I think the games were mostly for
the Colecovision. The Colecovision I think was based on a TI
chip (which of course is no more, [Laughs] among other
things).

 Interviewer: You never did Atari or something like that,
right?

 Tom McHugh: Oh, Atari no, but with Action Graphics I

ended up with a bunch of Apple hardware. That gave me the
Family Feud game. I don’t know if that actually ever
got finished, might have been one of those things they
were going bankrupt and I had a bunch of hardware
that belonged to them. That was among them, there
might have been another one, it might have been an HP
development system. That might have been for the
Colecovision.

 Interviewer: Was the arrangement with Action Graphics
pretty much the same as with Dave Nutting? You just come
in every so often and get updates on everything?

 Tom McHugh: Yes, same thing. Same kind of financial
arrangement and same kind of operating.

 Interviewer: Bob Ogden as a boss, how was he different
than Dave?

 Tom McHugh: Well Dave was an industrial engineer
and he wasn’t like the manager. He was kind of the
owner or something like that. I don’t know if that’s a
good distinction or not, but Bob was kind of just like
“Manager”. Part of what he would do is he would go
out and chase possible customers and try to tie them
together.

 He had a guy that worked for him (can’t remember
that guy’s name, he was like the chief engineer), Bob
was the manager and he was the technical guy. They
had a bunch of people in their offices there – I was
there a couple times – but they were doing different
kinds of things and they were working for other people

too.

 Interviewer: Was it a bigger company than Dave Nutting
Associates?

 Tom McHugh: No. Smaller. Dave Nutting had a lot of
room there so apparently he might have had a number
of people. This other one was maybe half that size.
Again, that’s just me looking at it second hand and third
hand.

 Interviewer: Right. After you got out of games then, you
said you did some engineering work. Where did you
go?

 Tom McHugh: I went to a company called Giddings &
Lewis in Fond Du Lac, Wisconsin. They make machine tools
and I was in several of their groups there (engineering type
of things). They were building a small processor. The first
thing they hired me for, they had these really big machine
tools that they started out with, kind of cost a million
dollars.

 They were run with mylar tape, so they’re kind of similar
to paper tape that went into these machines for the first
game that we did, the Gun Fight game. Same kind of things
except the tapes were mylar because we had to use them
over and over again. What they wanted someone to do
was to come in and basically put DOS on one of their
machine tools so they could just pop all these floppy disks
in and get rid of the whole mylar thing. I did that, I
made them DOS on a machine tool. Of course at that
time DOS was completely defined so it wasn’t that

hard.

 Interviewer: In terms of later stuff, what was your
software specialty? Generally what were the tasks that you
were doing day to day?

 Tom McHugh: Basically just “the programmer”. You
want to do something, I’ll do it for you. One of the things I
always did though was try to make it make sense. You ask
me to do something dumb, I may change it. The designing
part, I didn’t get into designing per say until later, other
than the Wizard of Wor game I had a lot of input on that.
How things move and how they work, a lot of that is just
common sense. The whole concept of having both the
player and the sprites (as they called them) moving
both horizontally and vertically. Originally I think it
was just all horizontal. I said, “It makes sense to do it
horizontally and vertically so you can have vertical kinds of
things happen too.” There’s a lot of input that I had on
that.

 Interviewer: I forgot one thing. You said before you were
working on a Wizard of Wor sequel and that kind of got
canned because of Dave’s ideas. Was that specifically meant
to be a Wizard of Wor sequel or were you just kind of taking
ideas and building on that?

 Tom McHugh: I don’t know. I really don’t know.

 Interviewer: You said something about a space walk
before.

 Tom McHugh: Yeah, Dave was trying to tell me what he
wanted to do and I said, “Yeah, I can do that but it doesn’t

seem to make sense.” The actual Wizard of Wor game had
the ability to go into different tunnels. This was just
all freeform. There was a variation, one of the Wizard
of Wor layouts was called “The Pit”. It had nothing
in it but everything was still horizontal and vertical
within that. What Dave wanted to do was completely
freeform everything. I said, “Yeah, you can do that but it’s
very hard then to decide where you’re going to move
things.”

Side Note: After discussing with McHugh, this was not the game Space Walk released by Midway in 1978, which has uncertain origins.

 If you want to go horizontally or vertically, that’s
relatively simple. If you’re heading in one direction, let’s
say you’re heading right, on a horizontal you’re just
incrementing one thing. Same thing for the vertical,
you’re incrementing one thing, the X-Y kind of thing.
If you want to do it everywhere, then what are you
really doing? Really what you need is some kind of
layout.

 Wizard of Wor, the best way you could play it was
defensively. Find a good position to sit, you could just sit
there and shoot there. You could go hunting a little bit
after that but you could just hunt and sit, hunt and sit.
[In] this there was no place to sit, no place to hide.
That became difficult. I kept trying to tell him that.

[Laughs]

 I remember the last time we got together on it before he
canceled it we were living in Southwest Wisconsin, he said “I
want to drive up there”. There was this big snowstorm, I said
“Dave, do you really want to do it?” He said, “Yeah, I’ve got
this Blazer. I can go anywhere with that.” And he did.
[Laughs] He got there.

 We sat down, we looked at it because he basically wanted
face to face with it. He said, “This is what you’ve done so
far.”, “What else can be done?”, “What can’t be done?”
That was how that happened. After that was over and done
with, after we had that sit down he decided basically to
just cancel it because I didn’t know what the next step
was.

 Interviewer: I imagine he didn’t go up to your place that
often.

 Tom McHugh: That was the only time. It’s just funny
that was during the snowstorm. We were way out in the
boonies. I’m just thinking, “Do you want to do this?” He
said, “I can make it.”

 Interviewer: Just to probe slightly more on that, he
wasn’t trying to do the Wizard of Wor thing with the
disappearing enemies because I don’t know how that can
work if you just move everywhere all over the screen. Was
that the idea?

 Tom McHugh: I don’t know. I never really got a good
idea of where he was going with this. His basic initial
instructions to me were, “Can you make it so that it

goes anywhere and there’s no confining it horizontally
and vertically?” I said, “Yeah, you could do that, but
what’s the next step? What happens after that?” I
kind of read into what he was saying as he was getting
someone asking him, “Okay we have this Wizard of Wor
thing. Let’s do the sequel to it.” He was trying to do
something that would be a sequel but different from the
first.

 Interviewer: Did you actually take the Wizard of Wor
sprite and did that? You would be moving that around the
screen or were you just moving basic shapes?

 Tom McHugh: Well first of all, when you say sprites, we
never really did sprites. Sprites are really truly a different
thing. For example, in the Coleco thing it had patterns and
it had sprites, but you had maybe only two sprites or four
sprites. A small number of actual sprites. These weren’t
sprites. These were patterns that were being ripped after the
raster. I think a sprite can be laid down any time you want
to lay it down.

 Interviewer: Yeah. It ignores bitmap colors and things
like that. So the stuff you were dealing with wasn’t really
spirtes.

 Tom McHugh: Correct. They were not sprites.

 Interviewer: To summarize anything about your days at
DNA? Was it a good experience in all? How do you feel
about it?

 Tom McHugh: Oh yeah, I really enjoyed it. The only
reason I ended up not doing it is because the whole industry

went down. Well, I had family by that time. Had to deal
with the kids [Laughs] and their appetites. I really enjoyed
it. I liked Dave, I liked Jeff, I certainly did not dislike them
by any means. Working there was ideal. It was a nice place
to work while they were in the warehouse and after that
working from home was...

 My opinion now, has always been, working from home is
a double-edged sword. I’ve never really been one that
leans over one way or the other way. I enjoy working
from home, I probably would have enjoyed working
for them if they stayed in Milwaukee (wherever they
went in Milwaukee). Just to have the ability to work
remotely, that was nice, that was great. Nice people to work
with.

 Interviewer: Thank you so much for your memories Tom!
We’ve put you in the history books.

Chapter 5
File #5

 Jamie Fenton

Programmer for Dave Nutting Associates

1975 to 1982

A colleague of Tom McHugh, Jamie Fenton was the second
programmer inaugurated at Dave Nutting Associates (DNA)
at the suggestion of Richard Northouse from the University
of Wisconsin. Jamie had a far more gung-ho attitude about
working as a game developer - as contrasting with McHugh –
being just as prolific as her co-worker in creating games such
as Gorf and Robby Roto. This extended to her shepherding
of the Bally Professional Arcade console project, which
created a vibrant indie game development scene in the
1980s.

 Jamie’s exuberance emanates from the page as she
recounts her career in technology, which continues to this
day. While the conversation only touches up to 1977, Jamie
provides some inner details on the trials and dangers of
arcade video game development and the colorful cast at
DNA.

 Jamie Fenton: I know Tom McHugh’s wife was a teacher,
school administrator or something. I know David Nutting, I

saw him 6-8 years ago, he was still going strong and he was
working probably with Tom.

 Interviewer: Oh, was he?

 Jamie Fenton: Yeah. He and Tom kept collaborating. I
don’t know a lot about Tom’s history. I’m told that after he
left DNA. I just remember him going off and still being
somebody we remotely supported. Never really saw him ever
again. I remember I used to smoke cigarettes like crazy and
he hated it.

 Of course both of us worked at UWM in various ways
with Richard Northouse, a professor who’s still kicking
around. He ran an artificial intelligence lab, it was called
RAIL (Robotics Artificial Intelligence Lab). One of
the people on the periphery was Jeff Frederiksen, who
you’ve probably heard of. Jeff was looking for some
engineers to staff up his game company, so Richard set up a
deal where he’d make money pimping us out, basically!
[Laughs]

 He did that for two months at a time, a reasonable
arrangement, if you will. After that we went on direct salary
with Dave Nutting Associates. That was how we got started.
You probably know that too.

 Interviewer: You said you were actually working at
RAIL? You weren’t just part of the lab?

 Jamie Fenton: I started in RAIL my freshman year,
actually. After year two at RAIL I actually wanted to go
work at the computer center because they had a bigger
computer and could do more interesting things. So I went

to work for the computer center for about a year. It
sort of fell apart because it was too much work to do
a full time job and to go to school (at that time at
RAIL it worked okay). I sort of left Richard to go work
for the computer center and Richard was not happy.
[Laughs]

 Part of the reason I left was Richard Northouse was sort
of stuck in the FORTRAN world. He didn’t want to
use LISP. If you think about AI in any other form it’s
essentially pattern recognition and control system steering,
which are both important for engineering but are not as
sexy as actually building a robot. [Laughs] Those are
some of the things I kind of wanted to do. I actually
built a robot for him, that was my freshman design
project.

 Interviewer: What did it do?

 Jamie Fenton: It was a base. It had two motorized
wheels, two casters. You could drive both motorized wheels
in the same direction, go forward, both reverse it, you
go backwards. If you drove one the one way and one
the other, it would spin in place. We would actually
use motors that were usually used in automobiles to
run the windows up and down. We would put gears on
them to gear them down a little bit and it had plenty of
torque.

 I could stand on it, and in fact there’s a video of
me in one of the Milwaukee newscasts of the day of
me standing on that thing and zipping down the hall

with the little control box in my hand. You put a dry
cell battery on it and you’ve got maybe ten minutes
of zipping around on it then you ran the battery all
the way down. It’s almost like a segway that I made.
[Laughs]

 I didn’t have the pole but I could stand on it. Maybe
more like a skateboard, a better metaphor for it. I could go
down the hall with it. Won an award. We didn’t build
anything on top of it, we just figured we’d make a better
prototype some day. We never really got building a robot
organized.

 That last thing Northouse wanted me to do was
basically something like CP/M, an operating system for a
microprocessor computer with a disk drive and that sort of
stuff. At that time it seemed like it was a silly project. One
of the other things Northouse had, he had a computer from
the nose part of a missile. It was of course supposed to guide
the missile to it’s target. It looked round like it would fit in
the nose cone or something. It had memory, a disk that
spun, a little core memory with this disk memory. He wanted
to build a compiler or assembler for that. [Laughs] I was
really not interested in that project. That’s kind of
ridiculous.

 He got to see how people did computers back before even
core memories were really popular. This would have been
late 50’s, early 60’s when that particular weapon was ‘on
duty’, if you will. I think I saw some video about that
system. I think it was actually a liquid fueled rocket that

actually had a countdown, so if you needed to attack Russia
you needed to pump oxygen into the thing! [Laughs] Really
primitive.

 Interviewer: I wanted to ask, I had seen you mentioned
you had played some computer games during your time at
the University of Milwaukee. Was that actually in the
computer center rather than at RAIL?

 Jamie Fenton: Well actually there was- One person
from Digital Equipment corporation came by and they
demonstrated the Lunar Lander game. It had computer
graphics, would go on the surface of the moon. With the
keyboard you could adjust thrust and centering and stuff like
this. That was one game that actually had a digital
display.

 My first semester, my freshman year, I basically snuck
into the lab that was used by the PDP programmers. They
had a PDP computer - 12-bit, 4096 [bytes of memory] - you
could key in a program then it could load a punched tape
from an assembler of some type. One of the things you could
do with it, you could write a little loop that would read a
light pen interrupt signal, you could connect a light pen to a
computer so you could actually draw graphics. One visible
analog converted it into X, the other converted it into
Y.

 Interviewer: Vector style stuff?

 Jamie Fenton: Vector style. The first control would let
you turn the beam on and off. I was taking a theater arts
class, so I had been working on a light pen program and a

program. I had a little program, it would have a little
guy dribbling a basketball, so you’d a little basketball
bouncing up and down. That’s all it did (it might have
had something where you could shoot the basketball
too) but what was good with it was I actually rolled
the computer out of the lab over to the theater arts
class and showed it to everybody. [Laughs] “This is
kind of cool!” That would be ‘73, somewhere around
then.

 Interviewer: Was it a minicomputer?

 Jamie Fenton: Yes, a minicomputer, a PDP-8/E. We did
some games with light pens. We did have a Pong-type game
going. It was after Atari’s Pong came out so we can’t claim
to have invented Pong. You could do a Pong game with it.
You’d drive an oscilloscope to a digital-to-analog converter.
The cycle rate can maybe do maybe a couple of kilohertz to
drive. [Laughs] So Lunar Lander, we had the graphics on
this little oscilloscope.

 The other thing we could do, we had a lot of text games
like Hunt the Wumpus. There were a lot of games where
you’d go Dungeons & Dragons type. It’d say, “Go crawl
through door number two.” Then it’d tell you “There was a
warm breeze coming with a foul smell.” Whatever the heck it
is. You could go play games doing that and that was a very
common game genre. Still is, but it was very common then
because all you needed was a teletype, you could play them
on a teletype. A lot of games, a lot of people. A rich history
of games.

 When I was in high school, I think I would have been a
junior, I wrote a game. The first thing I ever did was a game,
it played craps. It just rolled a number. Actually I screwed it
up because I did a number between 1 and 36. What I should
have done was draw two between 1 and 6, actually match
the odds of dice. It was “How much do you want to bet?” If
you went broke the loan shark would come around, lend you
some money, then want it back at 100% interest. It did a lot
of silly things like this. My first computer game ever was
doing that.

 The other really smart kid in school, Bob Kenny I think
was his name, he wrote a game that did tic-tac-toe. It was
really complicated, it would do matrix inversion and all this
sort of crazy stuff. It turned out he went off to work for
DARPA [Laughs]. He probably got to work on every cool
research project for many years and went to computer bum
world.

 Interviewer: You had very particular interests that kind
of led you into what you did. Obviously it was kind of
convenient that Jeff had been looking for people, but theater
and computers, it kind of mixes together.

 Jamie Fenton: Yeah. I definitely followed my dream
in that respect because I was really interested in this
‘multimedia’ (I guess you could call it). Now when I went to
DNA, I was of course on pinball machines. I worked on
pinball machine programming and we did a couple of
pinball machines for various people, also using a 4004
microprocessor which is even smaller than the 8080 that was

used in like Gun Fight. Eventually went from 8080 to Z80
and in our case we went from the 4004 to a Fairchild
F8.

 The first thing I actually shipped was called the Fireball
pinball machine. That was popular, though I sort of
wanted to do a video game. I actually put together a
blackjack game again. Dave Nutting made a deck of cards
with the suit and the numbers on them. Actually he
did the pieces of the deck of cards so I could put them
together, a correction of a hearts or clubs or spades. I had
a little animation where times he would deal a card
it would actually grow, it would look like it’s being
dealt.

[image: PIC]

Fireball, Released October of 1976 by Midway Mfg.Part of a new wave of home pinball machines which emerged at the dawn of the solid state era, the electronic design was based on Dave Nutting’s original pinball prototype Flicker from 1974.

 I did this, I’m gonna say, six months into my job at
DNA, and I did it because I was clamoring to do a video
game. We took their game hardware and hooked it into a
payout machine so if people wanted to bet money on it, they
could get more back than they put in, like a slot machine
payout. Technically since we never ran it as a business we
never broke any laws (we were kind of worried about it, you
know).

 Then, of course, Bally Manufacturing had this Mafia
association so I was kind of concerned about Mafia. Didn’t
want to be part of the mob, that’s kind of scary. Turned out
that, of course, was a lot of hocum. You had Bally people
who were in the mob but we were not anywhere near being
in the mob.

 I did meet a character once about a year into working at
DNA. Bally had a Las Vegas research center or something,
what he had done is he had figured out how to build a
card counting machine that he’d put in his shoe. He’d
go in and count cards in blackjack. He was bragging
about it, I bet a lot of people bragged about this sort of
stuff. He was kind of shady. I think nowadays he’d get
“Haul your ass off to jail” if they catch you doing that.
[Laughs]

 Interviewer: You mentioned the blackjack game. You said
that was built on the hardware that had already been built,
right?

 Jamie Fenton: Right, so it was the same hardware that

was in Gun Fight. I think Gun Fight was the 8008, then we
thought about going to the 8080. I think Sea Wolf was also
the 8008. The first generation was based on the Intel chips
and the second generation was based on the Z80 and the
custom chipset that went into the Bally Astrocade. That’s
what Gorf was done in, that’s what Wizard of Wor was
done in, and Robby Roto was done in that scheme as
well.

 Ms. Gorf was done in a third generation based on the
same chipset. The chipset baked in two bits-per-pixel and
four bits-per-pixel. It became obsolete once RAM got cheap
enough that you could have 16 bits-per-pixel which is what
you do for direct color if you have a color map. Once we got
to 24 bits-per-pixel, that’s when everything got really
wonderful. That’s probably the middle 80s when we could
get away with that.

 Interviewer: I was curious, do you recall when you were
brought into DNA? An approximate timeframe?

 Jamie Fenton: Oh, gosh. Six months in I think it
was in the summer of ‘75…? I’m guessing. There’s a
resume out there somewhere with a gameography that has
better dates on it. I’m guessing it was about then. I
remember being sent in the summer. All kinds of things
happened.

 One time the burglars got in, stole my calculator, stole a
couple of other things. One of the things they found was a
copy of Playboy I had. They laid that out like they were
looking at it and doing something obscene with it or

something. I remember before I came into work, Jeff
Frederiksen’s wife who’s a real prudish person saw it and got
all mad about it. [Laughs] She went up to me and said, “My
husband doesn’t need to look at that sort of thing, if he has
me.” [Laughs]

 Interviewer: Tom told me also that he didn’t think you
guys were hired together. He didn’t actually know you
were being hired until he saw you there. Is that your
recollection?

 Jamie Fenton: Yeah. I think I heard about McHugh, but
I don’t remember it being put together too much. It was
funny, Jeff really liked me. He was always talking down to
other people on the team and talking me up. I thought that
was a little weird, but that’s just who he is. That’s what he
was like then. [Laughs] I don’t know how he is today. I know
he’s over at Apple.

 Then he was sort of known for turning on a dime. We
would have some project going, he would go “Okay, let’s
throw all this away and start doing it this way.” He would do
that a couple of times a year. It of course drove people crazy.
People were doing PC Board layouts, they’d put some work
into it, and they’d throw it all away. I was able to go with
the flow better than most people so they appreciated that of
me.

 They told Tom all this stuff dissing me [Laughs], making
sure that we didn’t just form a cartel and go off on our own
or something. Tom at one point tried to do that and they
caught him, got smacked around for that. I tried asking if I

could be a partner in the company and got laughed at.
That was why I sort of persisted. Tom always worked
remotely.

 Interviewer: So that was Jeff. What do you think of
Dave? How was he as a boss?

 Jamie Fenton: Well Dave… All kinds of stories about
Dave. He seemed to be the grumpy old man. It took a little
while for it to feel like he liked me but once I did the game
with blackjack I could kind of tell he was warming up a
little.

 He threw a party out of his place in Barrington and he of
course had Phyllis Nutting. Even more of a high-strung
woman than Robin [Frederiksen] was at the time, high
society type. High town lady I guess you would call it. She
and I got much closer in later years, but she threw a party, I
guess it was for her daughter. A coming-out party or
something. It was a barbeque.

 The thing I did, when I was leaving I managed to ding
his Corvette, knock of some of the fiberglass of one
of the things. That was like a huge embarrassment.
I eventually owned up to it, he took it all in stride,
but boy took me a while to feel like I was safe after I
did that one! [Laughs] He loved his Corvette. Had the
biggest engine you could get and just tear around in
it.

 Of course, David Nutting was probably bankrupt more
times that Donald Trump was.

 Interviewer: [Laughs] I heard that said so many different

ways. Tom said the same thing, “Yeah he went bankrupt a
couple times…” That’s what he knew about Dave Nutting’s
background!

 Jamie Fenton: Yeah, he went bankrupt. It’s kind of an
inspiration to me. I sometimes think of him as the old
prospector that puts saddles on his mule and goes out one
more time. When he went to the DNA thing he actually
made enough dough to… Well I wouldn’t say retire, but I
don’t think he went bankrupt since. So when I worry about,
“Okay, I’m going to do a startup. Am I going to fail?” Well
Dave Nutting did it five times! [Laughs] I could only afford
to do it once. I never have but I certainly have had my
financial misadventures.

 Interviewer: You guys were in a factory to start off,
right?

 Jamie Fenton: Yeah. It was actually Milwaukee Coin
Industries. Dave used to make the quiz games that you see
in airports. It would be 35mm film and would have a
question. “Who’s buried in Grant’s tomb?” 1 would be
‘Grant’, 2 would be ‘Harrison’, 3 would be ‘Ford’, 4 would be
‘Nixon’. If you pressed 1 you’d win.

 What they did is off screen the little code with the right
answer. It would give you points if you got the right answer
and it would fail you if you got the wrong answer. He put
these all over the place and he made some money selling
them. They eventually went out of style and he went
bankrupt! [Laughs]

Side Note: The quiz machine referred to here is I.Q. Computer, which was created and sold by Dave’s company before Milwaukee Coin called Nutting Industries.

 He used this building in Milwaukee to run this business
out of. It was Milwaukee Coin Industries and there was this
other business that was related called Red Baron which
would rent video games, video game arcades. Both of
those were run out of this place, had a big inventory
of games that weren’t being used. So one of the fun
things was to get a big extension cord, run around,
and try all the games out. A lot of these were old pins,
electro-mechanical, and shooting games where you had a
rifle.

 Another thing that Nutting invented was the shooting
game with a rifle. We even made a version of it that had a
video screen in it, we called it Road Runner. Of course once
Warner Bros. found out about it, they made us change it. So
it was called Desert Gun. It was still lots of fun but it never
made a big splash.

 That was about when Dave Nutting dreamed up the Gorf
character which looks sorts of like Cousin Itt, a hairy thing
with feet. That was the way it originally was. The reason we
called it Gorf was my college nickname was Frog (they called
me Froggy). I had frog pictures all over my door, that kind
of thing. So I was Froggy, Gorf was Frog spelled backwards,

which was always pointed out to me by French people, of
course. “I didn’t name it because I wanted to diss French
people!” Although, there is some stories about French
people…

 The driving games, I did a driving game called 280
ZZZap. The newest innovation to this game is we had little
dip switch settings on it. You could pick which language to
put the titles and comments in. We had French, Spanish,
English, Italian, and probably German. You’d throw
the switch and it would be English, throw the switch
the other way it would be French. They of course got
translations of all the different messages they wanted to
have.

[image: PIC]

280 ZZZap, Released December of 1976 by Midway Mfg.Similar to David Shepperd’s Night Driver, the game was a take on the German game Nürburgring. It was originally called Midnite Racer.

 There was one message that would come up and say how
good a driver you were. If you did really well, it’d say
“You’re ready for Formula 1” or something like that. If you
did really bad, it’d say “Go back to driving school.” You’re
that bad! When it came time to translate that into
French, “Go back to school” in French was “Retournez à
l’école”.

 One of the things it had in there was a circumflex
[cédille], the little thing that hangs off the bottom of the ‘c’
(ç). It’s this thing that’s in French that isn’t in English and
I didn’t have it in my font. Rather than invent a circumflex
character I just made it a ‘c’.

 It went into production then the French distributor
called up and said, “You’ve made an obscenity!” because
taking the circumflex out of the phrase changed the
meaning of it from “Go back to school” to “You are a
pussy”. Genitalia. [Laughs] We had a really way out
insult, so what they had to do is they had to rev the
ROM of course to get that out of there. Make sure the
ones that went off the first batch that did go to France.
[Laughs]

Side Note: While the author does not speak French, “l’eçole” is not actually a French word. However, the word "leçon" in French means lesson, and the dropped cédille would render the obsenity as described above. Jamie was likely misremembering the exact details. Thanks to Alex Smith for solving this mystery!

 Interviewer: There’s one other thing in that game.
There’s a phrase: Zork. Did you put that in there?

 Jamie Fenton: Yeah, Zork. We used Zork. Where it came
from, from my recollection, at the computer center there
was a joke going around about the systems request
you could make. You know, open a file, close a file,
launch process. They were called Executive Requests. We
invented an Executive Request that was called “zork$”
and it did all sorts of silly things. It was an absurd
instruction.

 You know Halt and Catch Fire? A bunch of roman
numerals, those sorts of instructions. Well Zork was one of
these things. We made all kinds of goofy things that it did.
When it was time to go ‘Bang’ or ‘Zap’ or something, rather
than use that we had a ‘Zork’.

 Of course we used the name Zork and a big adventure
game started using Zork. I think they probably own the
trademark for it. We weren’t influenced by the Zork people,
we were influenced by our culture at UWM.

 Interviewer: Yeah, yours definitely came before which is
why I was kind of curious about it.

Side Note: The name “Zork” was used by early MIT hackers and eventually assigned as the name to the game we have come to know. It is possible that the phrase developed relatively early on at either the MIT or Milwaukee computer labs; saying that it pre-dated the use as the name of the game “Zork” doesn’t mean to imply provenance.

 Jamie Fenton: Yeah. Maybe Zork was around then back
in the early 70’s and that’s where it bled over and copied
into us. For us it was a joke, a systems request on the
UNIVAC 1108 was what Zork was. I don’t think anyone’s
litigated about it, mostly because that was so early in the
era that the copyright law wasn’t really written yet. I guess
they could use the trademark laws to stop Road Runner.
Probably could trademark a name and then you couldn’t use
it in a game and it wasn’t a problem. Might not even be a
problem now, but I don’t know. That’s what lawyers thrash
out.

 Jeff had a lawyer that he got (trying to remember his
name) but he was kind of weird. A little shady, was also in
the Air Force. Him and his girlfriend tried to befriend me.
They were always trying to clean me up and turn me into a
respectable person. [Laughs] Sometimes they would do stuff
and if I did it again next time they’d get offended. A little

bit weird.

 Interviewer: You said when you first got in you were
doing the pinball. Dave and Jeff had done that version of the
pinball already. I forget what game they hooked it up to…
Flicker.

 Jamie Fenton: Yeah, they did Mirco. There was
Mirco Games [in Arizona] that they built while they
got their patent filing underway. Jeff built it, it was
pretty simple. You can kind of credit him as the first
programmer of both video and pinball machines. The
video game was very simple, I think it just made a
character walk back and forth controlled by the handle. I
never saw it, but that’s what they demonstrated to
Bally/Midway.

 The pinball machine they did the same thing with,
but they also had Mirco, which is a pinball company,
as an alternate client so they could sell to either of
them. They were basically doing a smart move. Always
have buyers and sellers for anything you need or want.
[Laughs] Then you get a good deal! They were doing
that.

Side Note: Dave Nutting and Jeff Ferdricksen’s first project with DNA was creating a prototype microprocessor pinball machine for Bally, as well as patenting the concept. Bally passed on producing a machine based off the design, so Nutting sold his concept to Mirco Games in Arizona who produced the Spirit of ‘76 pinball table, the first commercially released game of that type with a computer and software to run it.

 I don’t know who else they approached. They may have
approached Atari… Atari didn’t exist then. I know Bushnell
approached Bally and got turned away with Pong. One of
those classic stupid moves. [Laughs] It’s like the guy if he
had kept his investment in Apple he would have $23 billion
today, that kind of thing.

 So the pinball machine, Jeff had a program that I
could refer to see how he accomplished that sort of
thing. We figured out to make a little virtual machine
that would make it so you didn’t have to explicitly
script stuff. You could actually whip out a game really
fast. There’s a story of Dave Nutting giving me the
specs for a second game and he thought it was gonna
take six weeks. He was surprised I had it done that
afternoon. [Laughs] I had this little virtual machine and it
worked out okay. All I had to do was just code that
out.

 Interviewer: Did you actually work on the Mirco pinball
machine?

 Jamie Fenton: I think I did, but it didn’t get very far. I
did work on the Mirco for a bit. I think we sort of had the
same hardware in mind. I can’t remember if Mirco used an
F8 or if they used the 4000.

 Interviewer: They used the F8.

Side Note: The Spirit of ‘76 pinball machine actually used a Motorola 6800. The error is on the author.

 Jamie Fenton: If they used the F8 then I worked
on it, because I was the only person who did F8 at
Bally/Midway. Not even the engineers. If it was F8, it was
me.

 Interviewer: How did you go about learning some
of this stuff? Mainly it was the kits rather than the
programming language that was the problem. Tell me a
bit about the development process of some of these
games.

 Jamie Fenton: Well, one of the things Jeff did that was a
little bit controversial is went out and bought a MODCOMP
minicomputer. MODCOMP made a computer that was
actually a pretty good minicomputer. There weren’t a lot of
them made, the big customer for these things was NASA up
until they shut down the space shuttle program. Even
though it was big and heavy, it worked! They kept using

these things.

 We could buy what was called a ‘cross product’. It was an
assembler, it was written in FORTRAN. It could be put on a
minicomputer, you run it, it’d spit out some hex, then we
could go to the microcomputer. As soon as possible, we got
it so we could edit text on the microcomputer and assemble
it on the microcomputer, but for the first year or so we used
this minicomputer. As soon as we figured out how to do it
locally this minicomputer was sitting around, collecting dust,
because nobody need it anymore. They were still paying off
on the lease for five years and they couldn’t ditch it. It was
kind of a stupid move. That helped initially get things
assembled.

 In terms of working with the boards, we did ‘bring-ups’
which people still do today. Usually the first bring-up is the
simplest program, almost like ‘null job’ or something. It’s
maybe 20 instructions long, it runs through, makes a port
increment, maybe changes a bit on the screen back
and forth. Just something to, say, ‘hang the line’. Work
with that to get the board debugged enough to run
with the microprocessor. It’s sort of a bring-up process
which is something people still do today, it’s the same
thing. It’s usually the first of any system. Android, iOS,
or anything. It would be kind of painful and indirect
until we got the APIs nailed down and figure out that
the system is going to work, and so forth. That wasn’t
changed.

 The oscilloscope was our friend. There were logic

analyzers but they were super expensive. We did start
using them later, but then we’d just get the oscilloscope
out. If you could just get the oscilloscope to make a
square wave coming out of the I/O ports, that was
like the first sign of life and your thing was working
right.

 One thing, of course, that went into these games was a
built-in test. There was one that would run that was more
expensive and it would run if you did the ‘text switch’ which
was a dip switch bit. It would go through a comprehensive
memory test, it would set patterns in the memory to make
sure the memory’s good, and it could do a couple of other
things. If you were on a pinball machine with wires and
solenoids, it played each of the lights separately so you can
check to make sure that all those things work and no
shorts.

 Those would go in the product, but simple inversions of
the same idea would go into the burn-up process. You would
assemble something really simple or even in the crudest
case punch in a tape where the hex would be hand
assembled. To get started, you would work from there or
upwards.

 What you can do, you can burn ROMs (EPROMs) as
sort of a stage. We bought tons and tons of EPROMs.
Burn EPROMs from the machine that was designed
to do that which had one of the machines attached
to it. You’d stick the EPROM in, reboot it, and see
if it ran. That was sort of the step up. If you could

ever get to the point where you could run an in-circuit
emulator, which is a device you could run in place of a
microprocessor-

 Interviewer: Yeah, Tom said it was called the ICEbox, as
you called it.

 Jamie Fenton: Yeah, the ICEbox. There were earlier ones
when we were using the earlier systems to do the same thing.
The in-circuit emulator, that was much, much easier because
you could generate, test, compile, test, compile, test many
times a day rather than burning an EPROM was like half an
hour turn around.

 Moreover, EPROMs used ultraviolet light. I remember I
looked and ended up getting my eyes burnt by ultraviolet
light. Boy, that hurt like hell. It was one of the most
painful things you could ever imagine. Thank god my eyes
healed. [Laughs] You have to have a lot of respect for the
ultraviolet light that coated EPROMs. So I used the
ICE, I did other variations and so forth, onward and
onward.

 Interviewer: In the early days, the 1975 period, who were
the people who were actually there? It was you, Jeff, Tom.
Was Dave Otto around then?

 Jamie Fenton: Dave Otto was there. Dave Otto was Jeff’s
‘gopher’, if you will. Jeff needed an assistant and he’d
go run around run things. You probably know Alan
McNeil came up with Evil Otto in one of his games
which was based on David Otto. Otto at one point spent
a couple of months as a reserve cop somewhere. He

really wanted to be a policeman and he even had lights
on his car, but he wasn’t actually a law enforcement
officer. I used to call him a closet cop. [Laughs] Not
to his face, but David Nutting thought it was pretty
funny!

 I got along with Otto okay but he was kind of awkward
in his own way. He sort of turned into the office manager and
once he was office manager his next decree was everyone
would show up at 9 in the morning and work ‘til 5 in the
afternoon. As I like to put it, I never once complied with
those instructions!

 Interviewer: [Laughs] I can imagine! In a place like that?
No way.

 Jamie Fenton: Yeah. He didn’t take it too far and had
him cut down a peg or so, but he still did a lot of gruntwork
of keeping DNA going. I think he got to the point he did
some petty stuff.

 There’s somebody that Jeff had that laid out PC boards,
can’t remember his name, but he was just faster than all
hell. He could do a PC board in a day. Some of the later
people were a couple of days and it would take three months
for other people to do. He was just a crackerjack PC board
guy. I can’t remember who he was but he was astonishingly
good at doing PC boards.

 Of course we used a lot of wire-wrap prototyping. One of
the things they had me do was a wrote a program called
‘Wire Wrap Wizard’. What it would do, it would print out a
punch list for somebody to do the wire-wrapping with. Every

time it would say, “connect this x,y to this x,y”. It was
designed that, for example, if you want to connect two
bottoms together then relay the two tops you only have to
rip one thing out you don’t have to rip all the wafers and
sketch codes.

 Typically there’s a wire-wrap and it’s got maybe three
levels. The first level’s right up against the base of the
board, so you want to connect from one of the pins at the
bottom to the next base at the bottom. Then from the next
one you have to go to the next level up, you want to run
that over to that level, not down to the lower levels. What
that meant was, you did everything in odd and even
order.

 By doing it that way, if you had to undo something you
didn’t have to rip everything out. At worst you might have
to take out three of them, you wouldn’t have to take out
the whole run like VCC [voltage common collector] or
something. VCC was a place where you could get that you
could get grounded VCC just the pins on the PC boards.
You could do those.

 I wrote Wire Wizard and it ran on the MODCOMP, so
after a while it was like the only thing we used the
MODCOMP computer for. You input the circuit list into it,
you could trace along and say “Connect this pin on this part
to this pin on that part” and so forth. It would call
descriptions of chip number and pin number to the wire
wrap D14. [Laughs] It did all this. It also tried to figure out
how to do it so it would use the least amount of wires.

That’s what we prototyped with.

 I wish I could remember the name of that engineer that
was just so crackerjack. Some of the people we had later
were much slower. Of course, the boards were more
complicated too, but it’s not quite the same. I think
there’s another person who’s trans now and he was
working on boards but this is back when we were in
Chicago, not Milwaukee. Back then we were both in
‘boy mode’ if you will. [Laughs] ‘Guy mode’ as we call
it.

 Interviewer: Did you and Tom ever worked together on a
project? He recalls doing all the programming on everything
that he did, but I know he also said he wrote the Midnite
Racer/280 ZZZap game which I know you said you
did.

 Jamie Fenton: Yeah, that one… There were two versions
of the ZZZap game. One was for the Bally Astrocade and
the other one was done by Bally/Midway. Somebody else
wrote a different version of the game for a different processor
that we somehow god the source code to-

 Interviewer: Does the name Ted Michon ring a bell?

Side Note: Ted Michon created a version of the game Nürburgring for the company Micronetics called Night Racer. He claims to have created a microprocessor version first and then shared the code with Dave Nutting Associates.

 Jamie Fenton: That might be. What I remember is, he
had a table that did 1 over Z [1/Z] to figure out the
projection of a road. He did a table that could calculate that
so you didn’t have to do divisions, but I set up a logic for
how to do the game that had French installed in it. That
was definitely me who did 280 ZZZap. We never really
worked much together.

 We have done a tiny little bit. I remember the virtual
machine I did, Jeff asked if he could use it in one of the Sea
Wolf games. He may have taken some of the ideas I
had and used them but we never pair programmed on
anything. That was so far from being possible you could not
imagine.

 Pretty much the way the mind was then, the programmer
owned his program and you didn’t collaborate on it unless
you really, really, really were forced to. Something like an
internal revenue server some place, something that’s way
more complicated than any human being could do. If you
could fit it into one human being, that was the way it
went.

 Interviewer: Though both Jeff and Dave had some kind of
programming knowledge, right?

 Jamie Fenton: Well Jeff had some, Dave didn’t really. He
knew enough about it to understand what we were talking
about, but he certainly never did any programming to my
knowledge. What he would do is he would draw out the
characters on graph paper and I would have to know an
available template that marked off the byte boundaries.

I put that up against the graph and remap the hex
that I was supposed to put in the assembler so that we
could get the character in there. That was the first art
pipeline, was doing that. Eventually we would get a
woman with a paint program to make art, but back
then I had to digitize graph paper. That’s how we did
that.

 So David pretty much deferred to Jeff on the technical
issues. It was all about the industrial design of the games.

 Interviewer: Did he actually build the cabinets?

 Jamie Fenton: Yeah, he would build the cabinets, the
prototype cabinets. Sometimes the games had reflectors
in them and he designed the reflective system. You
could have the monitor facing a weird direction, look
in it, mirrored it, make sure the reflection was in a
different place. He did that sort of thing, but he never
programmed. He probably could have never learned. Maybe
he did eventually, but a lot of people sort of thought it
was easy to program or you had the aptitude for it
you were sort of a genius, or you weren’t. He probably
wasn’t.

 I thought Jeff, for somebody who was just hacking it out
of whole cloth and just learning, did really really well. I
think highly of what he did but he was learning as he was
going. Jeff’s thing is he was a radar operator in the Air Force
and then he was going to become a television repair man.
Then this came up and he figured out how the bet this. He
bootstrapped at a career now.

 One of the things I’m doing with Mom here is go through
all the boxes, photos, and papers and stuff from our past.
It’s been helping her keep her memory going, so it’s a good
thing. I tell ya, when you get into your 60s and you’re trying
to find work in Silicon Valley, all the humiliations you have
to put up with! [Laughs]

 Interviewer: If you do find anything in that old stuff, that
would be very interesting.

 Jamie Fenton: Rattling around in the back of my car I’ve
got a box of listings but they were sort of more from
the DeFanti era. What happened is, after I moved to
Chicago I went to California. In California I bought a book
called Computer Lib/Dream Machines by Ted Nelson
which I read on the way home. It was like really cool
and turned me into a personal computer revolutionist.
Then I of course tried to get Jeff to believe in all this
stuff.

 One of the things he went through a lot of discussion
with the book was about Tom DeFanti. I actually found
Tom DeFanti and started taking his class. I introduced him
to Jeff, and then Jeff, Tom, and DNA had a relationship
for years. I eventually wound up moving in with him,
living in his house for a while which Ted Nelson used
to live in as well. Eventually I bought the place and
lived there until the time I went out to California with
Macromind.

 Tom DeFanti and I go way back. I have all kinds of
stories, strange directions, and outcomes. There was a time

when I was kind of a rebellious rival of his and looked down
on him a little bit because I was too full of myself. Of course
nowadays I looked back and think what a jerk I was!
[Laughs]

 Interviewer: Best of luck with your career! Thanks again
for your time.

Chapter 6
File #6

 Mark Lesser

Programmer for Rockwell

1976 to 1978

Programmer for Mattel Inc

1978 to 1982

Programmer for Parker Brothers

1982 to 1984

Programmer for Microsmiths

1987 to 1992

Programmer for Electronic Arts

1992 to 2000

The true legacy of talented programmers may sometimes be
difficult to appreciate, as their work fits into a collective of
steady developments in technology. Only a few sit at the
true apex, and Mark Lesser is one of them. You have him to
thank for the still vibrant market of electronic handheld
games which he first pioneered with Mattel Electronics’
Auto Race and Football. Likewise, he built the successful

NHL series for Electronic Arts, providing a new level
of fidelity to a vibrant series of sports titles into the
future.

 Between these two grand accomplishments were also
a great number of smaller but extremely interesting
developments in Mr. Lesser’s career. Let this chat inform
you of how he became one of the most adept programmers
on the Sega Genesis, how he created the first handheld game
with the most paltry amount of memory possible, and how
the solo-programmer effort eventually gave way to larger
AAA production.

 Interviewer: I wanted to first ask about how the Mattel
Auto Race product came to be from your perspective. Who
was the person that contacted you to work on it while at
Rockwell and what were the specific parameters given for
that game? I’m very interested to know how much Mattel
was actually dictating the products you worked on for them
and how much was left up to you.

 I’m also curious with what equipment you designed and
programmed the chips. Were you using one of those
CAD systems that was hooked up to a mainframe?
I’ve honestly always been at a loss for figuring out how
exactly you managed to fit a game into 511 bytes of
storage!

 Mark Lesser: It was 1975 and I was a young circuit
design engineer at the Microelectronics Division of Rockwell
International in Anaheim, California and had just completed

the circuit design for a DMA chip (direct memory access) for
a parallel processing system that Rockwell was making.

 Bob Carlson, my supervisor, offered me a choice of
projects to work on next. I looked through a set of proposals
for projects and was struck by a hand-written page or two
from Mattel Electronics describing a simple game that could
use a hand-held calculator as a hardware platform. The
description was written by George Klose along with Richard
Chang, both from Mattel.

Side Note: Richard Chang of Mattel created the outline for what technology would power the handheld, based on a concept provided by Michael Katz.

 No technical details regarding the programming or
hardware aspects of the game were given, except that the
proposed game would have rows and columns of LED
segments for a display, some buttons for control, and some
way of producing sounds. A few sketches were given showing
the layout of display segments and a very brief description of
the game play.

 No algorithms were given for indicating how the LED
blips representing cars would "move" (of course, nothing
actually moves), just the idea that the goal of the game was
to "pass" other cars without crashing. There would also
be some kind of simple informational display and a
timer.

 It was, by the way, my impression that that proposal had
been sitting on Carlson’s desk for quite a while. The staff at
Rockwell in general was not excited about the idea the way
I was, at least at this early stage. So I expressed my
enthusiasm about the idea of converting a calculator into a
game and discussed with Carlson some of the hurdles I
foresaw. These hurdles included:

 	Choosing the most minimal calculator chip
 available to keep costs down (Rockwell was one
 of the leading manufacturers of calculator chips at
 that time), then modifying the I/O circuitry inside
 the chip to allow for appropriate display segments
 and anything else that deviated from the I/O of a
 calculator.

 	How to produce sounds. None of the available
 chips had any kind of sound drivers built into the
 hardware.

 	The challenge of learning how to program very
 rapidly (no support was available other than a
 one-time primer with Bruce Kinney who created
 the instruction set, and the appropriate chip
 documentation). Note that I had never written a
 program before, and it was made clear to me that
 I would be on my own on this project, including

 interfacing with Mattel.

 	Whether the small ROM size of the available chips
 would be sufficient to implement the functionality
 of the game.

 	Could the game be made to be fun within the
 limitations of the hardware.

 There were many unforeseen challenges to come, of
course, but I was more confident than prudent, and decided
to give it a go. Carlson agreed, and I was off into uncharted
territory.

 You asked about how much specification Mattel
provided, so it should be explained that no one at Mattel
seemed to have the vaguest idea of how a one-chip calculator
worked and what could or could not be done with it. They
gave zero technical details about display updates, sound
production, or game algorithms. Nor was there any
information about game tuning, such as speed. They
supplied only a ’paper napkin’ functional description of the
elements of the game. Later, as the game development
progressed, George Klose would visit me in the lab to give
me feedback on the game play to help with the tuning of the
game.

 This was not like specifying a game with known target
hardware, such as a game console system. The hardware had

not been created yet (that is, the modification of the B5000
chip) and no one had ever used such hardware to implement
a game. Besides, the Rockwell chips were proprietary and
programming was done in-house.

 As I look back, it was a testament to Klose that the game
spec was more or less doable on the hardware at all. Yes, I
had to alter some specified features, but a playable game
based on the concept was successfully created. In most of the
early game work, the work of design was iterative and done
primarily by the programmer with inputs and feedback from
those that initially specified the game. As I’ve said, the
reason for this is that knowledge of the hardware was only
known by the programmer and the software was closely
bound to the hardware.

 Details of development will illustrate just how tightly
bound the software and hardware were. It is that tight bond
which also enabled the extreme efficiency of the program.
The instruction set included commands ad hoc to the chip
hardware, mostly related to loading of display registers
which controlled the contents of display segments and the
strobe signal.

 Note that to meet the limitations of small chip real estate
as well as to minimize power usage, the display was
multiplexed, i.e. the same segment drivers were used for all
digits, and an individual strobe output was assigned to each
digit. The duty cycle of the display was set to keep
the display output looking continuous to the user, and
increased brightness (as in the user’s vehicle segment) was

accomplished by adjusting the duty cycle for an individual
segment.

 Prior to writing the program, chip selection was made.
One of the chips in the B5000 family was chosen mostly for
cost considerations. Then the first big hurdle: how to
redesign the on-board chip I/O drivers to accommodate the
game specs, which included adding one output to drive a
small piezo-ceramic speaker, and to adjust the keyboard
inputs to the few keys required by the game (the chip of
course was originally designed for an arithmetic keyboard).
At least I knew how to do circuit design!

 Drivers were analyzed using a development program
called TRACAP (TRAnsient Circuit Analysis Program), and
specified on paper. This was turned over to a circuit layout
draftsman who laid out the circuitry and digitized it for
processing. Once the chip was fabricated I used a logic
analyzer and electric probes (that’s right!) to test the
righteousness of the outputs.

 So the program was flow-charted and written out by
hand(!). I did not have the luxury of an interactive
development platform with editor, assembler, and debugger
included. The program was written in an assembly language
ad hoc to the B5000 chip series. The instruction set had
fewer than thirty instructions.

 Once I hand-wrote the program, I entered it onto an IBM
punch-card deck (remember those?) and submitted
it as a batch job to the operator of one of the DEC
mini-computers in house. The output was a printout and a

tape. The tape was used to burn an EEPROM [Electrically
Erasable Programmable Read-Only Memory] which
was then plugged into a test box that was wired by an
in-house tech according to my specification to emulate the
game.

 There was a moment of panic at the first cut of the
program, again, the first I had ever written. The program
was about 3 times too long! So I was forced to learn how to
optimize. Optimization was not just on the level of
algorithms and program structure, but also using tricks
related to the hardware. For example, one of the instructions
loaded the accumulator into a register for output a few clock
cycles later.

 I had a NOP instruction [no-operation] inserted to allow
for an appropriate delay. However, I was able to eliminate
the NOP by replacing it with another instruction which
altered the accumulator after enough of a delay to not
interfere with the output of the earlier instruction. And yes,
every instruction counted.

 As I said earlier, there was no sound driver on the chip. I
simply toggled a dedicated driver tied to the speaker. But
this meant I had to count cycles to output appropriate tone
frequencies. The toggles were interspersed in the program so
that a variable delay subroutine could alter the frequency in
the program loop. What a headache.

 Regarding game tuning, the most important challenge
was figuring out an algorithm that would "move" the
computer controlled cars. With so little space in the program

ROM I needed extremely simple logic. I was concerned that
any pseudo-random number generator I could implement in
such a small amount of memory available would be too
repetitive and predictable. Turns out, with a lot of tweaking,
a simple number sequence did indeed lead to predictable car
motion patterns, but the tuned predictability actually made
the game fun. It gave the chance for the user to recognize
patterns in such a way that allowed for a learnable skill
set.

 That fine line between challenge and frustration was
what the tuning was all about, and this can only be
accomplished with tweaking… it cannot be specified.

[image: PIC]

Auto Race, released in April 1977 by Mattel Inc.The first handheld electronic game available to the public, jointly released with Mattel Football also created by Lesser.
Source: The Indianapolis Star May 1st, 1977

 Interviewer: You’ve truly gone above and beyond to give
me a better understanding of the game and I’m really
grateful for that. I always enjoy hearing stories of the work
of early programmers and this was definitely one of
the most entertaining ones I’ve had the pleasure to
read.

 I certainly agree with you when it comes to the
nebulous nature of game tweaking. It’s impossible to know
instinctively even if you have tested algorithms and scripts
to handle it. Those small refinements were something that I
think a lot of the games you worked on have and certainly
one reason that Auto Race wound up being as popular as it
was.

 Was leaving Rockwell to work for Mattel on contract a
choice to be more closely related with the company or did
you simply want to be independent from Rockwell? Was the
nature of your relationship with Mattel similar to when you
were doing Auto Race once you left?

 Mark Lesser: My leaving Rockwell had only to do with
personal circumstances. My wife wanted to move back
east, she disliked southern California. It was a hard
time for both of us. I loved my job and really didn’t
want to leave. This was after I did Football I. So we
packed up and moved to Maine. I built a cabin and
lived in it for the better part of a year, back to nature
and all that. It was the 70’s, such a different time than
now.

 Going ’back to the land’ in the 70’s was a popular trend
among 20 somethings, just as moving to the cities is
currently the popular trend. Like I said, times were different.
I had the opposing pull of both: the wonderful job of making
games in one direction, the lure of the rural idyll in the
other.

 I would not call it a spiritual conversion: I spent a lot of
time tooling around in my black Suzuki 750e. I remember
the first few nights living on a hill in the woods of Sedgwick,
Maine. It was so quiet that my mind filled the audio void
with television commercials and other bits of remembered
media. That year or so in the woods was the healthiest of
my life. But the wild succumbed to the call of the tame, if
one could refer to the frantic world of game development as
’tame’.

 Eventually, I received a telegram from Rockwell offering
me a contract to develop Baseball and that began a four
year or so stint of traveling back and forth between
the cabin in Maine and fancy digs in Venice Beach.
At some point, maybe after Baseball, the contracts
came directly from Mattel, and I worked directly for
them. Maybe leaving my job was good after all, since it
launched me on a contracting career and ultimately led to
starting my own company, but that’s a whole other
story.

 After the years of traveling back and forth to California, I
answered an add in the Boston Globe for a new electronic
games development group that was just being formed at

Parker Brothers in Beverly, Massachusetts and ended up
working there for about four years. I lived on the North
Shore in Beverly and Ipswich, MA.

 It was at Parker Bros that I switched from handhelds to
video games (on the Atari VCS). It was also there that I met
Rex Bradford who became a close friend and a partner in
game development for many years.

Side Note: Lesser did a number of games for Parker Bros. including Frogger II: ThreeeDeep! on the Atari 2600. Later at Microsmiths Lesser and Bradford would develop the SMS port of King’s Quest for Parker Brothers.

 Frankly, I really didn’t know anything about ’game
culture’ at that time. Later on, working with Rex, I
met Paul Neurath, Doug Church and some of the other
developers at what was then Blue Sky. It was Paul
that offered me the contract for developing Madden
’93 for Electronic Arts. I may have met a few game
developers from MIT other than Doug Church, but I don’t
recall.

 Interviewer: I did want to ask before talking about
working with Blue Sky/Looking Glass about some of your
work on the Sega systems back when they were not a very
big slice of the market.

 Bimini Run was a particularly interesting one and I’ve
talked to the guy who did sound on it because he worked
at Looking Glass later. Was learning how to create
games for chipsets like the Z80 and Motorola 68000,
moving away from 6502-based chips, a challenge that you
enjoyed?

Side Note: Blue Sky Studios was the company founded by Ned Lerner and Paul Neurath that eventually turned into Looking Glass Studios, famous for Ultima Underworld, System Shock, and Thief: The Dark Project.

 Mark Lesser: Bimini Run was my first experience with
the Genesis. The development of that game was a crazy
story unto itself. Microsmiths, consisting of Rex, Charlie and
myself, was approached by Ron Leong to do a game for his
company NuVision. Leong had been an executive at Parker
Brothers. Turns out, he also was in my graduating class
from Brooklyn Technical High School! We learned a
hard lesson from that project about being careful who
you work for, but at least I also learned about Genesis
programming.

 The switch from the 2600 to the Genesis was one more
move that brought me more distant from the hardware. Not
only going from assembly to C, but also the power of the
onboard chips. But the cost of performance power was
flexibility. For example, in the 2600 sprites are defined
on a raster line-by-line basis. This allowed for tricks
to be played to create more sprites on a line than the

hardware was intended for. On the Genesis, sprites are
loaded as an entity, which makes them far easier to
display, but also removes the ability to play as many
tricks.

 2600 programming was a lot like the jigsaw puzzle
kinds of problems I enjoyed on the handhelds, making
optimal subroutines and pressing the hardware to do more.
Programming the Genesis was much less about optimization
related to the hardware interface, and more about program
structure. More power, less efficiency.

[image: PIC]

Bimini Run, Released December 1990 by Nuvision Entertainment.The bizarrely ambitious boat combat game was one of the few original titles developed by Microsmiths.

 Interviewer: Bimini Run was also a very different type of
game than was strictly possible on earlier console systems
which left open a lot off possibilities. Given the small
team size, how involved were you in guiding the creative
process, or was that mainly in the hands of other team
members?

 From there, I wanted to know a bit about how you met
Paul Neurath. At that time had he started up Blue Sky
Productions and work on Underworld?

 Mark Lesser: Frankly, I don’t remember much about the
game play aspect of Bimini Run, just that Rex, Charlie and
I collaborated on the implementation. Although I thought
the final product was OK, NuVision was in very weak
financial shape and fell apart without having the game
properly promoted. It was an unpleasant experience for
Microsmiths.

 I met Paul Neurath through a friend who had applied for
a job there. I went to visit their shop and met Doug Church
and some other developers. I liked them and came back to
visit on and off for many months. I believe they were
working on Ultima Underworld during at least some of that
time.

 Paul wanted Rex and me to work on projects for them:
Underworld and Madden ’93. I couldn’t believe they had
signed up with EA to do Madden without having any
experience on the Genesis. It looked like fun, and I wanted
to see what working with EA would be like, so I agreed to do

Madden. Rex chose Underworld. That was kind of the end of
a long collaboration I had with Rex, except that at some
point much later, I hired Rex to work for my company for a
while.

 Interviewer: I’m interested to hear what the early
Blue Sky studios were like, since you referred to it as a
"shop".

 I also didn’t know you were working on Madden that far
in advance, presuming that Underworld still hadn’t been
picked up by a publisher yet. What was working with EA
like though? Ned Lerner had worked with them so was he
able to help everyone understand how to interact with the
publisher better?

 Mark Lesser: I’m fuzzy about when I first saw Underworld,
so please take that into account. Blue Sky had decent office
space in a building in New Hampshire as I recall. I used the
word ’shop’ loosely.

 Regarding my interface with EA, virtually all the
interface regarding the development of Madden was left to
me. The artist, Doug Wike, was an employee of Blue Sky,
but his direction came from me. Obviously, contract related
stuff was between Blue Sky and EA, I had nothing to do
with that. It’s possible that somebody from Blue Sky
accompanied me on my first visit to EA, but I can’t
remember.

 Once, one of the EA producers met with me at the Blue
Sky offices to discuss details about football, something about
player motions as I recall. Other than that, Blue Sky had

little or nothing to do with the game. It may be for that
reason EA approached me at the end of Madden to work
directly for them. So Blue Sky supplied the artist and the
opportunity, I did the work.

 Interviewer: So I’m not sure if I got this right, but from
what you said you were basically leading the development of
Madden ’93 and deferring the non-programming work to
Looking Glass? Obviously they were spending the most
manpower to get the Underworld games up and running but
you were leading the development end of it for EA Studios?
Doug Wike was the only Looking Glass guy but I know that
Scott Cronce and Ned Lerner helped with that too. I’m
guessing that they heard about the project through EA and
wanted to assist?

 Beyond my misunderstanding of that, what was your
further relationship with EA like? It was a big boon to get
on the sports games at that time, since the Genesis was
gaining such big market share. Was your job from then on
basically to hop around studios who got the contract and
help them until the end of the project, then move on to the
next?

 Mark Lesser: All along, at that time and throughout my
career, I had a tendency to be narrowly focused on the
actual programming and related design. I really paid so little
attention to the swirl of deal-makers, managers, PR people,
etc. So my memory of most of those people not directly
involved with me and the nitty-gritty of development is
fuzzy now because I was not paying much attention to

them back then. So I’ll tell you how I remember the
development of Madden, some of which I already mentioned
before.

 When I accepted the offer to program Madden, I was
flown out to EA. EA had a specific list of features, changes,
and bug fixes to the earlier version of Madden they wanted
to be implemented. I can’t remember exactly when that list
was presented to me, whether before the trip to EA or after.
Probably before.

 At any rate, as far a I knew that list came from EA, and
I don’t remember discussing implementation details with
Blue Sky (or I should say Looking Glass). I don’t remember
meeting anyone at LG who had had ever programmed the
Genesis. It was my impression that LG brought me on board
precisely because they didn’t have in-house Genesis
experience. (How LG got the contract from EA is a mystery
to me!).

 At EA I met with a team of EA people including Scott
Orr and Michael Brook and Jim Simmons (who was
contracted to EA). There we reviewed the punch list of
development items they wanted and tried to identify some of
the programming and design challenges. After that, as far as
I recall, LG was out of the development loop except
for Doug Wike who worked directly with me. I would
specify the art details, code the program, send it to EA
for testing, fix bugs, and so on: the usual development
loop.

 Doug Wike implemented the art and gave it to me for

insertion in the program. For all the subsequent games I did
for EA I was required to write two lengthy detailed
documents: a design doc describing what the final game was
intended to look like and play like, and a technical doc which
described the details of implementation, such as use of chip
resources, RAM layout, algorithms, program structure, etc.
Included in the docs was a detailed milestone schedule I
created by which development was measured. I assume I
had to write those docs for Madden, but I can’t really
remember.

[image: PIC]

John Madden Football ‘93, Released November 1992 by Electronic Arts.The game was the start of a long and fruitful relationship between Electronic Arts and Mark Lesser, as well as the deal which allowed System Shock to be published by EA.

 EA supplied the development emulator and development
environment, sound implementation, testing, player data and
feedback. I don’t recall LG being involved with any of that.
As I mentioned before, I remember at least on visit from EA
people to discuss certain game features. When the game was
close to completion, I was once again flown out to EA, this
time alone, to "final" the game. They gave me a lab
room and an emulator, and for around three weeks I got
bug reports from their testers, and interfaced with the
production staff to tweak the game tuning, etc. A tough
slog.

 After Madden was complete, or right before, I was
approached by a producer at EA who wanted me to sign a
contract directly with EA, not involving LG. Again, this was
probably a smart move on EA’s part because I imagine my
royalty was lower than what they gave to LG, and I
guess they didn’t need anything else from LG. I, in
turn, asked Doug Wike if he would come work with me
as a contractor, which he did. EA gave me NHL’94,
and all the subsequent NHL Genesis games through
’97.

 Interviewer: Thank you for clarifying that. I’ve read
about your mentality when it came to the development of
the sports games you did with EA afterwards and that
mindset seemed very prescient in establishing what EA
sports would become as the simulation of a game became
more attainable.

 As things moved into 3D polygons and out of assembly
language, did you feel more or less in your element? Did it
bother you, having to keep pace with new platforms and
development strategies as the years went on? EA especially
was always trying to lead the pack in terms of saturating
every possible platform.

 Mark Lesser: Regarding the transition of technologies,
this is a constant phenom in games and engineering
in general. The transition from assembler to C took
place much earlier. All my Genesis work was done in C,
not assembler. I liked learning new languages and new
techniques. As games started using 3D rendering, the area
of graphics became more specialized. In my company
programmers designed their own 3D engine and used it on
SuperCross.

 My personal specialty was the AI, and for the 3D hockey
games on the PC, EA supplied the graphics engine, I wrote
the AI. The early 3D engines were not entirely ’black box’,
i.e. the interface was not independent of the animation, but
this changed with time. In some ways, this was much easier
to program because the burden of implementing graphics
was removed. The issue of new platforms was another story.
We developed Supercross [2000] on multiple platforms
simultaneously. It was not easy, and there were lots of
gotchas.

 What did bother me was not the technical aspects, but
the business aspects.

 Interviewer: I certainly understand that being an issue as

things became more consolidated under major corporations
in the following years. That tends to be the case with people
who willingly leave the industry, but you certainly had a
good run.

 I do want to know a bit about how you interacted with
Electronic Arts as you became a big part of their EA
Sports roster (so to speak). You had the opportunity
to work with a lot of different teams at that time, so
what was the working situation like for you? Did you
do your part remotely and send them your part via
FTP?

 Mark Lesser: Working with EA, that was done mostly
remotely. I worked in Maine and interfaced with EA either
electronically or via FEDEX. I did spend some time at EA,
usually at the beginning of the project for preliminary
planning, or at the end of the project for ’finaling’ which
involved bug fixes and tweaks etc. My remoteness certainly
made it more difficult for me to keep my hand on the pulse
at EA, so I was pretty much in the dark regarding future
projects, etc.

 I always felt like the guy in the engine room, which was
in many ways to my liking. Going back and forth to
California or Vancouver was a regular reminder of the
difference between the quietude of Maine and the hyper
world of the west coast. As the writer Mark Salzman put it,
I was going between a place where the "present was eternal"
to a place where the "present didn’t exist".

 Interviewer: To take it towards the end of your time in

the industry then, did it become difficult to handle all the
various platforms that you had to code for as things began
to spread out? You were doing a lot of heavy lifting for
the code on Windows, PlayStation, and N64 by the
end of your career. Had EA made that easier by then
or was there a lot of difficulties in porting those code
bases? From a high level view of the industry, had they
gotten the technology under control? A lot about the way
games were made changed when it went 3D and I’m
always interested to hear people’s stories about that
transition.

 Mark Lesser: As the platforms proliferated, porting
sections of the programs did become more difficult, but
much of the program logic was entirely portable as it was
written in medium high level language (C or C++ for
example). Timing, screen resolution, and other hardware
dependent issues were always a factor.

 For the 3D hockey games I worked on, we used a 3D
graphics engine supplied by EA, but there were lots of issues
regarding collision detection and timing. The last game my
company worked on was Supercross, and we wrote the 3D
engine.

 In the early days of 3D games the polygon throughput
was kind of slow, and it adversely affect the visuals and
gameplay. To me it wasn’t just 3D that was the game
changer, rather it was that the hardware resources allowed
for huge programs with lots of features and embellishment.
This forced specialization of programming tasks and large

development teams.

 Interviewer: Those insights are very interesting to see,
given the span of your career. I’m very grateful you could
work this all out for me, from the most technical aspects
down to relationships you made along the way. Thanks
again!

Chapter 7
File #7

 Vic Tolomei

Programmer and Game Designer for
Exidy Inc.

1979 to 1987

The career of Vic Tolomei is as vibrant and interesting as
any you’re likely to find in the early days of video games.
Tolomei was proactive in seeking out gaming experiences of
all kinds, following a trail from co-creating mainframe games
with his Dungeons & Dragons-loving friends to becoming an
extremely early adopter of the Apple II for both serious and
recreational reasons.

 Vic became acutely interested in programming for the
Sorcerer computer, a micro released by the arcade company
Exidy in Sunnyvale, California. Exidy was renowned for
their off-beat, semi-successful releases like Death Race and
Circus, having created the Sorcerer computer as part of their
move into microprocessor game development. From his early
support of the platform, Tolomei became an intimate to the
folks in Sunnyvale and eventually joined them as an arcade
video game designer for games such as Venture and
Crossbow.

 Vic tells the tales of how he was involved in one of the
first personal computer RPGs, the innovative hardware of a
trailblazing arcade company, and why Exidy didn’t become
Apple.

 Interviewer: I wanted to talk to you a little bit about
your game background and experience. A little bit about
how you first got involved with doing computer and
technical stuff to begin with. I know you graduated from
UCLA and you were taking computers. What sent you down
that path to do computer stuff?

 Vic Tolomei: I was one of the lucky people who was
exposed to what they’re destined to do early. I consider that
good fortune because there are a lot of people who are
very talented at something that they haven’t found yet.
They took a long time to just find it and then they’re
fulfilled.

 I was a freshman in high school, my algebra teacher was
a computer nut, and convinced a big company to donate -
what back then was called a second generation computer - to
the school. The second generation computer by today’s
standards was preposterous, but it was solid state (it wasn’t
tube) and discrete components.

 It was about the size of a kitchen counter and obviously
very slow and it can only do one thing at a time. The only
input device was a card reader, as in punch cards, and the
only output was an electric typewriter, essentially an
IBM Selectric. He got this donated and after school

he said, “Anybody want to learn how to program a
computer?”

 I was always interested in codes, so I took a Fortran class
from him, and I was hooked. I started writing for Fortran
programs and he got the facility to keypunch. We could
punch up our programs and try things. That’s why I went to
UCLA and did math and computer science. Got a degree
there.

 As a freshman there, I started working for the systems
programming group in the central computing facility there
that had the mainframe in that room, the whole school, the
whole campus. I was surrounded by geniuses.

 I don’t know if you’re aware, but UCLA was one of the
first three IP addresses before it was even called IP. What is
now the internet was back then called the ARPANET and it
was a pilot project funded by ARPA (Advanced Research
Projects Agency) to share mainframe time to run military
simulations.

 UCLA had the biggest IBM mainframe, the fastest and
biggest, I think West of the Mississippi. Then there was
Stanford Research where they had the ARPA facility
installed, they had a mainframe. They created the project to
connect them and it wasn’t to connect them like what we’re
accustomed to today, but really just to be able to log
in from one mainframe to another, send it a job, run
it, then get the output back. It was a way of sharing
unoccupied at that mainframe time, which was very
expensive.

 So that was actually invented at UCLA and SRI. The
team that I was a very junior programmer on invented a
significant amount of what we consider all the protocols. The
guy in the office next to me wrote the first FTP: Ever.
He invented FTP file transfer protocol, and then he
shared it with the other two organizations, but we can
share files. I mean, this is a heck of a place to work.
[Laughs]

 From there I graduated, I also taught systems programming
and application programming at UCLA. I was a senior
instructor at UCLA. My students didn’t know that I still
hadn’t graduated yet, but they took classes and they were
accredited classes right here. They got credit for it and it
was a whole certificate program.

 I finally graduated, I kept working there, I worked my
way up the ranks, and I was learning more and more all the
time.

 Interviewer: I was interested, did you do any game stuff
at UCLA?

 Vic Tolomei: [Laughs] Yes. Primarily on a mainframe.
The mainframe is, at the time, the fastest thing on the
planet. I mean, literally. Back then it had more memory
than any other computer. They only built four of these
Model 91s. It had a cycle time that was faster than any
other computer. Try to picture a mid-sixties having a cycle
time of 60 nanoseconds 160 megahertz.

 By today’s standards, that’s glacial right? In the
mid-sixties 60 nanoseconds to actually do an entire operation

was unheard of. And it has built-in hardware floating point,
which was also on unheard of. It was very scientific
oriented.

 Now we have this thing that is one of the most powerful
machines at the time… But it’s batch. [Laughs] It’s not
interactive, as opposed to the microprocessor which can
barely run a wristwatch today (well it couldn’t) but it was
interactive.

 So at UCLA we invented batch games. One of them was
a space game. There was a three dimensional space. If I
could distill it down to an essence, think of Battleship but in
free space. Teams would have fleets, go out and try to find
the enemies before they ran out of gas (well, I say gas).
There would be big planets along the way where they can
refuel, we had to take that into account, replenish your
weapons.

 Everybody would put their move for their fleet into the
mainframe. Then when the last team entered the move, that
batch job would run and basically tick forward the entire
universal time clock on tick, then we would get the print out
of what had happened. [Laughs] You’d go off in secret and
figure out what your team just did. Did you get killed and
what happened?

 Interviewer: So it was kind of a play-by-mail game, but
using the mainframe.

 Vic Tolomei: Right, except we were all in the same office.
There was all us chickens doing this.

 Interviewer: Do you recall what the name of that

program was?

 Vic Tolomei: It was called FRON. It was a play on CON
and it was also a name there for the two inventors, Frank
and Don.

 Interviewer: Was Don, Don Worth?

 Vic Tolomei: It was! You know Don?

 Interviewer: Yeah. He made the Beneath Apple Manor
game and he mentioned you.

 Vic Tolomei: He was my office mate at UCLA. He’s one
of the geniuses I was telling you about. He’s one of the ones
who helped write the original internet.

 Interviewer: Yeah. A couple years ago he told his story to
a book that was mainly focused around that game. I didn’t
know the details of that big space game you were talking
about. So that’s pretty interesting! Did you actually play
D&D with him?

Side Note: The book referenced is David Craddock's Dungeon Hacks: How NetHack, Angband, and Other Roguelikes Changed the Course of Video Games. In it Craddock explores the history of Worth's unique RPG.

 Vic Tolomei: Yeah. Don and I, like I said, worked
together at the UCLA campus computing network,
better known as UCM. That was the group that was
responsible for the mainframe that ran the whole campus,

everything. Back then, there was only one computer on the
campus. Pre-minicomputer, pre-PC, pre-everything.
It was a room-sized computer, my job was to keep it
running, updated, and write software for it. It’s a big IBM
mainframe.

 Don I worked together, he was actually my office mate
for a while. He had been there a while. I was a freshman in
college when I started there at UCLA. I think I was there
eight years, before I moved to Northern California. I decided
that mainframes were not the future and I wanted to get
involved with microcomputers. That’s when I went to
work for Exidy, they offered me a job and we moved my
whole family up from Los Angeles to Silicon Gulch. That
was before it was Silicon Gulch, Apple had just been
born.

 To answer your question, he and I, during our time our
time off, wrote a dungeon together kind of like co-Dungeon
Masters. We didn’t do Dungeons and Dragons like a lot of
folks did where you just kind of do the dungeon on the fly,
you roll a lot of dice, and figure out what happened. We
based it on the Tolkien dwarf mine: In the Mines of Moria.
In the movie, you know the big mine with all the gold in
it.

 We filled that with like 20 floors of passageways, rooms,
traps, tricks, and puzzles; laid it all out on a huge Thomas
Brothers map. Long before GPS, maps either came as a big,
enormous pink piece of paper that you’re folding up, or
Thomas Brothers chopped it up into big pages of a book

that had long page connectors. You turn the pages and it
was a lot easier to handle.

 We created these 20 floors of maps, put it in a Thomas
Brothers book. We filled it with puzzles, tricks, and gotchas.
The monsters were all pre-populated. Everything was done
in advance. It was a story. Then we took our colleagues
down into that dungeon for like the next six months. It was
almost six months to get through everything and make it to
the end.

 It was some of the most fun I’ve had since… Forever. We
were D&D geeky guys. We were both married, so it’s not like
we were total nerds. He then expanded on the idea and
wrote Beneath Apple Manor, which we were talking about.
He turned it into a game on the Apple II, which is a great
idea.

 Interviewer: It makes sense that lots of programmers
played D&D because it was very systems oriented, but from
what I’ve seen from people talking about the original
D&D, it was very difficult to actually make sure all
the calculations were correct and everything. Do you
have any particular memories about dealing with those
systems?

 Vic Tolomei: Oh yeah. We did all that in advance. We
had a Dungeon Master’s guide that was a book that we
wrote to ourselves. We created it. We expanded on the
monster tables, we expanded on the, you know “What does
it take for a Wizard to get this spell and for a Cleric to get
this spell?”

 The book had changed from the actual D&D package.
They were amazing, but they weren’t as long as we needed.
They were really made to do everything on the fly. We didn’t
approach it that way. We had to lay everything out in
advance and that meant, “How many experience points do
you get from this?” We invented monsters. “How many
experience points can you get?” We invented spells and
different weapons.

 All of it was laid up in tables. We were programmers,
right? We wrote programs to generate all these tables. We
actually brought multiple parties through, not just one, and
we wanted competition. Each party needed to get to the end
and there were rules about how you win. We wanted to
make sure that each party got the same experience. It
wouldn’t be fair if we were doing everything on the
fly.

 We laid everything out in advance, and if you went into
room 142 on floor four, we already knew what was going to
happen there. There were dice rolls, there was luck, and of
course everything is subjective based on what the party
does. So you’re their eyes and ears.

 If they do a stupid thing, they die. If they do something
to outsmart you as a dungeon master, then they don’t die
and they may get treasures that the other party didn’t get.
In our dungeon, they were trying to outsmart us. In a
regular dungeon you’re outsmarting the game because
it’s all just what’s in the book. We took great pride in
creating puzzles and traps and things that were not in any

book.

 Interviewer: You said you wrote programs to handle some
of the die roll stuff. Was that like actually on a computer?
Or did you just mean in terms of charts?

 Vic Tolomei: No, we created the charts. None of us
wanted to get out a pencil, a ruler, and a piece of paper.
Back then there was no Excel, there were line printers.
There was no WYSIWYG. It was all characters (I don’t
want to say ASCII), upper, lowercase, numbers, punctuation
- that’s it - on green bar paper with lines and holes on the
front.

 So we wrote programs in probably IBM 360 assembly
language (maybe PL-I, maybe Fortran). The general tables
to generate charts so that we were three hole-punch them
and put them in the book (the secret book). Then we
bought enormous pieces of graph paper - like three feet
by two feet - and drew the whole dungeon out. Each
graph paper was a floor. We drew the whole dungeon
out in advance, the pathways, the rooms, the size of
everything, stairs up, stairs down, and so forth. We ended up
with a stack of graph paper that represented the 20
floors.

 And they had to get in! I don’t know if you ever saw the
movie or read the book, the moonlight had to be just right -
and so on - so that they could see how to open the door
to the mine in the mountain. Well, we didn’t want to
plagiarize anything, so we came up with a different
way.

 There were Dwarvish runes that they found on their way
to the mountain, but they didn’t know what they meant. If
you looked down into the right way and matched it with a
pattern on the wall, it would give you instructions on how to
get to the mine. If they did it wrong, they’d get smashed by
a landslide and start over.

 Just like Tolkien did, we had things written in Elvish
throughout the mine, and hand them things. They’d come to
this room and we’d hand them a piece of paper that
had Dwarvish writing on it. The Dwarvish writing was
done on a pen plotter. There’s literally colored pen
that moves on a carriage, and you program it to draw
shapes.

 I programmed it not to draw letters, but to draw the
Dwarvish alphabet and the elder stones. When we wanted to
make a sign or a scroll or something like that, we would go
to my program and have it plot out the thing. We’d stick it
in the book, our book, and when they come to that spot,
we’d hand on the piece of paper and say, “This is what you
see.” We’d give them the tools to help find out what it
meant, so that they could use them to help solve whatever
trap or puzzle was on the other side of the door or in a
room.

 It took us months to build this thing before we started
taking anybody down into it. I mean, it was a lot of
fun.

 Interviewer: What year did you graduate?

 Vic Tolomei: ‘75. When I was talking about this, it was

called an IBM 1620. That was the high school thing. It was
really old. The UCLA mainframe was up 360/91. The 1620
was back in the sixties. That really goes back to it. It wasn’t
quite vacuum tube.

 I kept working there, but it became clear that UCLA was
going to remain very mainframe oriented and it was pretty
obvious that there was a tremendous bunch of innovation
going on with microprocessors. The 8080 had just been born
(before that the 8008).

 There was this company in what is now Silicon Valley in
Sunnyvale called Exidy that had developed a desktop
computer based on a Z80 called the Sorcerer. I wanted to
learn more about microprocessors because I was afraid that
mainframes were not where everybody was going to
go.

 I bought a Sorcerer, I started figuring it out, and I ended
up reverse engineering the operating system. I published the
book with all the tricks and stuff you could do with it to
make it jump.

 Interviewer: How did you publish the book? Was it
just something that you wrote up and you distributed
it?

 Vic Tolomei: I wrote it up - on the Sorcerer there was a
word processor - I printed it on a Daisy wheel printer. I went
to the copy place to make copies, bound it, and sold it to
computer stores. Then they turned around and sold it to
their clients.

[image: PIC]

 Side Note: The first edition of the Exidy Sorcerer unofficial manual created by Vic Tolomei, published by Quality Software.

 I wrote the book for myself because I wanted to
know the ins and outs, take advantage of the tricks so
that I can write software that was sellable that other
people couldn’t do cause there was secret stuff. I started
selling a bunch of different software packages. One was a
video game called “Arrows and Alleys” that ran on
the Sorcerer. It was the only video game ran on the
Sorcerer, ever. Because the Sorcerer just had a character
display.

 The designer, Howell Ivy, made the characters of the
pixel matrix (kind of like a dot matrix for each character)
with some tricks you could program them to work as
something different than just alphanumeric. It was very
restricted. You couldn’t have very complicated games but if
used these trucks, then you can actually do graphics. One of
the other programs was you write a function in BASIC -
that was the programming language - and it will plot it on
screen.

 I wrote the book from myself, just so I could have the
tricks, but then I said, “Hey, why don’t I just actually put it
in the form of a book and try to sell it?” It was a big hit and
Exidy found out about it. Paul Terrell, who was the VP
of sales and marketing at the time. He got a hold of
it.

 He called me up and said, “How did you get all this
information? Cause we don’t tell anybody this.” I said,
“Well, I figured it out.” He said, “Oh, you want a job?” They
flew me up there, we interviewed, and they offered me head
of all software development.

 I decided move my family up there. That was quite a
switch. From mainframe to micros and it was Los Angeles to
San Jose. My first wife had just become pregnant with our
first daughter. It was a risky move, but absolutely the right
one. I don’t regret it. I ended up working for Exidy in the
computer division. Little did I know that they had a games
division.

 Interviewer: You didn’t know that they were an arcade
company?

 Vic Tolomei: Well, I kinda did, but I didn’t go there for
the games division. I was there for the computer division. I
had a team and my team was responsible for turning a very
bare bones, kind of very low end desktop micro processing
system into disk-based with floppies and hard drives. Again,
this is a late seventies, early eighties. It’s very advanced,
very fascinating.

 I guess they liked what I did because they said, “We have
this games division and w’d like you to form a software team
there and run that too.” So I did that, hired some people,
and started building more and more games. Up to that
point, one of the founders was doing the bulk of the
technology work.

 Interviewer: Howell Ivy?

Side Note: Ivy was not actually a founder of Exidy. He joined in 1975 after previously working with the previous company of co-founder Pete Kauffman at the company Ramtek. Tolomei may be referring to him as the founder of the Sorcerer division, as he later refers to Paul Terrell as an early employee.

 Vic Tolomei: Howell Ivy, right. He was a hardware
designer and he also did a lot of the software. That gets to
be unmanageable at some point because you’re only one
person. So I ended up working for Howell, he was my boss,
and we started continuing the Sorcerer line and expanding
while we develop fancier and faster hardware platforms for
the games.

 Interviewer: Right. How did you get in with Quality
Software? Cause I know those were a couple of UCLA guys
as well.

 Vic Tolomei: Yeah. Don and I stumbled over Quality
Software independently. He started looking for somebody to
sell and publish his book. I had been self publishing and
handling my own sales of both the Exidy software and the
book. I would print everything, package it all up, and make
the cassette tapes.

 Get in the car, go to all the computer stores that were in
the area - which at the time weren’t that many! There were
Byte Shops. There were a few other stores. So I’d just get in
the car, I find the store owner, and I’d say, “Hey, look!” I’d

make my sales pitch and maybe he’d buy 10 of them. Then
of course he’d put them on the shelf and sell them, then he’d
call me up and say, “I need ten more.” I’d have to make
more tapes. I’m at typewriter, right? So go to the copy store
and make more copies of a thing. It was a pain in the
neck!

 Quality Software, I guess, found out about all this
somehow. They called me up and they said that they would
do a lot of this work for me, because they had a distribution
capability. We signed a deal and they started doing the
publishing. Then it all kinda got weird because when I went
to work for Exidy they decided that my book was better
than their book and they wanted to basically publish my
book as “The Book”.

 It wasn’t like Quality Software got screwed. It wasn’t
like that at all. I had to tell them, “Okay guys, I can’t
do this anymore because the people at Exidy own the
intellectual property. They want to publish the book.” So
that stopped.

 I think Don kept going. We remained friends and kept
in touch with them, but I think Don kept the active
relationship because of Beneath Apple Manor and his
book.

 Interviewer: Yeah. He was their head of software for a
while.

 Vic Tolomei: I mean you gotta understand, Don was one
of those walk on water kind of programmers. He was my
mentor. I was 17 when I started doing this, at UCLA. I

don’t know how old he was, but he was certainly not 17! He
taught me so much of what I know today. He was one
of best designers, architects, and programmers that
I’ve ever met in the 47 years I remember since that
time.

 Interviewer: I think you both gave each other quite a lot
in terms of how you helped each other’s careers. He gave you
a lot of props.

 Vic Tolomei: And he ended up staying with mainframes.
I left and that was kind of the sad part because there were
so many good people there. He ended up running the
microcomputer lab and eventually he retired. He returned a
couple of years ago, I believe. He retired having the job that
was the boss of the whole thing that we all worked for back
when I was there. He basically rose the ladder to be the guy
in charge of all computing on campus, which doesn’t
surprise me. I would have been surprised that that didn’t
happen.

 Meanwhile, I ended up going the opposite direction.
I went to work with first microcomputers and then
I worked for Sun Microsystems to work on SPARC
and the workstations. Everything else has all been on
workstations and PCs, Unix and Linux. Completely
different.

 Interviewer: Don has always said that he finished the
Beneath Apple Manor game in late ‘78, which would have
been before both of your books came out. Does that seem
right to you?

 Vic Tolomei: Yeah. We started doing that later. I don’t
think I had purchased the Sorcerer yet when we were doing
all this D&D stuff at least in the beginning. It wasn’t until
probably, a year before I resigned my position at UCLA and
CCM and moved to work for Exidy up north that I had
bought the Sorcerer.

 Don and I actually did the same thing I did to the
Sorcerer to the Apple II. We took the Apple II and we
disassembled the operating system onto a thermal printer.
[Laughs] We had to write the disassembler portions, then we
went through all the assembly code and reverse engineered
what it did. Even figuring out the assembly instructions to
move the CRT’s electron ray to cross and change colors.
That’s how basic this was. Telling the floppy disc heads
where to move.

 We published that in a book and then based on what he
learned - of course, that gets you all kinds of insights into
the Apple II that a typical person doesn’t have - he
wrote the Beneath Apple Manor which was also D&D
oriented. It was a great game and he was a very creative
person.

 Interviewer: He talked about that and said that after he
published that, Woz actually called him up and said, “You’re
not giving away any secrets, right?” Something along those
lines.

 Vic Tolomei: Yeah. Woz called him up and said - it’s kind
of similar to the VPs who called me - and said, “Where are
you getting this? I want to know who in my team is leaking

proprietary information.” We said, “No, we figured them
out. We didn’t talk to anybody.”

 Interviewer: I mean, those are kind of the things you had
to do back then to even figure out-

 Vic Tolomei: There was no choice! [Laughs]

 Interviewer: Right! What was the first microcomputer
you saw? Cause you said you did stuff with the Sorcerer and
the Apple, so what was the first thing you saw?

 Vic Tolomei: Well the Sorcerer was first. Don and I went
and halfsies on the Apple if I remember correctly. That was
not that much later. I think it was in that order. It might’ve
been a few months the other way, but essentially the same
time.

 Interviewer: You threw yourself behind the Z-80 stuff
because of the connection with Exidy. Though you did say
that you worked on all these different processors from
everybody.

 Vic Tolomei: Yeah. I was one of the few assembly coders
at Exidy. I did 68000, 6809, 6502, and Z-80. The Apple with
the 6502 was really interesting, but the 6502 was such a
simple… I wouldn’t say it’s weak because it was able to jump
through hoops, but it’s instruction set was very limited, let’s
put it that way.

 The Z-80 in contrast, given it’s the same vintage, just
kind of blew the doors off of it. Ultimately, Motorola won
the war and Zilog went out of business. They tried with
a Z8000 and that just never took off. Motorola went
16-bit with the 68000 and they did a whole lot better. In

fact, Apple continued to use 68000s in Macs for quite a
while.

 Interviewer: I wanted to know a little bit about how
successful the Sorcerer division was. Obviously it didn’t
become their mainline business, but what was kind of your
perspective on how they were dealing with the Sorcerer when
you got there?

 Vic Tolomei: When I got there, the Sorcerer was a
cassette tape-based, simple BASIC computer. When I say
BASIC, I mean that was the programming language. It was
basic - it was also not a lot of frills - but it was also
just the BASIC programming language. It couldn’t do
much.

[image: PIC]

The Sorcerer, released in September 1978 by Exidy, Inc.An entry into the nascent home computer market, the computer was popular among the early hacker types but failed to have enough support to compete in the big leagues.

 The potential was there because Howell Ivy was a very
creative hardware designer. He also knew software enough
that the hardware integrated well and blended well with
software. As opposed to some hardware guys that don’t get
it, and so they make hardware that’s really cool hardware
that’s impossible to program for.

 So there was all this potential there and it was untapped.
One of the reasons why they hired me is because they
knew I knew systems. To go from a computer that was
two floors high and filled the room to one that sits on
your desk. They knew that I knew how to put systems
together.

 They asked me to give it more programming capability,
give it an operating system, and make it disk based. Back
then everything was cassette-based. It was horrible. My first
job was to find a floppy vendor and have integrated floppies
in with the S-100 Bus. This had an S-100 connector and he
had designed a card cage where you could put like five or six
S-100 cards in it and just plug it right into the desktop. Very
clever. In a sense what USB is today, except you don’t need
a card. [Laughs]

 The floppy would plug into the S-100 card, but now
we need an operating system. My job was to find an
operating system and get it to work on the Sorcerer. We
used CP/M which was a very popular floppy-based
OS at the time, it was out of Pacific Grove, a little
south of Monterey. I was the VP of all software, so I

negotiated all the contracts with them and with the floppy
vendor.

 They didn’t do the integration, my team had to do it. We
had to get it to work. So we did; now we could booty
floppies onto the Sorcerer and have a file system. That
changed everything because now instead of using tape as a
mass storage device - which was slow and clunky and it
was terrible - now it was just files on a floppy, a five
and a quarter floppy. Three and a half hadn’t been
invented yet, and eight inches were back in my era. IBM
invented the eight inch floppy way back on the mainframe
side.

 This worked pretty well, but we still have the problem
with programming it. It was still BASIC. So I got on the
horn with this crazy company called Microsoft who had
provided the BASIC. That was their only claim to fame.
They were still in DOS, they hadn’t done any Windows or
any of that yet, but they were the ones who had sold Exidy
their original BASIC interpreter.

 I call them up and say, “What else you got?”. We worked
out a deal where we’ve got Fortran, COBOL, assembly, and
a BASIC compiler (these are all compilers, or assemblers).
Actually it was for the 8080, but the Z-80 ran a compatible
instruction set that added to the 8080, the nicer machine.
We bought full source licenses for all of this stuff, but again
my team’s job was to integrate it and get it to work on
CP/M.

 We did it, and in the process I started finding bugs. Now

go figure that I found bugs in Microsoft’s code. Imagine! You
gotta understand back then, this was just yet another
vendor. It got to the point where I found, I don’t know,
50-100 bugs in the compilers that they gave me and I
fixed them, because I report them and I get nothing
back.

 I had the source and of course the source is all assembly
language. To me, assembly language is just very natural,
that’s what I programmed the mainframe in. I just fixed
them and I kept track of the fixes. The fixes worked and we
were able to start selling various languages, programming
compilers, and so on to our customers.

 You know, eventually I got frustrated. I called them up
and then I said, “Well, I have all these bug reports. I also
have the fixes.” I ended up being transferred further up the
chain. I forget who I talked to, because I’m an old man.
[Laughs] They said, “Can you send it to me?” We said,
“Yeah, sure.” Because we were development partners right?
There was no secret.

 Then they offered me a job. [Laughs] They said,
“You know, if you could do this in a month or two,
we’d like you to come out and run some department.”
Well, I was very happy where I was. I turned it down.
Now, we’ll never know what that would have meant
that. It probably would have meant either - assuming I
survived - that I’d be on my island somewhere. Or I
might’ve been miserable, my whole life would be different,
and who knows what else? It’s just a funny story, but

they’re true to form. They’ve been buggy from day one.
[Laughs]

 Interviewer: [Laughs] That’s a good story.

 Vic Tolomei: The next step was to get off of floppy. I was
able to find a vendor that in the hand, these new fangled
inventions called hard drives. Of course on the mainframe we
had hard drives, because that was the only way to do it,
magtapes and hard drives, but they were literally the size of
washing machines.

 Creating a hard card that could fit on the desk next to
the Sorcerer was a challenge, but here was this vendor
that was offering a hard drive that came with an S-100
card. Wow! You’ve got to understand the original 8-inch
floppy was 128K. K. The five and a quarter inch floppies
we eventually ported onto the Sorcerer I think were
512K. Four times the size. That was a hell of a lot of
storage back then. The concept of, of megabyte, gigabytes,
petabyte, terabyte, forget about it. Wasn’t even in the
vocabulary.

 The high end super duper Sorcerer came with 64K of
RAM. You could run almost anything. So when this hard
drive vendor came, did his demo, sales pitch, and they said
“This little beasty has 10 megabytes.” we almost all fell out
of our chair cause that’s a lot of floppies, and of course it
was fast compared to a floppy, the dual floppy double-sided
drive.

 Needless to say, we signed an agreement with this
guy, integrated it, got it to work, and got CP/M to

work on the hard drive, not just on the floppy. You
could actually have one or the other, or both. This is a
pretty powerful desktop, right? Much more powerful
than an Apple, and it had S-100 which meant it was
expandable.

 What went wrong? Why weren’t they a big force in
the market? I think there are two answers: One, they
completely misjudged the value of color. The Apple was
the first color screen home computer. Even though it
was very bare bones, it appealed to everyone in the
family. Little kids could play a little game. Mom and
Dad could maybe do something actually more useful on
it.

 The Sorcerer was a lot more serious, black and white (or
black and green). It had a higher resolution display, I mean
we put on the features to make it better. We had a hard
drive, I don’t think the Apple ever had a hard drive. Nobody
cared, because the demographic was narrow. It was for
the professional, for word processor, for the technical
writer, for the programmer, for the person who’s writing
code. To sell it to a family didn’t work. The volumes fell
off.

 It was the same way that Microsoft ended up trouncing
the market. They cold broad, they sold down and they sold
up. The bigger boys like Sun that I worked for, that made
incredible workstations, and they helped invent the web.
That’s how sophisticated these were, right? It was narrow, it
was a workstation, they sold it to universities. To sell one to

a home? Never happened. Too complicated, too expensive. It
just wasn’t a fit.

 What finally happened, I think, is the reach for the
Sorcerer just got narrower and narrower.We made some
deals with some foreign countries. For example, when
Exidy went belly up, I was in the process of making a
Thai Sorcerer, as in Thailand. There was an Arabic
Sorcerer.

 The reason why this was possible is because Howell had
created these characters that were convertible. The Thai
character set is very unique, the Arab character set is also
unique of course. To convert from Arabic - well, I guess
they’re called Roman characters - to any language was
actually fairly straightforward. There were resellers in these
countries that were very excited about getting a full
function, professional desktop that were native. Again
though, very narrow.

 Meanwhile, Apple came along and were selling at the
local computer store making it brain dead, simple to start
doing stuff. Then of course, IBM came along and made the
PC and then changed everything.

 Interviewer: Right. I mean, at that point there was
nothing to do. So with the Sorcerer division going away, were
there people from that division that came into the arcade
division beside you?

 Vic Tolomei: I basically took my whole team with me,
and then I also brought other people on because we needed
more game design and other skills. Since Howell was the one

designing all of the hardware, there were a lot of similarities
between the architecture of the Sorcerer and the architecture
of a lot of the gaming hardware. So it was a natural
migration for these folks to move over, and they were all
very good.

 Interviewer: Who were some of the people that you were
working closest with at the company? You mentioned Howell
as the main hardware guy.

 Vic Tolomei: Howell was the co-founder, with Pete
Kauffman. He was more of a business guy. Howell was the
engineer. Paul Terrell wasn’t one of the founders, but I think
he was employee number three or four or something like
that. He was a sales and marketing guy. Those are the main
people that I worked with.

 There were various other folks that came and went. They
weren’t quite as permanent. As things got serious, there
was a technical writer manager then wrote a lot of the
manuals. Of course there was my team. There were five
of us, with various levels of experience. It was all the
manufacturing going on in the back, of course, of both the
cabinets through the arcade games and the Sorcerer
itself.

 Interviewer: I talked with one of the manufacturing
people. I don’t know if you ever met her, Joanne Anderson.

 Vic Tolomei: Yeah. That’s a name out of the past.
Uh-huh.

 Interviewer: Michael Cooper-Hart?

 Vic Tolomei: Right, right. He was one of the business

guys.

 Interviewer: Also Larry Hutcherson as well. He was one of
the software guys.

 Vic Tolomei: Yeah. He was one of the guys on my team.
That’s exactly right.

 Interviewer: He’s talked a bit about the brainstorming
process for Exidy. How do you remember game concepts
coming into being? Was it any sort of official thing or were
things just popping up?

 Vic Tolomei: Well, it was a little of both. The beauty of
design in general - it’s not necessarily game design -
it could be in designing anything cars or whatever,
certainly computer design: To do it right you have to
make it a formal part of the process of building the
plan.

 You can’t make the mistake of going too far and not
allowing spontaneity, because if you hire the right people
and you have the right environment where any idea is a good
idea, any concept is worth talking about even if it dies. It
might lead someone to think about something in a different
way, and then that generates an idea, which still may die,
but that generates the third idea which is the winner. The
old saying, “No question is a stupid question.” Well, I
actually believe that. In this mentality, no idea is a stupid
idea.

 So yes, we would have some formal where we sit down
with the group of us and try to think about, “You know,
what would be fun? What would be interesting?” We’d work

through it. Sometimes an idea would come from someplace
else.

 Crossbow, the whole D&D craze was down one direction.
Sometimes the hardware was down a particular direction.
When Howell invented the first ability to shoot something,
then we said, “Okay, what would be fun? But it’s gotta be a
shooting game.” I mean were always practicalities, but then
there would always be spontaneous.

 We worked in a pod all in one room, there wasn’t
separate offices. We all had our own workspace, our own
desk (we had a little bit of privacy), but basically one of us
could turn around and say to the group, “Hey, I just had an
idea!” Stuff like that. That was very powerful.

 Interviewer: Larry mentioned specifically that you guys
went out to Pajaro Dunes, that corporate retreat place, to
sometimes sit down and kind of evaluate things. Do you
recall that?

 Vic Tolomei: Yeah. I definitely remember that. That was
the era where a lot of companies did team domain retreats
and things like that. It’s kind of lost a little bit of favor in
today’s modern world. It wasn’t just Exidy, Sun did that
and other companies that I’ve worked for since. Both
for the management team and also for each individual
team.

 You take all the hype out of it because Pajaro Dunes or
whoever it is, all they want to do is make money. That’s
hype. Take the hype out and it kind of works! It allows you
to be a little more social, get to know each other even better,

and stuff like that.

 Interviewer: How much did hardware drive the creation of
games back then? They already had a legacy platform. You
may have heard of a game called Tarc or Spectar. That was
a legacy platform that they had done several games and we
wanted to see just how far we could stretch it. There wasn’t
a lot of automation, it was very manual. You had to do
everything in the code.

 The big hit that came out of there was called Crossbow.
It was basically Dungeons and Dragons on a coin-op. It came
just at the right time where D&D was very interesting for
people. It did really well and I was very proud of it, but it
became clear that the hardware was an obstacle. It wasn’t
automated enough.

 So Howell, in concert with the software group - with my
group - designed several new systems. Not only was it faster,
but it had more horsepower to more of a the work. To give
you an example - I’ll go to the far extreme, and then you can
decide where you want to go from there - the most complex
system had six microprocessors in it which ran its own code.
They all inter-communicated with each other and each one
had a job.

[image: PIC]

Crossbow, Released November 1983 by Exidy, Inc.The game is a lightgun game, featuring digitized voice samples and a huge amount of enemies on screen.

 The main microprocessor might have been a 68000, which
was a 16 bit processor that was pretty much the top
end. 16-bit was like the best, and of course now it’s
silly. Then the audio, all the sound effects was done on
either a 6502 or a 6809. The 6809. We would record
audio and turn it into what I guess we call WAV files
today.

 Basically it was a data de-conversion - by hand - save
those sound effects, and then the 6809 would listen for
commands over a bus that all the processors sat on. When
the main processor wanted and explosion, they would just
send a command to the 6809 and it would take over from
there. The main processor didn’t have to deal with all that
junk as was the case with the legacy one where it had to do
everything.

 Then there was another processor that moved the
cabinet. So I’m actually talking about a game called Vertigo,
where you crawled inside a cockpit and the cockpit rolled
and pitched. It didn’t yaw, but it pitched up and down like
an airplane and It was supposed to be a spaceship. You flew
through space, making maneuvers, the cabinet would go
with you, and so you would get the tactile motion the same
as the visual.

 Interviewer: Did the hydraulic version of Vertigo
actually come out? Cause I I’m not sure I’ve ever seen
that.

[image: PIC]

Vertigo, Released February 1985 by Exidy, Inc.The extremely rare machine has only shown up scarcely in second-hand markets. The cabinet would be scaled down and Exidy would release the game more widely as Top Gunner, one of the last vector games released.

 Vic Tolomei: Yeah. It was very expensive. We only sold a
few of them, but it was definitely in production, absolutely.
It wasn’t hydraulic. There were two, maybe four, foot long
things of metal that I think there probably a good inch and
a half diameter, but threaded a screw. There were two of
them, one in each four quadrants.

 Let’s say you wanted to pitch up, what the processor
would do is control the motors, that turn the screws. They
would turn it in the right direction so that the cabinet would
move and the screw would stay still, instead of normally you
can turn the screw and the thing you’re screwing into
stays still. So the cabinet would go up and a processor
would control which motor would go at what speed,
accelerate at what rate, and then decelerate at what
rate. You wouldn’t like fall out of the cabinet. It felt
smooth.

 So it wasn’t hydraulic. There was a very early prototype,
but that it was so frought with expense and complexity it
just wasn’t practical.

 Interviewer: You were doing software stuff and then of
course you have people doing hardware and then you have
industrial design in there as well. So you’re doing some very
complicated things.

 Vic Tolomei: Exactly right. It wasn’t while they did that
over there we did that over here, it was an integrated,
unified system. The motors had to be controlled by software
and so they couldn’t just come up with any old design. It

had to be a joint development, same with the hardware.
Another microprocessor on Vertigo was what back then was
called a bit-slice. Arguably it’s an array processor, but back
then it was basically a CPU that you built bit by bit, ground
up.

 You might have an instruction set that’s 300 bits wide,
instead of thinking 16-bit or 32 or 64-bit. Every bit
had a meaning. You would control other elements of
hardware by coding bits in instructions and you would
cycle through these instructions at particular rates.
Of course there’s branching - if, then, else, the usual
stuff - but the point is, it was the bit-slice that did the
display.

 It was a vector display. The 6800 would say, “I want to
draw a picture of a spaceship coming in.” That spaceship
was a series of vectors that had been pre-designed and
pre-programmed. Well, because this was a free space it had
to be 3D transformed for the position of your spaceship, the
position of the cockpit, and where you are in space. What
angle are you looking at it? How far away is it? So the
foreshortening had to happen.

 All this math had to get done. I’ll tell you in a minute
how the math was done, if you want to know. There’s no
math processors here. We’re talking about little tiny
microprocessors. [Laughs] We would give the command to
the 2901 bit-slice, draw image number four, and then it
would go through its library of pre-programmed vector
images and use the coordinates to draw the vectors of the

appropriate color.

 One of the innovations that Howell had was he created a
hybrid one where there are elements of it that were raster
even though it was a vector display. When we did an
explosion, explosions in vector aren’t terribly exciting, but
an explosion in raster kinda looked nice.

 We created a special object in bit-slice that could draw
the vectors like a rasterized electron gun like a raster on a
CRT, horizontally back and forth and then vertically
interlaced. It was done so quickly that it looked like a raster.
It wasn’t the whole screen, but it was enough to get the
effect. There was a library of those and the bit-slice would
handle that.

 The last part was the 3D math. I don’t know how much
math you’ve had, but if you take a point in space and you
want to be able to rotate around it or move away from it or
move towards it, that math is just a Fourier transform based
on the six degrees of freedom. XYZ, roll, pitch, and yaw.
The three angles. So it’s not rocket science, it’s pretty
straightforward trigonometry.

 Today we’re used to just saying, “Tell me the sin of the
angle, the cosin of this angle.” Then, Boom!, you get it.
Back then, you had nothing and there was no time to
compute. You’re doing a thousands and thousands of these
trigonometric functions per 30 or 60 Hertz frame. There’s no
prayer to do it truly mathematically.

 What we did was we turned the whole thing into
logarithms. The beauty of a logarithms is you multiply by

adding, and multiplication on those devices took forever!
Division took even longer, but you could add and subtract
pretty darn fast, sometimes in one cycle.

 By turning all of the possible calculations into logarithms
and removing all of the addition (because you can’t add in a
logarithm, that’s what you lose), it ended up being huge
tables all in EPROM of all the logarithms that were applied
to the trigonometric functions that were involved at the
precision and granularity of the calculations that we wanted
to do. Then to do all the multiplications, basically we
added it to another piece of the bit-slice that could add
much faster than even the 68000 and it would do the
multiplications.

 At the very end, you have to turn it back into a number
again, you know the anti-log. So there was this enormous
anti-log table and you end up finally with the number
and you have one coordinate of one point. [Laughs]
You do this for all the coordinates for all the points.
Then of course you had to get it all done within the
frame rate because the display’s not going to wait for
you.

 So that was a challenge. I actually got a patent on it
from the US Patent office in order to have the animation
rate be controlled by a simple 8-bit piece of hardware. You
can get virtually any animation rate to many decimal
points, pretty much down to frames per second - I guess
I should say “animation frames per second” - with a
simple 8-bit piece of hardware which of course Howell
created.

Side Note: The patent Tolomei received, US #5,046,026, was actually granted while he was at Sun Microsystems but based on the work done at Exidy.

 So you have all these processes running, it was a whole
lot of horsepower and it gave rise to, “We’ll take these
parts of that and we’ll use them in other games.” We
had some guys that were pure coders, we had some
guys that are more of the creative design (you know,
gamers) we had a bunch of administrators that just did leg
work.

 Interviewer: Were you primarily interested in these sorts
of games for the technical challenge? To be able to have the
luxury of, having tons of microprocessers and being able to
do stuff like that?

 Vic Tolomei: A good question. I started in the computer
division. When I got involved with games, I got hooked by
the games. The beauty of trying to build one is you’ve got to
test it, to test it you’ve got to play it. “You’re gonna pay me
to do this?” That was great, but I did this for a lot of years
and to be honest, at some point when the novelty of the
game, picture a car, the novelty of the technology started to
lull and the game was fine.

 Then picture a car slowly going the other way and the
balance going the other way. Having the game itself was

fascinating, but fighting the technical challenges of having
these little, decrepit microprocessors and still coming up
with something that would Wow people. Something new
every year, not just the new game, but new displays, new
speeds, new technology, new controls.

 So the geek factor having nothing to do with the game
factor. That eventually got controversial too. Fortunately, I
had game designers that were really good at what they did
and so they can focus a lot on the gamesmanship, which is
walled to itself.

 Interviewer: It was a very small team all through that
time, right?

 Vic Tolomei: Yeah. It was about between three and five
people the whole time. They were very, very talented.

 Interviewer: And you did a lot of games. I mean Exidy,
for a company that was so small, put out tons and tons of
games.

 Vic Tolomei: [Laughs] Yeah. It was a lot of work.

 Interviewer: [Laughs] You always forget that aspect!

 Vic Tolomei: Venture, the D&D game, needed to be
done by the AMOA show that year. That was the trade
show each year. Everybody would bring their best stuff,
you’d make contacts, and hopefully sell more games.
Well, we concocted this thing, by pure chance very
late.

 Normally a game design and creation cycle takes X
amount of time. This was only weeks before the AMOA
show. When we thought about it, we said, “This is the best

idea we’ve had all year. We got to run with it.” Everybody
went crazy, balls to the wall, as they say. We’re talking
120 hours a week. Do the math normally it’s 40. Seven
days a week for I think it was three weeks, two and
a half weeks. 16 hour days. Some of us slept in our
chairs.

[image: PIC]

Venture, Released August 1981 by Exidy, Inc.Tolomei referred to the game as "Arrow", which may have been a working title. The game was available before the 1981 AMOA that year, however it was premiered at a showing at Exidy’s offices on July 6th, 1981 which may be the event Tolomei is referencing.

 Our wives or girlfriends brought food because everybody
was bought into this. This was gonna make or break the
company and we pulled it off. It was a miracle. We pulled it
off and it was one of the most popular games that came out
of that era, but of course, everybody was destroyed after
that. You don’t get any sleep. It’s a miracle that anybody
functioned.

 It worked, we made a big splash at the show, and we sold
a boatload of those games and it actually started a series
that ended up dovetailing into the shooting series. The
Crossbows and so on. The reputation was there, it was a
whole new genre. It really paid off, but it wasn’t the
normal cycle. This was a talented group and very hard
work.

 Interviewer: Speaking of that, did it ever feel bad
to not be able to like put your name in the game? I
know you snuck it into some of the code, but being
recognized on that level. Was that ever a problem at
Exidy?

 Vic Tolomei: Not really, because except for rare
occasions, nobody did. It wasn’t like we were the only
company that didn’t do that and everybody else had credit,
right? Nobody did that. That wasn’t the way things were
done. As I was winding down and moving on, I started to
notice that there were more and more title-credit scrolling
screens on demo mode and so forth. That’s fine. You
know, you’re proud of your work. So you want people to

know. It really didn’t bother me, to be honest with
you.

 Interviewer: Yeah. I mean Exidy seemed like a company
that was very engineer-focused. There’s an article in an
issue of Replay from ‘83, and they’re, you know, going
around the facility. I think you were building Crossbow
then. They just show everybody on the team and they
named them. It was very rare in those days to have
that. I think they were, they were pretty good to their
engineers.

 Vic Tolomei: I would agree. We had a couple of
executives come and go, of course Howell was there the
whole time. As things got big, somebody came in and filled
the role of president while Kauffman was CEO. That didn’t
last very long. During some of those temporary regimes, the
culture shifted a little bit. The original guys kept a
very open and kind of family-oriented culture. That
was one of the reasons why it was a real joy to go to
work.

 Interviewer: Unfortunately we’re going to have to leave it
there for the moment! Thanks so much for this look into
your career.

Chapter 8
File #8

 David Rolfe

Programmer for Technical Magic

1977 to 1980

Programmer and Designer for APh
Consulting

1977 to 1982

Programmer and Designer for Cheshire
Engineering

1982 to 1984

Before David Rolfe, arcade video games did not have high
score tables, console video games did not have programming
backbones, and sports games didn’t resemble the real thing.
In the course of three exciting years, that all changed as
rapid advancements in the way video games were made
started to put to bed the endless “from scratch” methods of
the earliest pioneers.

 By his own admission, Rolfe was a tool-builder, not a
lover of games who would obsess over the latest releases.

Even without that though, his mind worked in ways
which sprang innovation out of the confused mess of
late 1970s game design. His works like Star Fire and
the Intellivision Exec operating system each in their
own way stated a future for what video games could
become. David explains his humble origins as an intern
creating a single game over the course of two years
to the indispensable man in Mattel’s foray in video
games.

 Interviewer: Are you from California?

 David Rolfe: Oh yeah. Yeah. Well, I was born in Los
Angeles.

 Interviewer: What made you decide to get into technical
stuff and programming?

 David Rolfe: Oh, I was just drawn to it. How old are you
may I ask?

 Interviewer: I am 25.

 David Rolfe: Okay. It was just trying to get a sense of
what you would know in your bones versus what you might
have heard casually. In the memory of living people like me,
there were no computers. I mean computers were a
nonexistent thing growing up, intellectually. You can imagine
how different the world was: There were three TV channels,
you had to walk over and physically change the channel. A
clunking thing.

 People were just kind of drifting into computers at that
time. It was a concept, you’d have to go somewhere. They

were huge things which filled buildings and you couldn’t
really even get close to them. You had the punch cards. So I
was just coming of age - I was born in 1955 - when I was in
high school there was somewhere a room with a modem
connection. You could dial up and connect, and so we’d run
BASIC. That was the most amazing thing ever, and a
certain class of people were just drawn to that. Before
that, they were drawn to this scene of mechanical tasks,
organizational tasks like railways switching, building model
railroads.

 There’s a certain logical brain that I think is just born to
do software. Then this thing happened which certain people
were optimized for and it called them in. That’s what
happened to me. I got into college in 1973, to get my hands
on a timeshare system and just got sucked into it. I had
no plan. In fact, I consider that very, very, very, very
lucky, cause otherwise I don’t know what I would have
done.

 Interviewer: I mean, you were in the right place to be
doing it.

 David Rolfe: Yeah. I don’t know if I’m answering your
question.

 Interviewer: I’m more than fine with going off on some of
these stories. Cause I think it’s interesting to look at how
people viewed their situation. A lot of the Atari people that
I’ve talked to are very much the same. They didn’t really
aim to go into computers. It wasn’t a life dream for them. It
just happened.

 David Rolfe: It wasn’t a thing that even existed at the
time. When I got to college, it was just weird people who
got pulled into this thing, but it wasn’t like it was a
profession. They didn’t have a degree in computer science or
information science or anything like that at the time. I
technically got an engineering degree because that was the
closest I could get.

 For a computer there was this timeshare computer, which
was the most amazing thing ever, and when I got there they
were expanding the one book about it to five books. The
concept that there would be a shelf in the bookstore about
this sort of thing was unthinkable. That there would
eventually be bookstores devoted to it or that those people
would take over the world, this was unthinkable. Now if you
want to graduate, you want to go work for Google. You
make hundreds of thousands of dollars. Back then you’re
lucky you will get paid like other people do (and probably
a little bit less) but this is what you do. So different
world.

 I have a novel, which I was given a copy of. This 1970s
era novel, which I thought captured the spirit of the
era.

Side Note: The Naked Computer by Joe Cottonwood, published in 1974, is a fiction novel that touches on computer culture of the time. You can read David Rolfe’s review on Goodreads.

 Interviewer: So it was just engineering, it wasn’t electrical

engineering that you went in for?

 David Rolfe: No, there wasn’t an electrical engineering
degree and I’m not an electrical engineer. What I focused on
was just a software of the day. The engineering was this
certain generic degree that anybody who was doing electrical
engineering - they had perhaps other specific engineers -
and people tended to fall into it with a wide swath of
whatever.

 Interviewer: What sort of computers were you programming
at Caltech? [California Institute of Technology]

 David Rolfe: It had to be a PDP-10. In the day, the
people came out of that universe. You had IBM and they
had the punch cards, it was the blue suits and the like, but
for the people who wanted to wear sneakers and program 24
hours a day, they tended to drift into the DEC world. Select
colleges had the DEC equipment from their PDP-1 to the
PDP-10. It was a timeshare system. We’d have CRTs,
mostly paper CRTs - ASR-33s - with a roll of paper on
them. They’d “pump, pump, pump”, 10 characters a
second. That was, at the time, the most amazing thing
ever.

 Interviewer: Right! What sort of applications were you
doing at Caltech?

 David Rolfe: There were two types of programmers, from
the people who like using the high level languages -
FORTRAN, COBOL - and doing like financial applications,
industrial applications. Then there’s the low level people
who tended to do with the assembly. Not technically

machine coding because that’s something even more basic,
but assembly coding. Writing the operating systems
accessible to the people that want to use it at a higher
level.

 I was drawn to that sort of coding, systems programming.
I’d call myself a systems programmer, basically I call myself
a tool maker. My job is always to take this raw hardware
and make it useful to people who want to do something with
it. So everything I’ve ever done has been something along
those lines. Games, control software for a test equipment,
same sort of thing. Somebody has a purpose, they want it to
do something. I ‘m the guy who just makes the computer do
it in the way that they want it so that they don’t have to
worry about anymore mundane details than they have
to.

 Interviewer: Was there sort of a scene of the programmers
at Caltech? Was there a group of people that hung out from
time to time?

 David Rolfe: Oh yeah. It was a subculture. There
were languages, there were words. There’s this thing
floating around called The New Hacker’s Dictionary
compiled by Eric S Raymond. I mean if you’re interested in
these things, you get the sense of the subculture, of the
language, your phrases would pass into existence. Just like
any subculture gets its phrases, its memes, meaningful
exchanges.

 Interviewer: Were games ever part of the computer
culture at Caltech or was that something outside of

it?

 David Rolfe: Maybe I should give this one word of
explanation. This is personal: I was never drawn to games
per se. For me, it was all the magic of the machine and it
was sort of just happenstance that I ended up in the games.
Now some people who were game programmers were gamers
who learned to program.

 I didn’t have, “Oh boy, here’s a game I’ve got to
program!” It’s like when you kick something around,
somebody with a greater sense of games were giving me
some sense of what the game was. Then I’d have a sense of
what was working and what wasn’t. What was the user
interface and what things would feel right to me would kind
of push it in that direction.

 There were games at Caltech and I did find them
interesting in their ability to create a world. I wasn’t under
the games per se. There was something called Spacewar! on
the PDP-10. It was playable at 10 characters per second
with paper tape. It could be distributed around the campus
and it was largely in your head. It would assign you a ship,
you’d move around, shoot other things, give commands, and
then the computer at the center of that would go: Who got
shot, who took damage, who won this, and who lost
that? The concept of this universe largely fueled by your
imagination, but coordinated in the computer did fascinate
me.

 Interviewer: Right. I’ve definitely talked to some
programmers also of your era and a lot of them are much the

same way. I don’t begrudge you for not enjoying games in
that way. It’s a particular sort of person, the people who like
programming and the people who like games in that sort of
design sensibility, I guess.

 David Rolfe: I’m not trying to make a value judgment or
defend myself. I’m just trying to accurately explain
where we all come from and how it comes together.
Everybody has these things which for some reason interest
them.

 Interviewer: Yep! I mean, I’m definitely the weird person.
I like history and games happened to fall into that. So that’s
why I do this. [Laughs]

 David Rolfe: It’s like, it’s everybody. That’s the world
which I would like to live in, where everybody finds what it
is that animates them and hopefully indulge that either
recreationally even professionally.

 Interviewer: [Laughs] So tell me how you met Ted
Michon then?

[image: PIC]

Side Note: Ted Michon, building what at the time was the world’s tallest card tower.
 Source: The San Francisco Examiner April 13th, 1975

 David Rolfe: He was a student like two years ahead of
me. He was more of an entrepreneur than I was. I was happy
to work for somebody else if they set up the computer. I was
not really a hardware person - I knew how to tinker with
things with a hammer - but I want somebody attending to

hardware, I could focus on the software, and somebody could
find a customer.

 Ted was an entrepreneur and a trailblazer. Those of us
who were in college at that time, we were in college when
microprocessors were being invented. You probably know
this, the 8008 then the 8080, then afterwards the 6502 came
along. It’s like, all of a sudden, this thing which had been
unthinkable, now you could have a computer of sorts. It
was cheap enough to put in things. We certainly were
intellectually aware that soon everything was going to have a
computer in it.

 I’ve been saying this since the beginning of time: Having
a box that played a game wasn’t a lot of fun. The purpose of
it all was so that the boxes could talk to each other. We were
aware that this was going to happen, although without
it’s coming true with such a vengeance that I find it
frightening. You know, I don’t want my refrigerator
talking to the market. Alexa listens to every word you say
and being connected to the internet. That I do not
like it. So where is the world’s going? And is it my
fault?

 So Ted graduated about two years ahead of me. He had
worked for a couple of video game companies Micronetics
and he produced a game called Nite Driver. Those earliest
games - you’re familiar with Pong, you’re familiar with
Space Wars - didn’t have a processor in them. They just had
circuitry. So the concept of putting a processor in games was
very new. Those of us graduating from college at that time,

we could see the future because the people who’ve been
designing things without processors were obsolete because
this was alien to their thinking. That’s what the world does
to you.

 Ted understood the newer chips. I believe he was
responsible for a game called Nite Driver which just have
pillars coming up and created the impression of driving down
a road. It’s a simple driving game of the era and it was fairly
good, fairly successful. Then he formed his own company,
created a company. I mean, that’s sort of grandiose
but it means he declared himself a company out of his
apartment with his girlfriend called Techni-Cal, or Technical
Magic.

 Interviewer: So those were two separate companies?

 David Rolfe: Well one was the successor to the other,
basically. So at the time I graduated from college in 1977, he
had established some reputation for the arcade games.
Whatever small company he’d been with, where he did Nite
Driver, he moved on. He wasn’t working for them anymore
but he seemed to have some relationship with Midway
Manufacturing.

 I don’t know how he established that, he met Hank Ross
of Midway at a trade show or something like that. So he was
looking to create what was new to the era - I don’t think
this had been done before - an arcade game with a processor
inside and a color monitor. Somebody was making a color
monitor that was, you know, only $500 or something and
figured to make a slightly expensive arcade game and it

would have color. This would be like a really big deal and a
great leap forward.

 He had designed the hardware to that. I was at sort of
loose ends towards the end of 1977. I went to work for him
to program the game. Star Wars had just come out, the
first installment of Star Wars, and he thought that was
the best movie ever. I wasn’t quite that taken with
it, but it’s become a culture all by itself. (Like other
things which might have been entertaining, then went a
little too far and taking over the world, what do you
do?)

 If you look at Star Fire and you’ll see that it does look
like Star Wars to some extent, and wanted to get the
license to Star Wars. You wanted to call it star Wars. I
mean the Star Fire lettering looks like the Star Wars
lettering, right? He was never able to get that, I don’t think
they ever would give him the time of day. So we ended
up changing the name to Star Fire. He changed it as
much as it’s necessary to, you know, stay out of legal
trouble.

[image: PIC]

Star Fire, Released November 1978 by Exidy, Inc.This early 3D marvel was the first game to have a high score table, among other standout features.

 Interviewer: Right. I forget if you said about Technical
Magic, what were the facilities of the company? Where were
you guys set up?

 David Rolfe: Okay, well that was out of Ted’s apartment
shared with this girlfriend. [Laughs] It so happened that we
graduated from Cal tech and in the Pasadena area. I was
sharing a rental house with the two other graduates and he
was a few blocks away. He was sharing an apartment with
his girlfriend who is now his wife. I would just kind of
wander over there and program.

 What facilities? There were no facilities. We had his
hardware - basically his game system - we had a modem
which might’ve been upgraded to a 1200 baud. We’d
gotten out of Caltech and the PDP-10, and since he’d
graduated from Caltech you could get access - I don’t know
whether this was legitimate or illegitimate - he was
able to dial up the Caltech computer, get online. This
wasn’t a graphic environment it was a text, line by line
environment.

 I would develop the source online on hex editors, compile
it on the Caltech computer, and then download the object
code. We had certain debugging tools that we could use.
There were minor debugging tools, physical hardware to aid
in the downloading and oversight of the process. We’d
basically keep sources on the Caltech computer, compile it
on the Caltech computer, download object code, and run it
on Ted’s local hardware.

 Interviewer: I went through the Caltech newspaper
and I saw that you guys advertised in there trying to
get more people. Did that ever happen? Did you guys
actually manage to hire anybody or was it always just
three?

 David Rolfe: Who was advertising here specifically?

 Interviewer: Technical Magic advertisement in the
California Tech newspaper.

[image: PIC]

 Side Note: An ad for hiring from Technical Magic. This ad would have been placed after the completion of Star Fire and possibly even after the finalization of Fire One.
 Source: The California Tech May 25th, 1979

 David Rolfe: I have no memory of that but that would
have been what Ted was doing, wouldn’t surprise me. If he
ever hired anybody, I’m not remembering it at the time. I
was - if not the only person - for practical purposes, the only
person at that phase of development. Later, he was to get an
office.

 The core of the program was developed in late ‘77. Let
me leap ahead again, just to give a little bit of context of
what we’re talking about here. Wrote the core of the
program in 1977, towards the end of 1977 that was finished.
Ted had been working with Midway, there was a man there
Hank Ross who was head honcho of Midway at the
time. Midway ultimately passed on the machine, didn’t
like the gameplay of it. Didn’t think it was exciting

enough.

 I mean, we spent some time tweaking it and we were
really trying to make something acceptable. They just
kind of didn’t like it. Ted’s income up to that point,
Midway was paying him for the development of the
system. When they passed on the game Ted was at
loose ends, this was probably some time in 1978. He
was left ownership of the hardware developed and the
game.

 So he went shopping it around and it wasn’t released
until 1979 by Exidy. He tried to shop it to everyone. He’d
call me, but by that time I wasn’t working for him I was
working for some other guy and doing Intellivision stuff.
He’d say he’d want to show it to Atari and we’d actually
take the trouble to modify it a little. “Atari Presents”,
“Midway Manufacturing Presents”. We cleaned it up a little
for the purpose of showing it to them.

 I mean, by definition Exidy were the last people that it
got shown to. I’d gotten sick of tailoring it just for people
who they’re going to show it to. When Exidy saw it said
“Atari Presents” or “Somebody Else Presents”, maybe that
helped sell it. Who knows?

 When Hank Ross didn’t like it and was saying we
could get more interesting, we were going to say, “Okay,
what kind of stuff would you like?” He’d said, “Maybe
a witch on a bicycle.” You’d think of the Wizard of
Oz, you know, witch on the bicycle flying in the sky.
So we actually put a witch on a bicycle, crossing the

screen.

 What you now see as an Exidy ship crossing the
screen - left to right, no perspective, no nothing on that -
that was a witch on the bicycle, which would put in for
Hank Ross. We changedf the graphics because that was
stupid. [Laughs] If he implies they might buy it with a
witch on a bicycle, then put a witch on a bicycle. Why
not?

 Interviewer: [Laughs] Okay. I remember on the
Intellivisionaries podcast, you mentioned that you basically
wrote this game with a form of object oriented programming. I
must admit I’m not a great programmer, but as far as I can
tell from the different file structures in the source code, those
are spaces where you’re defining the objects and then doing
calls to different file structures?

 David Rolfe: Yeah. There wasn’t object oriented
programming at that time, I was just kind of talking up that
phrase to look a little bit ahead of the curve. The moving
objects- I mean, that was a hardware concept, right?
The Intellivision system supported eight of them. The
Intellivision programs, the game cartridges, weren’t talking
directly to the hardware, the Exec sat between the game
cartridges and the hardware.

 It had object-type properties. You could give it a
velocity. It had things hardware objects don’t have,
hardware objects don’t have velocities. You could give it
position. You could give it a sequence of images to cycle
through. And you could call certain events. It’s like go from

point A to point B, and when it reaches point B at a
certain velocity, then create an event, and call me. The
game cartridge would be called and say, “Okay, here we
are.”

 For example, the baseball program - which I wrote
- you want to bring a player onto the field. You tell
them, “Okay, go from the dugout to third base. Duh duh
duh duh duh. Then when you reach third base I want
you to change into a background object.” So it gets
called when it gets there. So there’s the smooth thing
running from the dugout to third base and turning into a
background object. The cartridge can do that rather
easily, basically a couple of insertions into the object
in reaction to the event. In that sense, it was object
oriented programming, my version of it before it even
existed.

 Starfire too was my first game program and I was just
fumbling through these concepts. So the whole thing is a
swamp and a mess, and not have it fall apart.

 Interviewer: What was the process of building all of that
up? What were your test programs? I have no idea if you can
even remember this, but what was kind of the way that
you learned how to do a game with this new hardware
system?

 David Rolfe: Well, Ted’s hardware system didn’t have
objects, physical hardware objects the way Intellivision did.
Intellivision had the background blocks and eight assignable
objects. Ted’s system was just a bitmap, and he’d done some

clever things to allow for colors. You couldn’t arbitrarily set
a pixel color, it’s like every byte the background map had
one or two colors so it only took one bit-per-pixel: Color A
or Color B.

 Then each sprite on the screen could be one of those two
colors, which was independently settable. It didn’t take as
much memory because memory was a very precious resource
at that time. So the concept of objects, the stars were
objects for example.

 How did I do it? I obviously fumbled my way through it
and kind of figuring out things as they went wrong. The first
thing I started to do was just put up the star field and
some context (which has always been lousy). It’s one of
the things I’d say, I wish I’d rewritten that kind of
smart. The link with the stars back and forth a little bit
more intelligently rather than crumbly. But there it
is.

 That was like the very first thing I did which is, “Okay,
great. A bunch of star objects.” We give each star some
position. I guess the stars are fixed, but it’s the ship’s
position that can move back and forth. The ship can have a
position and a velocity. If you move the ship, the ship is just
in three spaces, X, Y, and Z. X, Y is obvious enough and Z
moves with respect to the things in the distance, which are
movable.

 You get three things being relevant: Stars (which can
move forward and backward), other enemy craft (which go
forward and backward), and that thing you fire at them,

your torpedo or whatever it is which moves away from you.
But if you accelerate we changed it so it would not move
away so quickly. Actually, I said that backwards. The thing
you fire at them - the laser - it doesn’t go forward and
backwards, you shoot that from corners of the screen. That
was Ted’s idea because shooting from the corners of the
screen was hard.

 I first had them coming in from the sides of the screen;
left, right. That was physically easy to do just because they
just wouldn’t align that way. Having the bolts come from the
corners was hard, but Ted was big on doing things the hard
way if he liked it better (which was probably the right thing
to do at the time).

 It just took like 18 times the processing power. Sometimes
you can see it slowing down just because they dumped too
much on the processor.

 Interviewer: Right. [Laughs] You got like two megahertz
to work with?

 David Rolfe: Yeah, probably something like that. I don’t
know exactly, but not much.

 Interviewer: To someone who’s worked with so many
different processors over the years, did you like working with
the Z-80?

 David Rolfe: For me, the difference between the
processors of that era was pretty minor. They all essentially
did the same thing, as did the PDP-10. You get data from
memory, you move data from memory. You move data
directly indirectly. You add, subtract. The microprocessors

didn’t have division or multiply, you have a routine to do
instead. It was just a different op code with slightly different
attributes.

 One of them has two index registers, one of them has one
index register. So switching between that was pretty easy for
me.I was turning naturally oriented toward that sort of
thing, which of course is a skill that nobody has use for
anymore.

 Interviewer: I know you described this a little bit in
the past, but I want to get into a little bit more about
that bitmap system and how that interacted with the
programming. What sort of things did you have to maneuver
around to make sure that that didn’t eat all the memory all
the time?

 David Rolfe: Okay. We’re talking about Ted’s system
here. It was just a bitmap, so all we had to do was paint the
bitmap. Basically you have a star, it didn’t move where it
was, you know where it goes, you erase it, you write it
where you want it to be. The worst problem with these
things - and you can see some of this, the artifacts in the
gameplay - things have a slight tendency to overlap each
other.

 When I said two bytes, a byte can only have two colors in
it. That’s a byte being mapped to the screen is horizontal -
that is left to right - with a group of five, six, seven, eight. If
you see, for example, a star and then a Tie Fighter moves
close to that star to Tie Fighter may turn blue or gold (or
whatever the color is) simply because they occupied the

same byte.

 It’s a straightforward process. I know where the stars are,
I know where the things that are moving are, and we have a
metronome tick. Tick! Then say, “Okay, time to service the
stars.” The star moved? Erase it, rewrite it. This Tie Fighter
moved? Erase it, rewrite it. This blob moved? Erase it,
rewrite it.

 Interviewer: Had you ever found a solution to implementing
part of the gameplay and then needed to go back and
rewrite it because you didn’t have a lot of processor
time?

 David Rolfe: Well, if things took too long, what it would
cause it to do is miss a tick. That is, somewhere in the
background there are ticks happening and they can see those
ticks. So we’ve got the processes which are running, they’re
supposed to finish off, and then wait for the tick. I’m
like, “Okay, it’s time to do the next cycle.” Then it
would start, move this, move that, then wait for the
tick.

 Now, if you’ve got too much happening, what happens is
you miss the tick. You move the stars and everything, then
you look and say, “I’m going to wait for the tick- Oh! The
tick I was waiting for has already happened.” But then you
just let go immediately onto the next step, maybe you’ll
catch up or maybe you won’t. Maybe you’ll just fall
behind.

 So the penalty there is, it’s not like anything terrible
happens, but the game will start to slow down. I’m pretty

good about trying to make things as efficient as possible. So
it’s like thinking, “All right, let’s not do something
which is going to actually halt us.” That - more or
less - worked. I mean you could probably see things,
for example if you get four enemy ships and they’re
all really, really big. They all have to be erased and
rewritten, there might be some moments there where the
thing overtly slows down. Because what we’re supposed
to be doing in three ticks they’re doing in five, but
if it occasionally misses one it’s reasonably efficient
loops.

 I mean, that was a skill we developed in those days. That
was one of the marks of social status of, “Okay, how can I
write a loop with as few instructions as possible? How can I
save this using as little memory as possible? As few resources
as possible?” I mean, we’ve transitioned to the point where,
okay, I write the most trivial thing and it’s megabytes! That
was unthinkable at the time. It’s like you’re going to buy
a car and it gets a mile per 50 gallons. Think about
that.

 Interviewer: Yeah. How would you be able to test this
and the turnaround? You said you were writing the code
itself on a teletype, so how would you guys burn out the
ROM and test it on a CRT?

 David Rolfe: I didn’t have to burn a ROM test. That
would not have been practical. The debug system had RAM
mapped to where the ROM would be. There was certain
standard tricks to the trade we’d developed by then. Crude

but effective.

 Now you had to keep a lot of stuff in your head. Your
ability to just test every change was severely impeded. So
you just had a different method of doing things. You kept it
in your head. You put a whole bunch of things deep in your
head and then try to debug it before it fell out of your head.
You got the sources on the remote system, you compile the
sources so it’s binary. What you do next is you would
effectively tell something to type it to you, so it would
come out on your screen, the binary file (or possibly
hex binary). There would be a key code in there, it
would start with Ctrl+A or something, some magic
code.

 The debugger, which was passing the software through
your terminal, would see “Ah, here’s that CTRL+A.
That means that the data to follow isn’t to go onto
this screen, it’s to be loaded into RAM.” So it would
interpret what followed and be loaded into RAM for
debugging purposes. The only difficulty there is the
download.

 Because Ted was amazingly ambitious and wanted to do
everything he had done before using more resources than
anybody used before. There were processors in games,
2K or 4K, “No! we want to do 20K, 30K! Assembly
programming!”

 We ended up with - what is it - 20K or something,
extremely huge for it’s time. The download was a little bit
slow. We’re talking several minutes, at least. If someone

turned on a flourescent light or something it would glitch the
processor and you’d have to start over or something. It gets
kind of frustrating.

 You’d start the process “Dink, dink, dink, dink” it
would load it into RAM. I’d have it as if it were in
ROM, but it was in RAM and I could run as if it were
a real program, and with break points. So we had a
process and methodology and just as people with manual
typewriters, got very good at them. Interviewer:I know
that Ted is usually, in the general credits, listed as the
designer and you’re the programmer. Would say that’s
accurate?

 David Rolfe: Oh yeah. I mean, the game was his idea. He
wanted it, he was the Star Wars fan. [Laughs] He wanted to
recreate it. Now, these credits don’t mean a lot to me. I care,
it’s not my ego. I know what I did. I’m very happy. The part
I do is make the thing work.

 I mean, a lot of the things of what the design is are very
squishy. You know, you want to make the buttons so it feels
right. There’s a lot of nuances which go into these things
that a game is satisfying, and that’s what I’m pretty good
at. I’m not good with the graphics. I’m not good with the
overall game concept, but once things are there I tweak them
and nuance them and make them work. Credit whoever you
like. It certainly wouldn’t have happened without Ted. He
designed the hardware, he had the ideas in his head. The
grand ideas which are far more random than I would ever
imagine, but I’m the guy who made it work. It takes all

kinds.

 Interviewer: I was also curious since you brought it up:
When you were testing it, what kind of controls were you
using for it? Did you have something rigged up with some
sort of joystick?

 David Rolfe: Oh, yeah. Probably some certain joystick. I
don’t remember specifically. I mean the wheel and the like
came out of the Exidy game design department. Obviously,
there’s not a lot there that really matters in the technical
sense. You had a joystick, a wheel, whatever. Something
crude, which got the job done.

 By the way, the accelerator was an analog device, which
Ted regretted in later games like Fire One because it tended
to jump. It wasn’t steady. We had a lot of things that tend
to be noisy. So it has some digital switch for Fire One, far
superior.

 The original version of Star Fire very difficult. There’s
the concept of typing in your initials (yes, I claim that). It
was sort of my idea, which was my direction to preserve a
little history (at least until you unplugged it, it didn’t hold
memory or anything).

 Interviewer: In making the high score table, did that
constitute an extra ROM or RAM usage or anything?

 David Rolfe: No, no. Memories just store that, three
initials and a number. We certainly had plenty of memory
for that sort of thing.

 By the way, Star Fire 2 there wasn’t really much change,
but they wanted it to be the second run and they wanted to

have a ‘2’ in it. I don’t even know if that was ever sold.
Starfire 2 was far more cleaned up, much more usable,
impressive, and high game retention. It was very difficult to
enter your names and... I’m stupid.

 Interviewer: [Laughs] Right. Was it your idea to do the
high score table?

 David Rolfe: Yeah. I sort of remembered that conversation
where, we’re talking about, “How can we make this game
special?” You always wanted to do all sorts of things which
had never been done before. Using processors when people
weren’t using processors, color when people weren’t using
color, and the like. What do people really want to do?
People want to put their name on the thing! Why don’t
they?

 Interviewer: Was there a particular inspiration behind
that? Had you seen that on like pinball machine?

 David Rolfe: No, I didn’t think that it had ever been
done before. There was no continuity that I recall. The
concept of continuity was a new one. Indeed there’s little
messages if you put Ted’s initials or my initials.

 Interviewer: I was surprised to know that Ted’s middle
name is a Z. [Laughs]

 David Rolfe: I believe it is. I think his name is Zigmund.

 Interviewer: Also his girlfriend, Susan, did you have
interaction with her or was it all through Ted?

 David Rolfe: I mean, she was there and she was around
and she was helping. She brought me in some of the artwork.
I’ve always been kind of a night owl for the broad reasons

to work at night. He had an apartment building and
go over to his apartment, sometimes just you’ll stay
there. Have me do these things over here, fanatic about
it programming int othe small hours of the morning.
[Laughs]

 His neighbor was complaining to him... We weren’t
making noise, it’s your first thought it was the noise because
we were trying to get some sound effects to the thing. But
apparently he had a balcony, the glass door on the balcony
and we were creating the explosion effects. It might’ve been
my idea to pulse that black, white, black, white, black, white
when you get hit. This was going out the window of a big
flash of light and apparently going into neighbors’ windows,
a big flash of light, which was disturbing in the small hours
of the morning. [Laughs] So anyway, you have a little
space around you, always doing something to annoy
somebody.

 Interviewer: Yeah. That’s why programmers need to be in
their own little space.

 David Rolfe: Oh, yeah. I don’t know how programmers
are these days. I mean, these days projects are monster
projects. I’ve never understood that. I always look for little
things that I can own. It seems like the world wants a
thousand people working on things. You know, how does
Google do anything?

 They do amazing things, obviously it works. They make
it work. I find the concept intimidating. Just speaking from
a different era.

 Interviewer: Yeah. Especially Intellivision people that I’ve
talked to, they feel the exact same way. It’s like, “I wish you
could go back to the days where one person could do
everything.”

 David Rolfe: Yeah. If I really wanted to retrain myself, I
could try to work with Google or something. I don’t find
myself motivated the way it was originally motivated.

 Interviewer: So I know it was kind of on/off, because you
went to APh. What was the production cycle for Star Fire?
How many months did you work on it directly?

 David Rolfe: Let me see... I worked on it very intensely. It
is funny, at that stage of life, that was the only thing in the
world. Eat, sleep, and program. Late hours of the night, you
don’t think of anything else.

 It’s like three months of Star Fire, three months in the
latter section of 1977. Then I was at APh, then some follow
up here and there to polish it off for Exidy and other
potential customers. I can’t say exactly, but we’re four
months, five months. There was other work for the images,
which Ted did or Susan did.

 Interviewer: I know you wouldn’t really know, but I’m
very interested to know what Ted did during that time while
he was shopping it around. I imagine he wasn’t just sitting
around.

 David Rolfe: Yeah. I wasn’t with him that time, so I’m
not sure. Ted’s an interesting case, in that he was an
entrepreneur in very ambitious ideas. and, The kind of thing
which you wonder whether they were ever going to come to

fruition or whether there are several bridges too far, if you
know what I mean? In some sense they were bridges too far.
I don’t know what he’s been doing. I think he’s doing
contract work subsequently. He didn’t really continue forever
as an independent.

 I had worked with him as an employee. There’s at least
one other person who worked with him as an employee. To
try and be fair in what I say here, he was a good guy, but he
wasn’t the kind of guy who could manage people, right. He
didn’t pull together teams of people and make them work
and make them grow.

 I don’t want to say anything bad about him. I couldn’t
really work that closely with him forever. If that says
something about me, I don’t know. I tend to work isolated
as well. So people have to accommodate my quirkiness; find
it worth it.

 Interviewer: Did you start working on the other
games before it got accepted? Fire One and Kreepy
Krawlers before it got accepted by Exidy or only after that
happened?

 David Rolfe: No, I think that was after. I don’t think Ted
had any resources to even draw me in until he had the sale
to Exidy I was helping small ways to get that sale to
execute. Then once he had the deal with Exidy, then it was,
“Okay, let’s do another game.”

 Interviewer: The style of both those games is completely
different, but it is the same hardware, right?

 David Rolfe: Yes. The same underlying hardware. The

thing about Fire One was it was better thought out.
You could see, Star Fire is very much freeform. I mean,
we got the panel at the bottom of it, and that was
thought out. Beyond that, you have stars and just things
wander around in the stars and they kind of step on each
other.

[image: PIC]

Fire One, Released October 1979 by Exidy, Inc.The submarine game features two views of the battlefield at once.

 Fire One, as you see, was more compartmentalized, more
made to work with Ted’s hardware, and far more thoroughly
designed, which doesn’t necessarily make for a better game.
When I say it’s a far better program, if you look at its
gameplay, you see why I say that.

 It’s got more going on, it’s got independent processes,
each of which is confined within its regions. It’s got the
radar, it’s got the up-down effect, it’s got the ships in
contained areas. It’s more controlled. Things aren’t stepping
on each other, the way they stepped on each other in Star
Fire. Basically some crazy free-for-all of stars and ships
wandering around randomly. Am I making any sense
here?

 Interviewer: Yeah! I understand the idea of it being more
thoroughly thought through and in terms of the feel, it is
better.

 David Rolfe: Yeah, and the controls, they had the digital
controls. For example, I was talking about the limitation of
the hardware, that there were only two colors per byte. So
when you see on the horizontal columns in Fire One,
the border of your column was always on an eight bit
boundary. Such that ships could go off the side and
the colors would match properly. Nothing would ever
bleed over onto anything else. The game was designed
around the limitations of the hardware, unlike Star
Fire.

 Interviewer: It was kind of leapfrogging. [Laughs]

 David Rolfe: Yeah. The software - in terms of organizing
the objects and organizing the flows such that everything
gets served within the timeframe; let’s interrupt level
programming happen - it was better at programming that
hardware and better programming games by that point. It
was better in every technical way it’s possible to be better,
but nobody seemed to like it.

 Interviewer: [Laughs] Just as with all your games,
it’s definitely an interesting program. I think it plays
well.

 David Rolfe: Yeah. I think Ted had - possibly still
has - a physical Fire One. There’s not a lot of them in
the world. Some people occasionally have contacted
me and asked about Kreepy Krawlers as if that’s the
Holy Grail. They’re looking for unfound games that
nobody’s ever seen. The one about that game with the
curse.

 People are looking to unearth something. I say, “Look,
Kreepy Krawlers barely existed, and wasn’t particularly
good.” Somebody has occasionally said, but they thought
one they saw when somewhere. It’s possible somebody
built one and shipped it! I don’t know, not that I know
of.

 Fire One is quite rare. Ted has one and it may be the
only one. They didn’t make a lot of them. I’d say for my
money that’s a good Holy Grail if somebody wants to chase
down something which is rare and maybe kind of good for its
era.

 Interviewer: Right. One person I talked to at Exidy
[Edward Valleau] - I’m not sure if you recall this - but there
was a Star Fire cabinet that they put on a hydraulic chair so
that it moved around.

 David Rolfe: Oh yeah. I had heard it said that somebody
in Japan had bought a Star Fire or multiple Star Fires. They
just don’t put hydraulics underneath it and physically
connected it such that when you pull back this thing
happened, you pushed down and that thing happened.
Exidy never manufactured any such thing, but people in
Japan.

 That was an era - I guess that still continues - Asia
tended to rip things off and just remanufacture them. I don’t
know whether there was a way of dealing with that. You
send somebody around to either collect a royalty or break
their legs.

 Interviewer: I had not heard that part of the story, which
is good. If I ever talk to Ted, I’ll ask him if that was ever the
case.

 With Fire One, was there a mandate that you needed
to do a two player game? Because Star Fire was not
one.

 David Rolfe: I’m not sure whether it was a mandate or
not. Why that game in particular? I mean, Ted was the
driving force in the game we undertook. Ted, as you see from
Star Fire, he likes complete freeform world. You’re emulating
a different space: Go in any direction you want, you can do
anything you want.

 Ted wanted the same thing, he wanted to see a submarine
type game and you wanted completely freeform. You can go
anywhere, you can put your Periscope up, you can put
your Periscope down. I just didn’t have any notion... It
was my influence that says, “Look, we’ve got to limit
this. We’ve got to have a design.” So okay, yeah yeah
yeah.

 What does it mean? You can go underwater. What do
you do? You get the information from 360 degrees? I
suppose that can all be done, but it’s just so diffused as
to not clear how to make a game out of it: a timed
game.

 Maybe you could make a home game out of that sort of
thing. Home games were a very nebulous concept at that
time. It was starting to happen with your 6502, you’re 2K of
ROM, and your few bytes of RAM, but you certainly
couldn’t do freeform all the way. Though Adventure did an
amazing job of it. So what am I saying? Ted wanted
something real world, real resources and I guess it was my
influence, “Let’s limit it. Let’s do something we can actually
do here.” We ended up practically linear, having the two
things facing each other, and creating the world from one
side perspective and the other side perspective. The lines of
ships so they didn’t float freeform, but they’re kind of a
known contest. We kind of reeled it into something that I
thought could be physically implemented - possibly
understood - and suitable to a timed game. That limited
time game being a quarter, you can’t give them hours of

play.

 Interviewer: So things like the way that the reload of the
missiles work, which of you would have been making those
decisions?

 David Rolfe: Probably Ted but it sort of follows. You
have to have some limit on your resources. You don’t want it
to be too much of a limit on your resources, and it’s a nice
graphic effect.

 Interviewer: It is pretty cool!

 David Rolfe: We can’t fire too many torpedoes, we can’t
portray too many torpedoes also. Somewhere between Ted’s
direction and sort of inherently, something like that, and
that would be the way to do it.

 Interviewer: Were you looking at it kind of like… When
I’m looking at this, I kind of just automatically thinking
Battleship in a lot of ways. I know that’s not really the same
kind of thing.

 David Rolfe: Oh, sure.

 Interviewer: I know you didn’t play many games,
but were you looking at things in terms of inspiration
and of how to portray something or what would feel
good?

 David Rolfe: I tended not to look at other games too
much. This wasn’t out of any ethical thing, I found it more
confusing. I would just kind of trust my own instincts for
these things.

 Foote not here: with respect to Beamrider for Intellivision,
the semi-last game I did. There were reviews of that,

and somebody had said it was obviously a rip off of
Tempest. I was like I’d taken Tempest and flattened it
(there was an arcade game called Tempest). I had never
played Tempest in my life, you know? I didn’t have
Tempest in my head. I didn’t have any intention of ripping
Tempest. It’s like fiction at some level, there’s always
overlap and no matter what you do. Sometimes it’s
plagiarism, sometimes it’s subconscious, sometimes it’s
coincidental.

 So I can’t say I was thinking about Battleship. There was
one other game which did strike me as a little bit similar.
This didn’t bother me at the time, I wouldn’t want to do
anything too similar. I think it might’ve even been an
Exidy game. It had two tanks - in a similar two parter
- shooting at each other and they were protected by
hedges.

 The first shot would take out a portion of the hedge and
then a second shot could go through the hedge. So if you
were trying to shoot the other guy’s hedge, you shoot him,
but he had ducked him behind whatever was left of your
hedges. We had the ships in the background, it didn’t have
the ability to go under water. No Periscope, down Periscope.
So we were far more elaborate.

 In a way there was a sort of a similarity of two things,
moving back and forth in a line trying to shoot at the other
guy. Yeah, it’s possible. One of the issues with the Fire
One was, it’s not just not clear what your object was. I
mean, on one hand you’re shooting at the other guy’s

ships, on the other hand you’re shooting at the other
guy.

 Interviewer: It could be a good remake for the modern
era. The idea is pretty cool. You know, they have these
constantly moving ships. I think there’s a lot of interesting
strategy that you could pull out of that.

 David Rolfe: Oh, yeah. The modern era is so vastly
different today. There’s not much in terms of remakes,
except for certain retrobrew.

 Interviewer: We’ve got the Intellivision Amico coming
along. So we might see some of your games being remade.

 David Rolfe: Oh yeah, definitely..

 Interviewer: So did technical magic just kind of sputter
out? Did it have any sort of finality to it or did you
just decide to go with APh and that was the end of
it?

 David Rolfe: After Fire One didn’t do well and Ted
wanted to get something to sell to Exidy. That was the final
push for Kreepy Krawlers which was a screen black and
white screen, just get something out and make something
out. That was intended as something of a ripoff of Space
Invaders. I was talking about flattening Tempest. Well
Kreepy Krawlers was like, taking Space Invaders and putting
it into a spiral. [Laughs]

 The game actually sort of worked but required polish,
which is why I didn’t think it had ever been shipped. But
anyway, that didn’t seem to be getting anywhere. Exidy
didn’t seem to be biting or buying and the game industry

might’ve been slowing down.

 I had some issues working with Ted, there was a
certain amount of friction building up there. I always
wanted to be the place where I’d be useful and the
Intellivision system was happening. Okay, “I can be
useful in that or hang around here and do God knows
what.” So I think technical magic probably petered
out.

 Interviewer: And Exidy was never really interested in like
giving you a job or anything?

 David Rolfe: I did not inquire to Exidy. The Intellivision
thing was other people I knew. So I stuck with that rather
than go to some strange place.

 Interviewer: I am interested to know a little bit about the
early stages of being at APh. What was the connection that
you had to APh?

 David Rolfe: As with Ted, APH was just two guys who I
knew from Caltech who were a couple of years ahead
of me. This is the only way I’ve ever gotten jobs. So
I’ve been able to get away with it for which I am very
grateful. That was very lucky. The people who have
known me, that know what to do with me, I am very
valuable.

 Interviewer: This was, was this a Glen Hightower?
Yeah.

 David Rolfe: Yes, Glen Hightower. When I first went to
work for APH, it was very much like my working with
Ted. That is, this was out of a rented bungalow. One of

these guys, I would go to his bungalow. Then finally,
after some number of months of this, I’m working out
of my house. In those days you could program with
like pencil and paper (which I did). Then you’d go to
Caltech computing center, enter it into a modem or
something.

 Interviewer: They didn’t have a teletype there?

 David Rolfe: I didn’t have my own. I think we had the
CRTs, certainly a Ted’s house, and at Glen’s place. There’s a
picture I’ve unearthed recently of me working at APH in the
early days. This was lik after we’d gotten legit, had an office,
and had like a couple of other employees. This was after we
had the Mattel contract.

 What you see all are several desks with paper on them!
[Laughs] No screens on them. No keyboards on them. No
nothing. That was the way we did things at first. This is sort
of the arc of my professional life. I started with Ted, go to
his apartment, he had some hardware, to write programs at
his living room table. I would go to his house, then finally he
got legitimate and got like a little space in the basement of
some bank. It was commercial property, but he was in the
basement (where nobody wanted to be). He even had a
vault.

 Let me tell you how cheap these people were. We had a
modem - this was before we had computers so we had a
modem as before - and Glen got a payphone installed. This
was the days of metered calls, you didn’t have your free calls.
They did have unlimited calling for a home line, but this was

a business, so we had to have a business line. They didn’t
have a meter going up like a taxi - ding ding ding ding -
every minute, two or three minutes, whatever it was, of your
call.

 He had the payphone installed next to the modem.
[Laughs] Cause you couldn’t make an unlimited local call on
a pay phone. You could not call connect to the Caltech
computer to do the same thing I was talking about with
Ted. You take the payphone off the hook, you put in a dime,
it leaves the call going. [Laughs] That was how we did
things.

 Interviewer: When I was taking programming, we had
this brief affair with a pseudo code. It’s like, “Write down
what you’re going to do with your code so it’s faster when
you put it in.” That never really helped, but in that
circumstance where data transfers so precious, I imagine
that helped quite a bit.

 David Rolfe: I never thought in terms of pseudocode.

 Interviewer: Right, you were doing actual code, because
you needed to preserve the data line.

 David Rolfe: Yes. The idea was for a dime, we called
the Caltech computer over the modem and keep our
connection without getting our phone bill to go up. A
dime would cover an unlimited local call. Whereas the
business line would have cost 10 cents every three minutes
for the local call, and you have to stay connected for
long periods of time. That actually cost money. These
days, unlimited calling everywhere, it doesn’t mean a

thing.

 Interviewer: What was your interaction with the
hardware people at Mattel? Did you ever have any contact
with David Chandler?

 David Rolfe: I mean, we didn’t have deep professional
contact. I wasn’t working with them, just getting
information from them. I knew him, but I didn’t work
closely with him. He was designing the stuff, I was using the
stuff.

 Interviewer: By the time that you were working on
it, was it pretty much a finalized system for the most
part?

 David Rolfe: No, it wasn’t. I first encountered the
Intellivision project December 1977, late ‘77. The heart of it
was the STIC chip. That at the time did not exist as a chip,
it existed as an emulator the size of a small refrigerator. Not
tall, but it was basically a big box of stuff. They were using
the GI 1600 processor.

Side Note: The Standard Television Interface Chip (STIC) was designed by Gilbrt Duncan Harrower of General Instruments as the basis for an interchangeable video game system after working on Pong-on-a-chip systems.

 We had the concept of how the controllers were going to
work. We must have had some controllers because I was
doing something to accept controls. I don’t remember

exactly, but I do remember these things being discussed at
the time. I don’t know how finalized they were, but clearly
at the time I first saw the thing was a Mattel facility in
Rosecrans Ave. South of where I am by 20-30 miles. That
was where we actually had to physically go because they had
the one unit there at the time and do the original demo
program.

 That was kind of interesting. They wanted to show some
sort of a demo at the Consumer Electronics Show. At the
time it was a really big deal. These days going to convention
seems a lot less important. At the time you physically had to
go places to see things, and it really was a place for
announcements and the like. They wanted to have some
sort of a prototype, some sort of a demonstration in
their hospitality suite they were going tell people about
it.

 Interviewer: And it was all very, very last minute from
what I can tell.

 David Rolfe: Yeah. I spoke about the transition in
terms of processors being the way things were being
done, but the old people didn’t have that in their blood.
What they had was like some old hardware guy - they’re
not terribly old or anything - but he was still doing
hardware. So when they promoted him and say, “Okay,
can you write a demo for this?” He said, “Yeah, sure.”
He was tinkering, tinkering, tinkering with machine
language. He was over his head, when everybody realized he
was over his head said, “Oh gosh, you know, maybe

we need people who do software development instead
of give this guy it’s hardware and code the machine
language and hope that that’s going to be a suitable
demo.”

 As often happens under these circumstances called
asking, “Hey, this guy, like he has something, can you help
him? Can you help him finish it?” To which the answer is
always… No. [Laughs] If somebody has something it’s limping
along, doesn’t work, it crashes and breaks, you never want to
be thrown into it to fix it.

 “I’m starting from scratch. Thank you very much!” You
know? “You want us to do it? We’ll do it. You want us to fix
it? No.” [Laughs] That was how that went down and how we
got our foot in the door. I wasn’t being artificial about that.
I mean, it is physically impossible to fix somebody else’s
broken machine code.

 Ted used to talk about that sort of thing. He’d come
in and see a board design at the Micronetics stage.
Somebody will come up with an ambitious board design
with a lot of analog parts on it and it wouldn’t quite
work. They’d say, “We know you can make it work
because one of our boards worked.” In analog, that
means nothing because within the tolerance of the parts
that one of them happened to work. It doesn’t mean
to decide is it all workable. It just means something
or other happened to fall in the range that it didn’t
fail.

 Interviewer: [Laughs] I know that from programming!

 David Rolfe: That’s what that’s, what makes you kind of
good it what you do. You need to have a sense of what’s
possible. Stick to doing things which are possible and do
them.

 Interviewer: You talked about how you’re a toolmaker,
but in terms of Star Fire that was only something for you.
Was it made clear that when you were doing the Exec that
this was something that other people were going to have to
use?

 David Rolfe: Oh, of course that was the design.

 That was the entire goal of the Exec, which is that we
could make cartridges and they’d be easier for people to
write because they wouldn’t have to invent the wheel. This
would take on the mundane tasks, leaving the specialized
tasks to the game cartridge itself. They could get a lot more
bang for the buck that is with 4K games that could have the
equivalent of what would be an 8K game because they
wouldn’t have to do the animation.

 We did demos to show why this was useful. Imagine
you’re doing a running man. He wants a man to run from
point A to point B while cycling through a running
sequence. Well, imagine programming that. You have to
program the running sequence, you have to program how it
gets from point A to point B, you had to program how it
responds to the controller. You have to program all these
details.

 Instead you just have the Exec, so the cartridge can say,
“Alright, here’s some pictures. Cycle through these pictures

and we’ll just swap it from there to there.” That’s nothing.
That takes relatively little code, relatively little effort. You
can do that in a few minutes as opposed to programming
every boring detail of it.

 Knowing that there was going to be a suite of games,
that was the goal from the beginning. They wanted to come
out with, you know, six or eight games. The guy who I was
talking about, who was fumbling with the deed, said, “Oh
yeah, I can do six or eight games.” Yeah. We knew! I
couldn’t do six or eight games, but I could develop the Exec
and a game at the same time.

 This is the hard part, you know. You’re creating this
thing. It’s like, you’re building this foundation and you’re
not quite sure what you’re going to put on top of it. You’re
trying your best to have the foundation under the building
you want to build on top of it instead of off to the side.
Under the circumstances, I think it went pretty well
considering that it had to come before the games. Ideally
you learn more and more about what you should have done
once you start to write games; you know what features you
want.

 Interviewer: You’ve probably been told this a million
times, but everybody at Mattel who had to work with it,
loves you because you did exactly what you needed to do.
You made something that was clear for them to use even as
not as greatly experienced programmers.

 David Rolfe: Yeah, I tried as hard as I could. It wasn’t
just me. We had developed the assemblers, which somebody

else had written, and the debugging techniques, which had
been developed by other people. There was some very
good people. A bunch of good people came together
at APh and while it was going strong our sprints all
multiplied, but I drink to my part of it, which is to make
the Exec work and make it no more complicated than
necessary.

 These things are inherently messy and complicated. In
respect to dealing with Mattel, they wanted to bring
technology in house. They didn’t want to rely on this weird
little group that they didn’t know, and we were always
trying to stay one step ahead of them. Do things a little
better and have some tricks that they didn’t know. And
advantage. We want it to remain a vital resource, not
something that could be obsoleted. We don’t need to do any
more.

 So there was a little bit of rivalry going on there, just for
your background at the situation, but we were on good
terms with them. We were not unfriendly, we did not throw
them off, and when they paid for something we would give
them the good stuff.

 There were also, by the way, funny things going on. That
was the era when people were starting to go outside and
produce third party games. The Activision people started
this, they were Atari programmers. You’re getting nothing,
you’re getting no credit, they were getting no money. Do it
for another company. They made themselves rich and rather
famous.

 Other people in the Intellivision world, some Mattel
people came to work with us. It was, “Okay. Train this guy,
show him how to develop the Intellivision games. Here’s how
it’s done. Here’s another idea. Here’s the key to the
kingdom” They said, “Thanks.” Quit Mattel, went to form
Imagic. [Laughs] Lord knows, I had some notions to do that
in myself, in retrospect economically should have, but I can
not make leaps like that, which makes for a very steady life
but not necessarily optimal depending on how you look at it.
With Activision, only when circumstances can crash planes
around me.

 Interviewer: Right. Who were the people at APH before
you left? Who are the people writing those initial games
before Mattel took over?

 David Rolfe: Well, the first crop of great games... I had
an advantage there as the guy hiring because I still knew the
people at Cal tech, people who were like one year behind me.
We had the Summer hire program, which was a very risky
thing to do. You Summer hire people who will definitely go
back to school at the end of the year. So if they leave you
with a bunch of unfinished things, you’re doomed. You gotta
go finish their broken games, but we got some good
people.

 So the initial games, was a tanks game [Armor Battle] by
Chris [Kingsley]. There was Hal Finney, who was by the
way a rather famous mathematician. One of the initial
developers of Bitcoin and the receiver of the first Bitcoin
transaction.

 Interviewer: Oh wow.

 David Rolfe: He died of ALS, Lou Gehrig’s disease.

 Interviewer: So there’s the tank game, the backgammon
game.

 David Rolfe: The backgammon game [ABPA Backgammon]
by Kevin [Miller]… I know these names very well, but you got
to blow the dust.

 Interviewer: [Laughs] That’s why I’m here! I’m here to
help.

 David Rolfe: There was Ken Smith, he did the basketball
game [NBA Basketball] and I think after that a football
game [NFL Football]. Chris Kingsley, did Math Fun, I think
he did tanks somewhere along the line. Larry Zwick, who
died of skin cancer years later, had done the racing game
[Auto Racing] and he loved cars.

Side Note: Math Fun is credited to Kimo Yap.

 He was like that, he tended to wreck cars every now
and then. Once, he wrecked a car with the other APh
people in it and that brought video game development to
a halt. [Laughs] That taught me to be willing to - if
someone is driving badly - to say “Stop the car, I’m getting
out.”

 Before that this was things which don’t happen to you.
They happened to other people. I realized, yes, you can be
killed, mamed, otherwise subject to unpleasantness. I take
driving very, very seriously. I look forward to autonomous

cars.

 Interviewer: Yes! I’m in the same boat. I hate driving.

 I know some of these names are out there, but aside
from the breakup, was there a good camaraderie among
everybody there?

 David Rolfe: Oh sure. We were young, we were creating
this thing which was going out to take over the world, the
future was bright. It was great. It was neat. You’re intensely
building these things which haven’t been done before, you’re
making them work, they’re going to go into the world.
That was a real high. We were in it together and it
was purely delightful. I was just completely devoted, I
had absolutely nothing in my life. Doing the games
24/7, I had my little room off in the corner, it bed on
the floor, and some shelves made of boards and cinder
blocks. I got myself a stereo system, which was what you
did.

 Interviewer: Were there any particular albums of the
day?

 David Rolfe: Oh yeah. That was the sixties and seventies,
so everybody had their case, but there were certain things
which were the ascendancy at the time. Pink Floyd, Jethro
Tull.

 Interviewer: Somehow it doesn’t surprise me that the
programmers like Prog Rock!

 One thing that I was interested to know, at what point
did the baseball game become licensed? Was that something
that was planned from the beginning? I don’t know if you

had to do anything to the code. Do you recall when that
happened?

 David Rolfe: Well, I can tell you my impression of these
things. This was purely marketing. Zero effect on us except
with respect to the titles, which was arbitrary text.
They called it “Major League Baseball”. Recall that
Intellivision cost more than the Atari 2600, was more
respectable, and George Plimpton was pushing it. I guess
this was part of the mantle of respectability that we were
given.

 They licensed everything. Las Vegas Blackjack & Poker. I
mean they actually paid somebody to say there’s Las Vegas,
probably the Las Vegas chamber of commerce. They
paid Major League Baseball to use that emblem on the
packaging. The same with Basketball, probably also the
Backgammon association (oh god, no). Presumably
anything which they could make official. If somebody
had checked the right to use their logo. That didn’t
affect us at all as far as I recall, it certainly didn’t affect
me.

 Interviewer: One thing that I forgot to ask before is you
were talking about the emulator of the STIC chip. Did you
have to ever make any significant changes to the code after it
was finalized?

 David Rolfe: We did occasionally find bugs in the STIC
chip, or some quirky thing. Like certain instructions,
you couldn’t have several of them in a row. For some
weird reason you couldn’t have “moves to memory”

more than about several of them in a row or it would
prevent interrupts from happening. Something weird like
that.

 We would have to discover those things where the
restrictions were even more severe than they were supposed
to be. We would tell them to fix it to the final hardware. So
I’m not sure exactly what you’re asking here and if I’m
answering it.

 Interviewer: You are. The main thing is that there’s a
couple stories about why Intellivision was delayed, because it
seems like they wanted to put it out in 1978 and then it
came out in 1979 at the end. I don’t know if you have any
sort of insight, whether there were issues on the technical
side or anything like that.

 David Rolfe: Okay… Anything I tell you we’ll be a little
bit big. We were aware of this. There seemed to be some
uncertainty at some point as to whether the project
was going to go out at all with. When I heard rumors
about that, they were very depressing. You’ve been
working on this thing, you’ve been putting all your
energy into it, and “Oh, I don’t think we’re going to sell
it.”

 Some of these things, you’ll probably get more information
from the Blue Sky Rangers who were inside Mattel or
other people at APh who were a little like more of the
management, Glen or his assistants. What they would feed
me was a little bit optimistic. You wouldn’t want to say, “All
right, it’s all for nothing. You know, who cares?” This is very

bad for morale.

 My understanding was it was delayed, possibly. There
were technical issues. I mean, there’s always technical
glitches. They either cost more, or they don’t work. So there
might’ve been some of that and there might have been some
concerns about whether it was worth marketing. They bring
something more expensive than the 2600 to the market,
would people buy it? This was apparently a point that
genuinely the hung in the balance, and then finally went
out.

 Did it even make Christmas?

 Interviewer: Yeah. It was like December 3rd is when it
launched. That was just in California.

[image: PIC]

Side Note: David Chandler’s internal timeline claims that the test market went out on December 3rd under the Sylvania brand, but some contemporary publications claim it started in mid-November.

 David Rolfe: I remember finally going to one in Broadway
and seeing it. “Oh wow, it’s there! That’s a relief.”

 Interviewer: I actually talked to a guy who did some of
the distribution, and he said there was a launch event in
New York. He says that he played baseball with you in a
display window.

 David Rolfe: Did I go to New York…? I went to New
York for something somewhere along the line? I don’t
remember. I mean, people occasionally ask me to play

Baseball.

 Interviewer: It was kind of a marketing thing, which I
thought was odd since Mattel wasn’t really promoting the
game designers. It’d be kind of strange that you would be
out there.

 David Rolfe: I mean, for Activision something would get
promoted. Certainly Mattel never promoted game designers.
The only traveling with Mattel I’m remembering is to GI, to
talk about the design of the chip a little bit. They were
somewhere back East, somewhere in upstate New York. We
certainly did that on our own nickel. Mattel was not very
forthcoming for us.

 Interviewer: Since you mentioned it, was CES a fun event
back then. Was that something that you looked forward to
or were you stressed about it?

 David Rolfe: Oh, no. At the time, the concept of the
things were exciting there in that particular people of this
subculture were into stereo because that was where the
energy went. You could homebrew your stereo with people. I
never, I wasn’t a hardware guy, I knew people that were
making speakers, they were making amplifiers because these
were things you could make yourself or you could buy kits to
make them.

 You couldn’t really do that with the television. Stereos
where the sweet spot in reproducing, the perfect music that
was the thing everybody was questing for. Small companies
would go to CES for the outlying booths and make all sorts
of claims. If it didn’t have turntables, you would buy per

on grad basis to make sure that they were stable as a
rock.

 Somebody would come up with a speaker with various
weird speaker designs that somebody had designed in his
garage. Some would have like plasma, helium gas, fuel
leaking out of them so you could create the diaphragm of
helium. Crazy stuff would come along! Some would
claim crackpot things like spinning the electrons “the
proper way”, purifying the electricity. Better wires, gold
connectors.

 I would basically get dragged along to see all sorts of
stuff which we hadn’t seen before, because there was no way
to get this information. Occasionally we’d come back with
weird little toys. We’d look for floor samples and bargains,
some weird stuff. I got something called the Bionic Chair. I
still got them here and occasionally sit in them, we bought a
bunch of them for personal use, just this weird rocking chair
that sits on the ground.

[image: PIC]

 Side Note: David Rolfe's badge from the 1979 AMOA show where they would have shown Fire One.
 Courtesy of David Rolfe.

 Here, some stupid little anecdote: Something called an IQ
Master or something. You close your eyes, it flashes
lights, and it puts sound out, “Duhduhduhduh.” It moves
more slowly or more quickly as LED lights are flashing
into your eyes, but your eyes are closed. So it creates
an interesting effect. You’re seeing kind of like weird

patterns underneath your lids. Something is rapidly
blinking on and off, you’ll see the color patterns, waves and
ripples.

 They claimed that they were mind machines and they
had these various programs for making you smarter,
making you sleep, thinking this or that. I just thought
that was neat because there in a hustle and bustle,
thousands of people milling around, and then go in here, sit
in their chair, and put this mind machine on. It was
like I was a different world. I ended up buying one of
those.

 I looked on the internet recently, I saw some historical
things. Like the FDA decided they induced epilepsy
they’re sealing and destroying all the ones that they
can get their hands on. [Laughs] Okay. I keep in mind,
I still have it, I sometimes use it. I’ve got it next to
another weird chair that I’ve got here, you can kind of
sit back and relax. It hasn’t included epilepsy in me
yet.

 Of course at the periphery - this just being the dawn of
the era a couple of years later - of VCRs, they had the adult
section with the various no-talent porn stars signing
whatever. You crept through that section, what they’re
pushing, what they’re giving away. It was fun, it was a
pilgrimage.

 Interviewer: I guess the one last thing that to ask you
about before kind of rounding out is, I don’t think there’s
any stories out there about you doing the Football II

handheld. Is there any, any particular interesting stories with
that?

 David Rolfe: Oh, nothing particularly. That one was sort
of routine. I know the other guy, Dinker, had done the first
version of Football, which was sort of their foot in the door
at Mattel. They wanted a Football II. I happened to be at
loose ends at that point. So we got to basically taking
football and added passing.

Side Note: Mark Lesser was the creator of the original Football handheld. It’s uncertain who the Dicker or Dinker referred to might be.

 Interviewer: You got the code to work off of?

 David Rolfe: I don’t remember. The thing is that for the
Football game, unlike Intellivision where we actually
programmed the unit, what we had programmed for
Football- Oh! And there were other similar LED-class
games that we did there. We’ve done some stuff which
was never released, I think there was a pinball game
or something. We programmed an emulator. In other
words, it would have to be translated and we can do that
translation.

 Where was the base code? Did I use the Football base
code? Probably. I probably used the same base code for and
ran the same emulator that they’d originally used for that.
That was not a really big deal on the work I’ve done, but it
was there.

 Interviewer: Have you seen in toy stores now, they
actually have old Mattel Electronics remade? Versions of
those old handheld games.

 David Rolfe: I’ve heard about that. I haven’t paid
terribly much attention.

 Interviewer: As a final sort of thing here, after Activision
what was kind of your career path? I know you said you kind
of worked at Lotus for awhile, so what have you done since
then?

 David Rolfe: I’ve always done the same kind of thing,
which is the small company, small project route. I worked at
Lotus one of the very small teams - actually two people - to
create what became Lotus HAL. But we didn’t do that
for Lotus, we did that for some guy who was also an
entrepreneur.

 I drifted to working for these small entrepreneurs who
do not reach the big time because of their individual
temperament. In this case, the guy did reach the big
time. That is, he managed to take this thing which he’d
done sort of on his own, and at least he told us that he
was going to sell it on its own. But then he ended up
selling it to Lotus, which was probably just his plan
along. I don’t know people who are good at this. Who
knows?

 We got to HAL which was an English language front end
to the very popular 1-2-3 accounting program which was
justifying people buying PCs. So much of which is basically
word processing and accounting. You had the word processor

or you had Lotus 1-2-3. We followed that up, it was working
again on a small team or the same guy, two other engineers
who produced Lotus Magellan. Major projects and products
for their day.

 Then I worked for what I’ve been doing ever since, which
is a scientific test equipment for somebody else I knew. A
small entrepreneur - what a coincidence - supporting that
project.

 Interviewer: Just to set the record straight on this, on the
website Mobygames, you’re listed with a couple of things
after Activision. I’m not sure if it might just be another
David Rolfe. There’s two educational games called Space
Adventure and Dinosaur Adventure that you’re both
credited on.

 David Rolfe: Oh, do I have that now? That must be new.
Oh yes, that is true. That stuff was so insignificant that I
even think of it. The guy who had done the Lotus stuff, the
entrepreneur, he had started something called Knowledge
Adventure and doing learning games. He was getting some
stuff which I regard pretty much as fluff, just some things to
demonstrate some little scientific principle or, could it be
mildly fun this way or that way. I had a little input here or
there, around the edges for that. So the games you
mentioned - the Dinosaur or Rocket or something or other -
not a great project and something that really didn’t even
stick in my mind.

 Interviewer: And I see two that are probably, definitely
not you because I don’t think you’ve ever done art before.

These are very recent games. So I think they got that mixed
up. I’m not really sure what the context is of this one, a
port of a game called Empire, which was a mainframe
game.

 David Rolfe: Well, that’s interesting, because that may
mean something to me. There was somebody named Walter
Bright. Back in the day he developed the game Empire in
zone. I remember him. I understood he actually made some
money out of that, formed a little company. I don’t know
where he went after that, but it seemed to be like quite a
launch to his life. I never worked on it. I don’t think I ever
even played it other than kind of vaguely knowing what he
was doing. Seemed to be like some basic, back to the days of
the sims.

 Interviewer: So was he at Caltech?

 David Rolfe: Yeah. He was a Caltech student, a couple
years younger than I was, I think.

 Interviewer: It has - Walter Bright created it - and then
three additional credits, which is you, Mark Strollberg, and
Shal Farley.

 David Rolfe: Okay. I know both of those names, I don’t
think Shal would have had anything to do with it, although
it’s possible he did something. Mark Strollberg went off in
some other direction, but did do this kind of work. Did he
ever work for Walter Bright? I can’t say whether he did or
didn’t.

 I know Walter had hired some people because he
talked about that, but I don’t have the details. I am

curious why my name is wrapped up in that, but I
have no idea. Maybe there’s a reason for these things.
I’m trying to see if something will come to me, how he
could ever make that connection other than that, they
happened to know Walter! I can’t think of anything.
[Laughs]

 Interviewer: If I ever talk to him, I’ll ask him that
question. Thank you very much for this. I really looked
forward to talking with you and it was a good time.

Chapter 9
Resources

The interviews in this book were built upon understandings
gathered from work done by previous authors and researchers.
Below I’ve compiled a set of resources for those interested to
know more of what may not have been talked about in these
interviews, having assumed a level of knowledge between the
interviewer and each person. This is where you can
learn more about their recollections and the real details
behind some of the famous games each person worked
on.

 File #1 – Gregory Cox

 Interview conducted on September 20th, 2019 via the
phone.

 The history of Cyan Engineering before and during its
tenure as a subsidiary of Atari are documented in Atari Inc.
Business is Fun by Marty Goldberg and Curt Vendel. Curt
and the Atari Museum provided permission for me to use the
organizational chart seen in this chapter, which is also
featured in the book.

 The details behind Cyan’s early microprocessor
pinball experiments are detailed in the case
ubject%3A%22bally%20v%20williams%22]Bally v. Williams,
Civil Action No. 78 C 2246 filed in 1978 and concluded in
1984. The files for the case are provided by the author at the
Internet Archive. The Gregory Cox depositions can be found
here.

 A summary of the information in these cases as it relates

to the greater landscape of potential microprocessor games
in 1975 can be found at the author’s blog on the article
Exploring the First Microprocessor Games.

 File #2 – David Shepperd

 Interview conducted from July 2017 to January 2018 via
email.

 Several recollections by David Shepperd were provided to
the site Arcade History, such as for Night Driver, Flyball,
and Sky Raider. It should be noted that on the site he is
listed on several games he claims to no have worked on such
as Starship 1 and Space Duel.

 Shepperd donated his remaining personal items from his
Altair experiment to the Strong Museum of Play in
Rochester, New York. The finding guide explains the
contents of the donation in detail.

 Keith Smith of All in Color for a Quarter helped uncover
the mystery of Nürburgring as well as provided the
recollection from Frank Ballouz about the mishap of
Flyball.

 Foerst Fahrsimulatoren, founded by the late Dr. -Ing
Reiner Foerst, provided a full history of the Nürburgring
series on their website in German.

 File #3 – Rich Moore

 Interviews conducted on December 1st, 2017 and May

18th, 2018 via phone.

 Retro Gamer Issue #79 has a Making of Lunar Lander
feature with interviews from Howie Delman, Lyle Rains,
and Rich Moore. The article was fairly comprehensive
so not much was asked about Lunar Lander in this
interview.

 The Atari internal emails, the VAX mails, were uploaded
to the web by Jed Margolin. Comments and projects by
many Atari alumni can be tracked from as early as 1982 to
as late as 1992.

 File #4 – Tom McHugh

 Interviews conducted on April 15th, 2017 and April 20th,
2017.

 Background information on Dave Nutting Associates
can be found in the book They Create Worlds: The
Story of the People and Companies That Shaped the
Video Game Industry, Vol. I: 1971-1982 by Alexander
Smith, which the author of this book contributed to
extensively.

 File #5 – Jamie Fenton

 Interview conducted on September 4th, 2017.

 Fenton has maintained a website, Fentonia, particularly
elaborating some of the elements of Gorf and the unreleased
Ms. Gorf.

 In addition, she recently donated some of her papers to
the Computer History Museum, where some of the work
regarding the Bally Professional Arcade was made available
online.

 Back in 1982, Jamie was interviewed for a public access
news program called Wired In where she displayed her game
Robby Roto as well as made some grand predictions about
the future of technology. It’s quite a watch.

 Alex Smith of They Create Worlds also interviewed
Jamie and goes more background on the Bally Professional
Arcade console in the text of his book, picking up where this
interview leaves off.

 An interview with Jeff Fredricksen on Bally Alley (as well
as the whole site itself) provides much more information on
the technology behind the console project.

 File #6 – Mark Lesser

 Interview conducted from August 2016 to July 2017 via
email.

 An interview with Lesser and his listed gameography
were done by Scott Stilphen in the early 2000s.

 Blake Harris talked to Lesser along with several other
creators for a Making Of NHL ‘94 which speaks to his
programming acumen.

 File #7 – Vic Tolomei

 Interviews conducted on June 26th, 2017 and August 9th,
2017 via phone.

 David Craddock covers the early career of Don Worth in
the first chapter of his book Dungeon Hacks: How NetHack,
Angband, and Other Roguelikes Changed the Course of
Video Games. The friend which split the cost for Worth’s
first Apple II was Vic.

 All in Color for a Quarter covers the history of Exidy,
including the attempts of the Sorcerer to become a
legitimate home computer.

 A great amount of information on the Sorcerer can be
found online, though unfortunately no singular resource
charts its success. Check out a few links to the Internet
Archive.

 Luke Winkie spoke with Vic for his article on the 1986
Exidy lightgun game Chiller.

 File #8 – David Rolfe

 Interview conducted August 14th, 2019 via phone.
Thanks again to Tom Boellstorff and Braxton Soderman for
putting me in touch!

 Keith Smith of All in Color for a Quarter provided the
details on Ted Michon’s career prior to Star Fire.

 David Rolfe was interviewed by Digital Press by Scott
Stilphen in the 2000s.

 Good Deal Games and Intellivision World both have brief
interviews with Rolfe.

 The Intellivisionaries podcast interviewed Rolfe on
Episode 7 and Episode 13 about his games Major League
Baseball, Las Vegas Poker, and Blackjack as well as the
creation of the software backend to the Intellivision.

Chapter 10
About the Author

Ethan Johnson

Born in the radical year of 1993, Ethan has involved himself
deeply in the game history community. His credits include
contributing interviews for books like They Create Worlds
by Alexander Smith, Sega Arcade Revolution by Ken
Horowitz, and contributing research material to videos from
Gaming Historian. He also serves as Editor for the game
preservation website Gaming Alexandria and proprietor of
the blog The History of How We Play.

 The passion which drives Ethan to further this history is
all about connecting the pieces from all the various stories
across the industry into a holistic progression. This includes
helping connect researchers in other countries from Japan to
The Netherlands to Brazil to South Africa together.
The more voices that are involved in the telling and
seeking of the history, the better it will be understood by
those who may not grasp the appeal of primitive 8-bit
games.

 Get in touch with Ethan with comments, criticisms, to
share research materials, or get involved with game
history!

 Twitter: @GameResearch_E

 Discord: Gaming Alexandria Discord - @GameResearch_E

 Email: historyofhowweplay@gmail.com

05-rasterscan01.png
“Lost" During Vertical Refrace

*2! Line:

Lines 5 Through 238 of First Field ond Lines 267 Through 500
of Second Field not Shown Here.

*Lines 242 Through 262 and Lines 505 Through 525 are not
Part of Raster; They Occur While Beom is Shut off During
Vertical Refrace

263

264
2

200

504

Details of Roster Produced by the 525-Line Scanning Potfern

05-flyballflyer01.jpg

05-computerspace01.jpg
NA-2010

05-shepperdaltair01.jpg

04-atarichart01.png
IRGNEERING

04-cyanbuilding01.png

03-eltoroflyer.jpg
Ole!

wins the cheets!

+

WITH
TRIPLE-TONE
CHIMES

Exciting new
single player
flipper pinball

05-nurburgringflyer01.jpg
Niirburgring1

6080 100 120 140

neu,
hochwertig, zukunftssicher

Norburgring/1 setzt neue Madstabe for Vi-
daoutomaten. Es ist niont ein Spiel mit fer-
geleniden Miniaturliguren, Sondem _hau

nahes Rennerlebnis aus der Sicht des Fah-
rars. Damit gibl es erstmalig einen Monzau-

tomaten, der den Tesigeraten der Automobil-
und Erdolkonzeme nahekommt, den Fahrtsi- a2y
mulator mit naturgetreuem perspekiivischen o

Patent sngemeldet 285k

StraBenbild.

05-skyraiderflyer01.jpg

05-nightdriverflyer01.jpg

cover.jpeg
ANTEN cANDID
/\'IFIl@N

07-gunfightflyer01.jpg

06-marblemadnessflyer01.jpg
MARBLE MADNEES =

05-asteroidsdeluxeflyer01.jpg
ASTEROIDS DELUXE THE NEI.II GENEHRTION
e

T

PUT THE PLAYERS IN YOUR PiTune

05-skyraiderscreenshot01.png

05-2049tournamentflyer01.jpg

05-maceflyer01.jpg
Aﬁ@E

A_EI_U/”L\LLf_W;L"L..
ra!! S : I 1!
e f y
& w2

< the wildest fighting game ever.
g I
Wtﬂ Ci

i &

06-herculesflyer01.jpg

06-moonlanderscreencapture01.jpg

06-lunarlanderflyer01.jpg

06-supermanflyer01.jpg

06-battlezonemodel01.jpg

09-johnmadden93ad01.jpg
Tolicabout o Game s
Maaden writenall over .
Maccen 92 has yaras o piays
A lowl of 125 including nen
‘Bucibles, Ezch fom 1% pen ot
o iz Includig he
o-huddis cénse ancd
f Ueclodkply
1153 game of match
Mo bl o oot ach
{eam sccuted by e man hiaself
Bty Leck upsaves gamoarc
yer stats Uncuigh (he leyalls
Rk trorigt iy oo vy
positon and youl o all e ey
T actionk novar bocr: morG
explosive. Shogsting Cziches
Clofhosiing fckies Hasc LUt
‘Deferisive shus Saiety Sz Taunis —
Tho more oo fhodcton. 424
the more exciea Medden gets. I
Siesting 0u comments it Boam! Yo s
that buck come from? s he frue perscnaly of ‘octeall

ey e e o
woitoan st RGO
et T

ASN* e Electioni Arts Spons Network sai over e feld
ke roving inebarwer HghIGhY. IseVistor nsiant 1eply
Cemerss covering every anglo af o ger

Miake the right call Phicne 000) 245 4525 anytie
G v your kol EA deslar And 0o the orly gan

werthy ofthe Flallotiame, R

10-sorcererpicture01.png
&

MEEEE SR NN

10-sorcererbook01.jpg

07-tornadobaseballflyer01.jpg
MIDWAY MFG. cO.—
ABaly Congar

07-seawolfflyer01.jpg
NEW FROM MIDWAY

Markl...Torpedo! *

MIDWAY MFG. CO.—

07-clownsflyer01.jpg

07-wizardofworflyer01.jpg
el ST
e N

07-280zzzapflyer01.jpg
280 ZZZAP

Thrilling action matches
skills against tight bends...
fast straights...S-curves

& more for real driving
excitement!

08-fireballflyer01.png
Professional
Home Model

OWNER'S MANUAL
MODEL NO. A614-03000

09-biminirunflyer01.jpg
A unique, scton-packes,
high-seas adventure!

M New generation gemes
from Nevision
Entertaioment!

The challenges
are fomidabe!

T S @ﬁEVTSTﬁN

ENTERTAINMENT s
0.t 3054, Wesport, G ogBen

09-autoracead01.png
EL ELECTROMICS
Auto Race

And here's what to
do if it rains!

19.99

Special Purchase! Mattel
Electronics™ Auto Race game the
size of a min-calculator. You shit, |
you steer, avoid a colision, beat the |
clock and youre the winer incudes |
dighal timer, 4-speed gear shift ac-
tlon for a 4-ap race.

T daragal acres |

11-rolfebadge01.jpg

10-vertigoflyer01.jpg
VERTIGO™ - the first in
a series of profit generating
games for the all new XCD-1
environmental system.

THE XCD-1 ENVIRONMENTAL SYSTEM FEATURES:

 Full moving cabine design the need for a complex and
pOSS bl Isaky nyaraulic system
 Sizo offcicnoy-No largor tha a stan
dard si down vidoo, * Can bo plugges ino ary standard AC
out,
 Stato of the art coor grapnics
« Supported with moro games o come.
* Unique digital audo systen,
+ A ‘DRAW APPEAL" thal will erFance
= A design incorporating straignt for- e eam ngs potantal of your entire
ward sleciical moiors s siminatng gare foom

See Your Exioy Diatributor or Contact Exidy.

=) 390 Java Drive, Sunnyvale, A 84008
0] Tel(a06) 734010 Telex-TRT 184836

™

11-starfireflyer01.jpg

11-michontower01.jpg

10-ventureflyer01.jpg
CLAIM YOUR
TREASURES WITH

11-fireoneflyer01.jpg

11-technicalmagicad01.png
Techers wanted!

* Programmers sy ngegel

,
*E.ES tp oystom dosion, intograted ciruit desian,

graphic display design!

*Technicians

SUMMER and PEkMANENT EMPLOYMENT

Technical
1030 Cole Avenue
Hollywood, CA 90038

213 464-0874 iroon to midnight

TED MICHON, Hardware

DAVE ROLFE, Software

11-intellivisiontimeline01.png
bec. 3, 199

A 1580

o 100

R ot 10 1t s 1 ko

PROHUCT DLV 1 FEATED TR, HOWG T J00 Foan: conmies)
PESRSE W GREAT - B ATTE (e

[—

FREBUET 1T A0V1S - PEPLE 0T 0 T 1L iz
B e Ao
SALES TRIED AR VDALY

0 FINLLY S A ILITY I T T PLACE,

